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1. a) The intensity of sunlight at the Earth’s orbit is ≈ 1.4 × 106 erg/s/cm2. What size
chunk of earth (ρ ≈ 5 g/cm3) could be levitated without orbiting, but at the radius of
the Earth’s orbit?

b) Newton’s Rings. Explain briefly whether a dark or bright spot appears at the
center, when viewing the reflected and transmitted fringe patterns in the apparatus
sketched on the left. Ignore multiple reflections inside the glass in both parts b) and
c).

c) Lloyd’s Mirror. Explain whether a dark or bright spot appears at the base of the
screen in the apparatus sketched on the right.
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2. Carry out the derivation of Fresnel’s equations by matching the fields at the dielectric
boundary, as discussed on p. 143 of the Notes. Deduce the four ratios:

E0r

E0i

,
E0t

E0i

(1)

for Ei polarized parallel and perpendicular to the plane of incidence.

The derivation of Fresnel’s equations from Maxwell’s equation was first performed by
Helmholtz.
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3. Fresnel’s Rhomb.

Linearly polarized light can be converted to circularly polarized light, and vice versa,
with Fresnel’s rhomb: a piece of glass cut in the shape of a rhombic prism.

If the glass has index of refraction n = 1.5, show that the angle θ must be ≈ 50.2◦ or
53.3◦.

The effect is based on the phase change of totally internally reflected light. Hint: write

E0r = E0ie
−iφ, (2)

with φ⊥(φ‖) for E ⊥ (‖) to the plane of incidence, and show that

tan

(
φ⊥ − φ‖

2

)
= −

cos θi

√
sin2 θi − 1/n2

sin2 θi

. (3)
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4. (a) More amplitude analysis. On pp. 141-142 of the Notes,
http://physics.princeton.edu/~mcdonald/examples/ph501/ph501lecture12.pdf

we considered reflection and transmission at a dielectric boundary, using the amplitudes
i, r and t, which are proportional to the electric fields of the incident, reflected, and
transmitted waves, respectively.

We found that if i = 1, then

|r|2 =
sin2(θ1 − θ2)

sin2(θ1 + θ2)
, for E ⊥ to the plane of incidence, (4)

and

|r|2 =
tan2(θ1 − θ2)

tan2(θ1 + θ2)
, for E ‖ to the plane of incidence. (5)

Can we deduce relations for the phases of r and t, and not merely their amplitudes?
See sec. 33-6 of Vol. I of the Feynman Lectures on Physics,
http://www.feynmanlectures.caltech.edu/I_33.html

Consider now an inverse situation:

If i′ = 1, then conservation of energy tells us that

|r|2 + |t|2 = |r′|2 + |t′|2 . (6)

We can also consider something even more peculiar:



Princeton University 2001 Ph501 Set 6, Problem 4 5

This can be regarded as the “time reversal” of the original situation.

But, we also recognize this as the superposition of two more ordinary configurations:

In particular, if a wave of amplitude r were incident from side 1, then the transmitted
wave would have amplitude rt in terms of our original definitions.

Show that this implies that r is real, while t′ = t�.

Hint: first deduce that r′ = −r and |t′| = |t|. Then, multiply the relation 1 = r2 + tt′

by its complex conjugate....

(b) Dielectric Slab. Consider a plate of thickness d of a dielectric with index of
refraction n2, surrounded by a medium of index n1 = 1. A wave of unit amplitude is
incident from below. Multiple reflections occur whose interference leads to the reflected
and transmitted waves, being the sums of the amplitudes at the dashed wavefronts
shown in the figure.

Show that the waves corresponding to a ray and its next higher-order neighbor have a
phase difference 2Δ due to the different path lengths they have traveled, where

Δ =
2πd cos θ2

λ2
, (7)

while the phase lag for the first transmitted ray compared to the case of no plate is
Δ −Δ′, where

Δ′ =
2πd cos θ1

λ1
. (8)

Define the total reflected and transmitted amplitudes to be R and T , respectively.
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Sum the partial amplitudes, and use the results of part (a) to show that

R =
r(1 − e2iΔ)

1 − r2e2iΔ
, and T =

(1 − r2)ei(Δ−Δ′)

1 − r2e2iΔ
, (9)

which obey energy conservation: |R|2 + |T |2 = 1.

The ratio of the reflected to transmitted amplitudes is

R

T
=

r(1 − e2iΔ)

(1 − r2)ei(Δ−Δ′) = −2ieiΔ′
r sinΔ

1 − r2
(10)

so there is a phase difference of Δ′−π/2 between amplitudes R and T . An experiment
that would be sensitive to this phase difference could involve a second beam, incident
on the beam splitter at angle θ1, but from the opposite side of the beam splitter
from the original input beam. Then, the transmitted part of the first beam would
interfere with the reflected part of the second beam. If the two input beams are “in
phase” at, say, the midplane of the beam splitter, they would have a phase difference
of Δ′ at the surface of the splitter onto which the second beam is incident. So, when
considering the interference of the two beams, the phase Δ′ found in eq. (10) would
drop out, and we should say that there is an effective phase difference of 90◦

between the reflected and transmitted amplitudes in a beam splitter of
finite thickness. This 90◦ phase difference plays an important role when comparing
the classical and quantum behavior of a beam splitter:
http://physics.princeton.edu/~mcdonald/examples/bunching.pdf

An argument due to Feynman [Chaps. 31 of Vol. 1 of the Feynman Lectures on Physics,
http://www.feynmanlectures.caltech.edu/I_31.html; also pp. 282-285, Lecture 23 of the
Notes, http://physics.princeton.edu/~mcdonald/examples/ph501/ph501lecture23.pdf ] shows
that R is i times a positive number, and hence that r is negative. Then, eqs. (4) and
(5) lead to

r = −sin(θ1 − θ2)

sin(θ1 + θ2)
, for E ⊥ to the plane of incidence, (11)

and

r = −tan(θ1 − θ2)

tan(θ1 + θ2)
, for E ‖ to the plane of incidence. (12)

The expressions (9) for R and T are valid even if n1 > n2. Then, for large enough θ1,
we expect total internal reflection.

In the Notes, we found for this case that

cos θ2 = i
√

(n1/n2)2 sin2 θ1 − 1, (13)

so eq. (7) gives

Δ =
2πid

λ2

√
(n1/n2)2 sin2 θ1 − 1 ≡ i

d

δ
. (14)
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Thus,

T =
(1 − r2)e−d/δe−iΔ′

1 − r2e−2d/δ
→ 0 as d → ∞. (15)

But for finite thickness d the transmitted amplitude is nonzero, even though we found
no wave motion in medium 2 which traveled normal to the boundaries. This phe-
nomenon is called “tunneling”.
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5. (a) Antireflection Coatings

Suppose the slab of dielectric of prob. 4 separates media of indices n1 and n3.

Show that the reflected and transmitted amplitudes obey

R =
r12 + r23e

2iΔ

1 + r12r23e2iΔ
, T =

t12t23e
iΔ

1 + r12r23e2iΔ
, (16)

where r12 is the amplitude for a single reflection at boundary 1-2, etc.

Consider the special case of normal incidence. Show that if n2 =
√

n1n3 and d = λ2/4,
then R = 0, which is a prescription for an antireflection lens coating.

Show also that if d = λ2/2 the R is independent of n2, and if in addition n1 = n3 then
R vanishes.

(b) Dielectric Mirrors

Can we make a good mirror by applying an appropriate dielectric coating on a plate
of glass?

Not with only two layers, but consider a multilayer mirror. For example, if a medium
4 exists beyond medium 3, then the reflection at the 2-3 boundary could be described
by

R23 =
r23 + r34e

2iΔ3

1 + r23r34e2iΔ3
, T23 =

t23t34e
iΔ3

1 + r23r34e2iΔ3
, (17)

⇒ T =
t12t23t34e

i(Δ2+Δ3)

(1 + r23r34e2iΔ3)(1 + r12R23e2iΔ2)
, etc. (18)

Then, for a stack of n 2-3 pairs, 1-2-3-2-3- · · · -3-2-1,

T =
t12t23t32t23 · · · t32t21e

ni(Δ2+Δ3)

big mess
=

|t12|2 |t23|2n eni(Δ2+Δ3)

big mess
, (19)

where the big mess is not small if Δ2 = Δ3 = π/4, since in that case 1 + r23r32e
2iΔ3 =

1 + r2
23, etc. Since |t23|2n → 0 for large n, T → 0 and R → 1.

The prescription given here for a multilayer dielectric mirror works well for only a
narrow range of angles of incidence and a narrow range of wavelengths, since we require
that Δ2 = Δ3 = π/4. Better prescriptions can be given that maintain very high
reflectivity over a large range of parameters. See, for example, J.P. Dowling, Science
282, 1841, (1998).1

1http://physics.princeton.edu/~mcdonald/examples/optics/dowling_science_282_1841_98.pdf
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6. In 1890, O. Wiener carried out an experiment that can be said to have photographed
electromagnetic waves.2

a) A plane wave is normally incident of a perfectly reflecting mirror. A glass photo-
graphic plate is placed on the mirror at a small angle α. The polarization of the wave
is parallel to the line of intersection of the mirror and the plate.

The photographic emulsion is almost transparent – ignore attenuation and reflection
in it and in the glass.

When the plate is developed a striped pattern is observed.

Calculate the electromagnetic fields E and B for y > 0, where y = 0 is the surface of
the mirror. Predict the position and spacing of the dark stripes that appear on the
developed “negative” plate.

b) Repeat the discussion for waves incident at 45◦. That is, calculate E and B for
y > 0, and predict the pattern of blackening on the negative.

Distinguish the case of E ⊥ and ‖ to the plane of incidence.

2http://physics.princeton.edu/~mcdonald/examples/EM/wiener_ap_40_203_90.pdf
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7. Two airplanes are flying at distance d apart at height h above the ocean whose dielectric
constant is ε. One plane sends signals to the other. Both airplanes have short vertical
antennae. Ignore the curvature of the Earth.

Show that the ratio of the intensity of the signal reflected off the ocean to that of the
direct signal is

d6

(d2 + 4h2)3

⎛
⎝
√

(ε − 1)d2 + 4εh2 − 2εh√
(ε − 1)d2 + 4εh2 + 2εh

⎞
⎠

2

. (20)

In addition to facts about plane waves you need to know that

• The intensity of spherical broadcast waves falls off as 1/r2. Over small spatial
regions (except close to the source) the spherical waves can be considered as plane
waves.

• The amplitude (E field) of a broadcast wave varies linearly with the projection
perpendicular to the line of sight of the motion (acceleration) of the charges that
cause the wave (p. 141 of the Notes).

• Likewise, the current I excited in a receiving antenna varies as the projection of
E onto the antenna.

• The power of the received signal is, of course, I2R, where R is the resistance in
the receiving antenna.
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8. (a) Plasma with a dc magnetic field.

Consider the Earth’s ionosphere to be a plasma of uniform density with a static, uni-
form magnetic field B0 (the Earth’s field) in the +z direction. Discuss the propagation
of circularly polarized plane radio waves parallel (or antiparallel) to B0.

The response of an ionized electron of charge −e and mass m at position r to the wave
of angular frequency ω is described by

mr̈ + e
ṙ

c
× B0 = −eEei(kz−ωt), (21)

where for circularly polarized waves the electric field amplitude can be written

E± = E0(x̂ ± iŷ). (22)

Show that

r± = − eE

mω(ω ∓ ωB)
, (23)

where

ωB =
eB0

mc
, (24)

and that this implies a dielectric constant for the plasma of

ε± = 1 −
ω2

p

ω(ω ∓ ωB)
, (25)

where the plasma frequency ωp is given by

ω2
p =

4πNe2

m
(26)

for a plasma of number density N per cm3.

Show that for waves of circular polarization x̂+iŷ (called left-handed in optics although
a “photograph” of the electric field vector would show it to behave like a right-handed
screw),

vgroup = 2vphase = 2c

√
ωωB

ωp
. (27)

[See pp. 146a-d of the Notes for a discussion of group and phase velocity.]

It turns out that ωB ≈ ωp ≈ 107 Hz in the ionosphere. Estimate the difference in
arrival times for signals of 105 and 2× 105 Hz originating simultaneously (in lightning
flashes) at the opposite side of the Earth. This illustrates the “whistler” or “chirp”
effect – as higher frequency waves arrive first.

What is the fate of waves of polarization x̂ − iŷ?
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(b) Reflections and Mirages

In the ionosphere the density of ionized electrons actually increases with height: the
lower atmosphere is screened from the Sun by the upper. Hence, the (frequency-

dependent) index of refraction decreases with height, since n(ω) ≈
√

1 − (ωp/ω)2,
where ωp is the plasma frequency.

Suppose at the bottom of the atmosphere, where n = 1, a radio wave propagates
upwards with angle θi to the vertical.

Use Snell’s law to show that the wave is reflected back downwards if the electron density
rises until ωp = ω cos θi at some height.

Mirages are a similar phenomenon in which higher temperatures in the air close to the
Earth’s surface result in lower density (N = RT/P ) at lower height, and hence lower

index at lower height for optical frequencies (n ≈
√

1 + ω2
p/(ω

2
0 − ω2)), so downward

going light rays can be reflected upwards near the surface.
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9. A plane electromagnetic wave of angular frequency ω is normally incident on a good
conductor that occupies the region z > 0. Show that the Poynting vector 〈S〉 evaluated
at z just greater than zero is equal to the power (per unit area ⊥ to z) lost to Joule
heating in the conductor.



Princeton University 2001 Ph501 Set 6, Problem 10 14

10. A plane electromagnetic wave of angular frequency ω is normally incident on a thin
conducting sheet of thickness a 
 d, the skin depth. Ignoring reflection, show that the
relative transmitted intensity is

T = 1 − 4π

c
σa, (28)

where σ is the conductivity.

Use an energy argument as in prob. 8.

Extending the argument to show that the relative reflected intensity R is (2πσa/c)2.

A “trick” derivation is to note that a sheet of unit area and thickness a has resistance

R =
l

σA
=

1

σa · 1 =
1

σa
(29)

to the induced currents that flow in the plane of the sheet. Hence, power V 2/R if
absorbed is a wave of voltage V per unit length crosses the sheet. But, the power
carried by a plane wave is V 2/Rvac where Rvac = 4π/c = 377 Ω. Thus, the fractional
power absorbed is Rvac/R = 4πσa/c.
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11. Total Internal Reflection

A wave of frequency ω is incident at angle θi on the boundary between dielectrics of
indices n1 > n2. Find the time-averaged Poynting vector of the transmitted wave when
sin θi > n2/n1, i.e., when total internal reflection occurs.

Verify that the transmitted surface wave satisfies the wave equation and Maxwell’s
equations.
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12. The grating accelerator

In optics, a reflective grating is a conducting surface with a ripple. For example,
consider the surface defined by

z = a sin
2πx

d
. (30)

The typical use of such a grating involves an incident electromagnetic wave with wave
vector k in the x-z plane, and interference effects lead to a discrete set of reflected
waves also with wave vectors in the x-z plane.

Consider, instead, an incident plane electromagnetic wave with wave vector in the y-z
plane and polarization in the x direction:

Ein = E0x̂ei(kyy−kzz−ωt), (31)

where ky > 0 and kz > 0. Show that for small ripples (a 
 d), this leads to a reflected
wave as if a = 0, plus two surface waves that are attenuated exponentially with z.
What is the relation between the grating wavelength d and the optical wavelength λ
such that the x component of the phase velocity of the surface waves is the speed of
light, c?

In this case, a charged particle moving with vx ≈ c could extract energy from the
wave, which is the principle of the proposed “grating accelerator” [R.B. Palmer, A
Laser-Driven Grating Linac, Part. Accel. 11, 81-90 (1980)].3

3http://physics.princeton.edu/~mcdonald/examples/accel/palmer_pa_11_81_80.pdf
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13. A radiofrequency quadrupole (RFQ) is a device for focussing beams of charged
particles. The electric field in this device can be approximated as that derived from
the quasistatic potential

φ(x, y, t) =
E0

2d
(y2 − x2) sin ωt, (32)

where d is a length and ω is the frequency of the field. The magnetic field is ignored in
this approximation. While the approximate fields do not satisfy Maxwell’s equations,
there is little error for |x|, |y| 
 λ, the wavelength of the radiofrequency waves.

Deduce the equations of motion for a particle of charge e and mass m in the radiofre-
quency quadrupole. Consider solutions of the form

x(t) = f(t) + g(t) sinωt (33)

where g 
 f and both f and g are slowly varying compared to sinωt. The parameters
may be assumed to satisfy the conditions that such solutions exist.

Complete the solution for the particular case that

x(0) = 0, ẋ(0) = v0θ0, (34)

y(0) = 0, ẏ(0) = 0, (35)

z(0) = 0, ż(0) = v0, (36)

with θ0 
 1. At what distance along the z-axis is the first image of the beam ‘spot’,
i.e., where the initially diverging beam is brought back to the z-axis?



Princeton University 2001 Ph501 Set 6, Problem 14 18

14. Pulsar Timing

The distance from the Earth to a pulsar can be estimated by observing the dispersion
of the radio-frequency pulses as they cross the interstellar medium.

a) Suppose the medium is a plasma of N electrons/cm3. What is the index of refraction
n(ω) where ω is the angular frequency of a wave?

b) The pulsar emits a short pulse that contains a broad range of frequencies. We
observe the pulse in a receiver that is tuned to a narrow band δω about an adjustable
central frequency ω. We measure the time difference δt between the arrival of two
components of the pulse, centered at frequencies ω and ω + δω, where δω 
 ω.

This can be done in a single receiver if the pulsar has a precise pulse rate – as is the
case. Pulsars are the most accurately periodic macroscopic phenomenon ever observed!

Which component, ω or ω + δω, arrives first, and by how much, as a function of the
Earth-pulsar distance L?

Use the following representative values to calculate the distance L to pulsar “1913+16”:
ω = 2000 MHz, δω/ω = 0.01, N = 0.04 electrons/cm3, and |δt| = 0.004 s.

A pulsar tidbit: Many pulsars occur in binary systems, including one such system
where the direction to the Earth lies very close to the plane of the orbit. By observing
the small general-relativistic pulse delays that occur when one of the binary partners
occults the other, the eccentricity of the orbit can be determined to remarkable accu-
racy. The data indicate that the orbit has radius ≈ REarth−Sun and a small eccentricity
corresponding to being out of round by less than 1 cm! The orbit is round to one part
in 1013, which makes it the roundest object ever measured – and it’s at the other end
of the galaxy (F. Camilo, Princeton Ph.D. thesis, ≈ 1994).
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Solutions

1. a) For a black chunk of earth of radius r levitated at distance RE = 1.5 × 1013 cm in
sunlight of intensity I = 1.4 × 106 erg/s/cm2,

FG =
GMSm

R2
E

=
4πr3ρGMS

3R2
E

= Frad = πr2 I

c
. (37)

Hence

r =
3IR2

E

4cρGMS
=

3 · 1.4 × 106 · (1.5 × 1013)2

4 · 3 × 1010 · 5 · 6.7 × 10−8 · 2 × 1033
≈ 1.2 × 10−5 cm, (38)

which is less than a wavelength of light!

b) The center of the reflected spot is dark, being the interference between the reflection
off the bottom surface of the lens and the top surface of the glass plate. There is a
180◦ phase difference between these two cases. (The reflections off the top of the lens
and bottom of the glass plate give a “background” intensity that is independent of
position.) The center of the transmitted spot is bright, as there is no phase shift
during transmission across a dielectric boundary.

c) The fringe pattern is dark at the base of the screen, due to interference of the direct
and reflected rays. The latter undergo a 180◦ phase shift on reflection.
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2. We consider plane waves of the form

E = E0e
i(k·r−ωt),

H =
B

μ
=

n

μ
k̂ × E =

√
ε

μ
k̂ × E, (39)

where k =
√

εμω/c = nω/c in media with dielectric constant ε, index n =
√

εμ, and
permeability μ.

At a boundary between two dielectrics, the perpendicular components of D and B,
and the parallel components of E and H are continuous. The incident and reflected
waves are in medium 1, and the transmitted wave is in medium 2. The unit normal
vector pointing into medium 2 is labeled n̂. Then the boundary conditions are

n2
1

μ1

(E0i + E0r) · n̂ =
n2

2

μ2

E0t · n̂, (40)

n1(k̂i × E0i + k̂r × E0r) · n̂ = n2k̂t × E0t · n̂, (41)

(E0i + E0r) × n̂ = E0t × n̂, (42)
n1

μ1

(k̂i × E0i + k̂r × E0r) × n̂ =
n2

μ2

k̂t × E0t × n̂, (43)

Of course, Snell’s law tells us that

n1 sin θ1 = n2 sin θ2. (44)

(a) Polarization perpendicular to the plane of incidence (the plane containing k̂i, k̂r

and k̂t).

Relation (40) is satisfied identically. Both relations (41) and (42) yield

E0i + E0r = E0t. (45)

Relation (43) tells us that

n1

μ1

(E0i − E0r) cos θ1 =
n2

μ2

E0t cos θ2 =
n1

μ2

sin θ1 cos θ2

sin θ2
E0t, (46)
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and hence,

E0i − E0r =
μ1

μ2

sin θ1 cos θ2

cos θ1 sin θ2
E0t. (47)

Adding (45) and (47), we find that

E0t

E0i
=

2n1 cos θ1

n1 cos θ1 + μ1

μ2
n2 cos θ2

→ 2 sin θ2 cos θ1

sin(θ1 + θ2)
if μ1 = μ2 = 1. (48)

Then, (45) leads to

E0r

E0i
=

E0t

E0i
− 1 =

n1 cos θ1 − μ1

μ2
n2 cos θ2

n1 cos θ1 + μ1

μ2
n2 cos θ2

→ −sin(θ1 − θ2)

sin(θ1 + θ2)
if μ1 = μ2 = 1. (49)

(b) Polarization parallel to the plane of incidence.

Relation (40) leads to

n2
1

μ1

(E0i − E0r) sin θ1 =
n2

2

μ2

E0t sin θ2, (50)

which simplifies to

E0i − E0r =
μ1n2

μ2n1
E0t →

sin θ1

sin θ2
E0t if μ1 = μ2 = 1. (51)

using Snell’s law. Similarly, relation (42) leads to

E0i + E0r =
cos θ2

cos θ1
E0t. (52)

Adding (51) and (52), we find that

E0t

E0i
=

2n1 cos θ1

n2 cos θ1 + μ1

μ2
n1 cos θ2

→ 2 sin θ2 cos θ1

sin θ1 cos θ1 + sin θ2 cos θ2
=

4 sin θ2 cos θ1

sin 2θ1 + sin 2θ2

=
2 sin θ2 cos θ1

sin(θ1 + θ2) cos(θ1 − θ2)
if μ1 = μ2 = 1. (53)
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Combining this with (52), we have

E0r

E0i
=

cos θ2

cos θ1

E0t

E0i
− 1 =

n1 cos θ2 − μ1

μ2
n2 cos θ1

n1 cos θ1 + μ1

μ2
n2 cos θ2

→ 2 sin θ2 cos θ2

sin θ1 cos θ1 + sin θ2 cos θ2
− 1

=
sin θ2 cos θ2 − sin θ1 cos θ1

sin θ1 cos θ1 + sin θ2 cos θ2
= −sin(θ1 − θ2) cos(θ1 + θ2)

sin(θ1 + θ2) cos(θ1 − θ2)

= −tan(θ1 − θ2)

tan(θ1 + θ2)
if μ1 = μ2 = 1. (54)

(c) Normal Incidence.

Taking the limit of either polarization as θ1 → 0 and θ2 → 0, we find

E0t

E0i

=
2n1

n2 + μ1

μ2
n1

→ 2n1

n1 + n2

if μ1 = μ2 = 1, (55)

E0r

E0i
=

n1 − μ1

μ2
n2

n1 + μ1

μ2
n2

→ n1 − n2

n1 + n2
if μ1 = μ2 = 1. (56)
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3. For a linearly polarized wave, E⊥ and E‖ are in phase, while for a circularly polarized
wave their phase difference is Δφ = ±90◦.

In Fresnel’s rhomb, there are two internal reflections, each of which causes phase
changes Δφ⊥ and Δφ‖ for light polarized perpendicular and parallel to the plane of
incidence, respectively. Hence, if

Δφ⊥ − Δφ‖ = ±45◦ (57)

at each reflection, we will achieve the desired conversion of linearly into circularly
polarized light.

In case of total internal reflection where media 1 and 2 have indices n1 = n and n2 = 1,
we use Snell’s law to write

sin θ2 = n sin θ1, and cos θ2 =
√

1 − n2 sin2 θ1 = in
√

sin2 θ1 − 1/n2. (58)

Then, eqs. (49) and (54) can be written as

E0r

E0i

∣∣∣∣
⊥

= −sin(θ1 − θ2)

sin(θ1 + θ2)
= −

sin θ1 · in
√

sin2 θ1 − 1/n2 − cos θ1 · n sin θ1

sin θ1 · in
√

sin2 θ1 − 1/n2 + cos θ1 · n sin θ1

=
cos θ1 − i

√
sin2 θ1 − 1/n2

cos θ1 + i
√

sin2 θ1 − 1/n2
, (59)

and

E0r

E0i

∣∣∣∣
‖

= −tan(θ1 − θ2)

tan(θ1 + θ2)

=
cos θ1 − i

√
sin2 θ1 − 1/n2

cos θ1 + i
√

sin2 θ1 − 1/n2
·
cos θ1 · in

√
sin2 θ1 − 1/n2 − sin θ1 · n sin θ1

cos θ1 · in
√

sin2 θ1 − 1/n2 + sin θ1 · n sin θ1

=
cos θ1 − i

√
sin2 θ1 − 1/n2

cos θ1 + i
√

sin2 θ1 − 1/n2
·

cos θ1

(
cos θ1 + i

√
sin2 θ1 − 1/n2

)
− 1

− cos θ1

(
cos θ1 − i

√
sin2 θ1 − 1/n2

)
+ 1

=
cos θ1(1 − 1/n2 − 1) + i

√
sin2 θ1 − 1/n2

− cos θ1(1 − 1/n2 − 1) + i
√

sin2 θ1 − 1/n2

= −
cos θ1 − in2

√
sin2 θ1 − 1/n2

cos θ1 + in2
√

sin2 θ1 − 1/n2
. (60)

Both eqs. (59) and (60) have the form

a − ib

a + ib
=

a2 − b2 − 2iab

a2 + b2
≡ e−iΔφ, (61)
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so

tan Δφ =
2ab

a2 − b2
=

2(a/b)

1 − (a/b)2

= tan 2(Δφ/2) =
2 tan(Δφ/2)

1 − tan2(Δφ/2)
, (62)

and hence,

tan(Δφ/2) =
a

b
. (63)

Thus,

tan(Δφ⊥/2) =

√
sin2 θ1 − 1/n2

cos θ1
, and tan(Δφ‖/2) = n2

√
sin2 θ1 − 1/n2

cos θ1
,

(64)
and

tan(Δφ⊥/2 −Δφ‖/2) =
tan(Δφ⊥/2) − tan(Δφ‖/2)

1 + tan(Δφ⊥/2) tan(Δφ‖/2)

=

√
sin2 θ1 − 1/n2

cos θ1
· 1 − n2

1 + n2 sin2 θ1−1/n2

cos2 θ1

= −
cos θ1

√
sin2 θ1 − 1/n2

sin2 θ1
. (65)

The angle of incidence, θ1, is the same as angle θ shown in the figure for Fresnel’s
rhomb. Thus, condition (57) implies that

cos θ
√

sin2 θ − 1/n2

sin2 θ
= ± tan 22.5◦ = ±(

√
2 − 1), (66)

or
(3 − 2

√
2) sin4 θ = (1 − sin2 θ)(sin2 θ − 1/n2), (67)

(4 − 2
√

2) sin4 θ − (1 + 1/n2) sin2 θ + 1/n2 = 0, (68)

sin2 θ =
1 + 1/n2 ±

√
(1 + 1/n2)2 − 4(4 − 2

√
2)/n2

2(4 − 2
√

2)
. (69)

For n = 1.5, we find θ = 50.2◦ and 53.3◦.
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4. (a) Since the “time reversed” case is the superposition of the two cases shown below
the former, we conclude that

i = 1 = r2 + tt′, (70)

and
0 = rt + tr′. (71)

From eq. (71) we learn that
r′ = −r. (72)

Combining this with conservation of energy, eq. (6), we find that

|t′| = |t| . (73)

Given these relations, we can now write

r = r0e
iα, t = t0e

iβ, and t′ = t0e
iγ, (74)

where r0 and t0 are real and obey

r2
0 + t20 = 1. (75)

Inserting relations (74) into eq. (70), we find

1 = r2
0e

2iα + t20e
i(β+γ). (76)

Multiplying eq.(76) by its complex conjugate yields

1 = r4
0 + t40 + 2r2

0t
2
0 cos(2α − β − γ). (77)

In view of relation (75), we must have

2α = β + γ. (78)

Then, eq. (76) can be rewritten as

1 = (r2
0 + t20)e

2iα = e2iα. (79)

Hence,
α = nπ, (80)

where n is an integer, from which we conclude that r (and r′) is real. Further,

β + γ = 2nπ, (81)

which implies that
t′ = t�, (82)

according to the definitions (74).

(b) The phase difference 2Δ is that between points a and b in the figure
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Namely,

2Δ =
2π · 2d

λ2 cos θ2

− 2πl sin θ1

λ1

, (83)

where l = 2d tan θ2. The wavelengths are related by n1λ1 = n2λ2, so eq. (83) becomes

2Δ =
2π · 2d

λ2 cos θ2

(
1 − n1 sin θ1 tan θ2 cos θ2

n2

)
=

4πd cos θ2

λ2
, (84)

using Snell’s law.

The phase lag for the first transmitted ray is that between points a and b in the figure
below:

We note that l′ = d(tan θ1 − tan θ2), so that

φ =
2πl′ sin θ1

λ1
+

2πd

λ2 cos θ2
− 2πd

λ1 cos θ1
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=
2πd

λ2 cos θ2

− 2πd sin θ1 tan θ2

λ1

− 2πd

λ1 cos θ1

+
2πd sin θ1 tan θ1

λ1

= Δ − Δ′, (85)

with

Δ′ =
2πd cos θ1

λ1
. (86)

The total reflected amplitude is

R = r + tr′t′e2iΔ + tr
′3t′e4iΔ + ... = r − |t|2 re2iΔ

∑
n=0

(r2e2iΔ)2

= r − (1 − r2)re2iΔ

1 − r2e2iΔ
=

r(1 − e2iΔ)

1 − r2e2iΔ
, (87)

using relations (72) and (82).

Similarly, the total transmitted amplitude is

T = tt′ei(Δ−Δ′) ∑
n=0

(r2e2iΔ)2 =
(1 − r2)ei(Δ−Δ′)

1 − r2e2iΔ
. (88)

For a discussion of “tunneling” via the Poynting vector, see D. Mugani, Opt. Comm.
175, 309 (2000).4

4http://physics.princeton.edu/~mcdonald/examples/EM/mugnai_oc_175_309_00.pdf
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5. (a) The reflected amplitude for the 3-layer medium is

R = r12 + t12r23t21e
2iΔ + t12r23r21r23t21e

4iΔ + ...

= r12 + t12t21r23e
2iΔ

∑
j=0

(
r21r23e

2iΔ
)j

= r12 + t12t21
r23e

2iΔ

1 − r21r23e2iΔ
. (89)

From prob. 4, r21 = −r12, and t12t21 = |t12|2 = 1 − r2
12, so eq. (89) becomes

R = r12 + (1 − r2
12)

r23e
2iΔ

1 + r12r23e2iΔ

=
r12 + r23e

2iΔ

1 + r12r23e2iΔ
. (90)

Similarly,

T = t12t23e
iΔ + t12e

3iΔ + t12r23r21r23r21t23e
5iΔ + ...

= t12t23e
iΔ + t12r23r21t23e

3iΔ
∑
j=0

(
r21r23e

2iΔ
)j

= t12t23e
iΔ + t12t23

r21r23e
3iΔ

1 − r21r23e2iΔ

= t12t23e
iΔ

(
1 − r12r23e

2iΔ

1 + r12r23e2iΔ

)

=
t12t23e

iΔ

1 + r12r23e2iΔ
. (91)

At normal incidence the reflected amplitude at the a-b boundary is

rab =
na − nb

na + nb
. (92)

If d = λ2/4, then Δ = 2πd/λ2 = π/2, and

R =
r12 − r23

1 − r12r23
, (93)

r12 − r23 =
(n1 − n2)(n2 + n3) − (n2 − n3)(n1 + n2)

(n1 + n2)(n2 + n3)
=

2(n1n3 − n2
2)

(n1 + n2)(n2 + n3)
, (94)

and R = 0 if n2 =
√

n1n3.

If d = λ2/2, then Δ = π, and

R =
r12 + r23

1 + r12r23

=
(n1 − n2)(n2 + n3) + (n2 − n3)(n1 + n2)

(n1 + n2)(n2 + n3) + (n1 − n2)(n2 − n3)
=

n1 − n3

n1 + n3

, (95)

which is independent of n2, and vanishes if media 1 and 3 are the same.
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6. a) The photographic plate intersects the mirror along the line x = y = 0. The incident
wave of frequency ω and polarization along the z axis has electric and magnetic fields

Ei = E0ẑe
i(−ky−ωt), Bi = −E0x̂ei(−ky−ωt), (96)

where k = ωc = 2π/λ, c is the speed of light, and λ is the wavelength.

The reflected wave has electric field with a 180◦ phase change so as to satisfy the
boundary condition that the tangential electric field vanish at the surface of the mirror.
Hence,

Er = −E0ẑe
i(ky−ωt), Br = −E0x̂ei(ky−ωt). (97)

The total fields are standing waves:

E = Ei + Er = Re(−2iE0ẑ sin kye−iωt) = −2E0ẑ sin ky sin ωt, (98)

B = Bi + Br = Re(−2E0x̂ cos kye−iωt) = −2E0x̂ cos ky cos ωt. (99)

The photographic plated is “exposed” by energy transfer between the electromagnetic
fields and the emulsion. Recall that a magnetic field cannot change the energy of a
charged particle, while an electric field can. We conclude that it is the electric field (98)
whose spatial dependence will determine the pattern of exposure of the photograph.
Since the electric field energy depends on E2, the pattern of exposure will actually
follow the time average 〈E2〉 ∝ sin2 ky ∝ 1 − cos 2ky.

We also recall that the developed photographic “negative” would be black everywhere
if it were unexposed. Exposure due to strong electric fields will result in transparent
regions on the negative. The blackest stripes on the negative appear where the electric
field energy vanishes, i.e., at y = nλ/2.

For a plate making angle α to the x axis, y = s sinα, where distance s is measured
from the edge of the plate in contact with the mirror. Hence, the black stripes on the
negative appear at

s =
nλ

2 sin α
. (100)

If the incident wave had polarization along the x axis, the striping on the negative
would be parallel to the x axis with periodicity λ/2.

b) Now, the incident wave has a 45◦ angle of incidence, and the plane of incidence is
the x-y plane.

We first consider the case of polarization perpendicular to the plane of incidence. Then,
the incident wave vector is

ki =
k√
2
(x̂ − ŷ), (101)

and the electromagnetic fields are

Ei = E0ẑe
i(kx/

√
2−ky/

√
2−ωt), (102)

Bi = k̂i × Ei = −E0√
2
(x̂ + ŷ)ei(kx/

√
2−ky/

√
2−ωt). (103)
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The reflected wave has

kr =
k√
2
(x̂ + ŷ), (104)

and the electromagnetic fields are

Er = −E0ẑe
i(kx/

√
2+ky/

√
2−ωt), (105)

Br = k̂r × Er = −E0√
2
(x̂− ŷ)ei(kx/

√
2+ky/

√
2−ωt). (106)

The total fields are the waves:

E = Ei + Er = Re

(
−2iE0ẑ sin

ky√
2
ei(kx/

√
2−ωt)

)

= 2E0ẑ sin
ky√

2
sin(kx/

√
2 − ωt), (107)

B = Bi + Br = Re

(
−
√

2E0

(
x̂ cos

ky√
2

+ iŷ sin
ky√

2

)
ei(kx/

√
2−ωt)

)

= −
√

2E0

(
x̂ cos

ky√
2

cos(kx/
√

2 − ωt) + ŷ sin
ky√

2
sin(kx/

√
2 − ωt)

)
. (108)

This is a travelling wave in the x direction, modulated in y by sin ky/
√

2. Then,

〈
E2
〉
∝ sin2 ky√

2
∝ 1 − cos

√
2ky, (109)

so the dark stripes appear on the plate at positions

s =

√
2nλ

2 sin α
. (110)

For polarization parallel to the plane of incidence,

Ei =
E0√

2
(x̂ + ŷ)ei(kx/

√
2−ky/

√
2−ωt), (111)

Bi = k̂i × Ei = E0ẑe
i(kx/

√
2−ky/

√
2−ωt), (112)

Er = −E0√
2
(x̂− ŷ)ei(kx/

√
2−ky/

√
2−ωt), (113)

Br = k̂r × Er = E0ẑe
i(kx/

√
2−ky/

√
2−ωt), (114)

E = Ei + Er = Re

(
−
√

2E0

(
ix̂ sin

ky√
2
− ŷ cos

ky√
2

)
ei(kx/

√
2−ωt)

)

=
√

2E0

(
x̂ sin

ky√
2

sin(kx/
√

2 − ωt) + ŷ cos
ky√

2
cos(kx/

√
2 − ωt)

)
, (115)

B = Bi + Br = Re

(
2E0ẑ cos

ky√
2
ei(kx/

√
2−ωt)

)

= 2E0ẑ cos
ky√

2
cos(kx/

√
2 − ωt). (116)
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Thus, 〈
E2
〉
∝ sin2 ky√

2
+ cos2 ky√

2
= 1, (117)

so the photographic plate would be uniformly exposed.
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7. Since the intensity I ∝ E2, and I ∝ 1/r2 for a wave that emanates from a localized
source, we must have E ∝ 1/r for the electric field of the wave. Hence, if we label the
field strength of the source at airplane a as Ea, the field strength at airplane b is

Eb =
Ea

d
, (118)

where d is the distance between the two airplanes, taken to be at the same height h.

As shown in the figure, the reflected wave makes angle of incident θ1 with respect to
the surface of the ocean. The reflected angle is, of course, also θ1, while the transmitted
angle θ2 obeys Snell’s law,

sin θ2 =
n1

n2
sin θ1 =

sin θ1√
ε

=
d/2l√

ε
=

d√
ε(d2 + 4h2)

, (119)

in the approximation that index n1 = 1 for air. For later use, we note that

tan θ1 =
d

2h
, (120)

and

tan θ2 =
sin θ2√

1 − sin2 θ2

=
d√

(ε − 1)d2 + 4εh2
. (121)

The amplitude of the wave emitted at airplane a which is reflected by the ocean is
smaller than that of the direct wave by the factor cosα = sin θ1.

Likewise, the amplitude of the currents excited in the antenna on airplane b by a wave
that makes angle α is smaller by the factor cosα than that due to the direct wave.

Since the antenna on airplane a is vertical, the polarization of the emitted wave is in a
vertical plane, which is also the plane of incidence of the wave with the ocean. Upon
reflection, the wave suffers a loss of amplitude described by the ratio

Er

Ei

∣∣∣∣
‖

= −tan(θ1 − θ2)

tan(θ1 + θ2)
=

tan θ2 − tan θ1

tan θ2 + tan θ1
· 1 − tan θ1 tan θ2

1 + tan θ1 tan θ2

=

√
(ε − 1)d2 + 4εh2 − 2εh√
(ε − 1)d2 + 4εh2 + 2εh

, (122)
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according to the Fresnel equation (54), and eqs. (120)-(121).

Also, the path length of the reflected wave between airplanes a and b is 2l, so the
amplitude of the reflected wave has fallen off by factor 1/2l.

Altogether, the excitation in antenna b due to the reflected wave is proportional to

ER = Ea · cos α · 1

2l
· Er

Ei

∣∣∣∣
‖
· cosα, (123)

while that due to the direct wave is proportional to

ED = Ea ·
1

d
. (124)

Therefore, the ratio of the intensity of the reflected to the direct signal is

IR

ID
=

E2
R

E2
D

=
d2

4l2
sin4 θ1

tan2(θ1 − θ2)

tan2(θ1 + θ2)

=
d6

(d2 + 4h2)3

⎛
⎝
√

(ε − 1)d2 + 4εh2 − 2εh√
(ε − 1)d2 + 4εh2 + 2εh

⎞
⎠

2

. (125)
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8. (a) The equation of motion of an ionized electron of chage −e and mass m in a circularly
polarized plane wave is

mr̈ + e
ṙ

c
× B0ẑ = −eE0(x̂ ± iŷ)ei(kz−ωt). (126)

We seek solutions of a similar form:

r± = r0(x̂ ± iŷ)ei(kz−ωt). (127)

Inserting eq. (127) into (126) we find

− mω2r0(x̂ ± iŷ) − i
eωB0

c
r0(−ŷ ± ix̂) = −eE0(x̂ ± iŷ), (128)

r0

[
−mω2 ± eωB0

c

]
(x̂ ± iŷ) = −eE0(x̂ ± iŷ), (129)

and hence,

r0 =
eE0

mω(ω ∓ ωB)
, (130)

where

ωB =
eB0

mc
. (131)

Note that for propagation antiparallel to the direction of the magnetic field, ωB is a
negative number.

Since r± measures the separation of electrons from positive ions, the resulting polar-
ization density is

P± = −Ner± = − Ne2

mω(ω ∓ ωB)
E ≡ χ±E, (132)

and the dielectric “constant” is

ε± = 1 + 4πχ± = 1 − 4πNe2

mω(ω ∓ ωB)
= 1 −

ω2
p

ω(ω ∓ ωB)
, (133)

where the square of the plasma frequency is given by

ω2
p =

4πNe2

m
. (134)

For radio waves with ω 
 ωB ≈ ωp,

ε± ≈ ±
ω2

p

ωωB
. (135)

The phase velocity of the plane waves is related by

vphase =
ω

k
=

c

n
=

c√
ε
. (136)
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Comparing eqs. (135) and (136) we see that the phase velocity is imaginary for waves
with polarization x̂− i ŷ, which means that these waves are attenuated rapidly. Only
the waves with polarization x̂+i ŷ propagate in the ionosphere, and their phase velocity
is

vphase = c

√
ωωB

ωp
. (137)

For propagation opposite to the direction of the magnetic field, the situation is reversed,
and only wave with polarization x̂ − i ŷ survive. For the surviving waves, the wave
vector is related to frequency by

k =
ω

c

√
ε+ =

ωp

c

√
ω

ωB
, (138)

and so the group velocity is given by

vgroup =
dω

dk
=

1

dk/dω
= 2c

√
ωωB

ωp
= 2vphase . (139)

For waves with ω ≈ 105 Hz and ωB ≈ ωp ≈ 107 Hz, vphase ≈ c/10.

The difference in arrival times for pulses centered on frequencies ω1 = 105 and ω2 =
2 × 105 Hz from the opposite side of the Earth (d = 2 × 109 cm, which used to be the
definition of a centimeter) is

Δt =
d

vg,1
− d

vg,2
=

d

2c

ωp√
ω2ωB

(√
ω2

ω1
− 1

)

=
2 × 109

2 · 3 × 1010

107

√
2 × 105 · 107

(√
2 − 1

)
≈ 0.1 s. (140)

(b) For the radio wave to be reflected back downwards, there must be some height h
such that θ(h) = 90◦. According to Snell,

ni sin θi = n(h) sin θ(h), (141)

so with ni = 1, sin θ(h) = 1, and n(h) =
√

1 − (ωp(h)/ω)2, we need

ωp(h) = ω cos θi. (142)
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9. Inside the good conductor the plane wave has the form

E = E0e
−βzei(βz−ωt), β =

√
2πσμω

c
, H =

√
2πσ

μω
(1 + i)ẑ× E, (143)

where σ is the conductivity and μ is the permeability. Hence, the time-averaged Poynt-
ing vector is

〈S〉 =
c

8π
Re(E × H�) =

c

8π

√
2πσ

μω
|E0|2 e−2βzẑ. (144)

The power lost per unit area to Joule heating is

〈P 〉 =
∫ ∞

0
〈J · E〉 dz =

1

2

∫ ∞

0
Re(σE · E�) dz =

σ |E0|2

2

∫ ∞

0
e−2βz dz =

σ |E0|2

4β

=
cσ |E0|2

4
√

2πσμω
=

c

8π

√
2πσ

μω
|E0|2 = 〈S(z = 0)〉 . (145)
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10. Ignoring reflections, the incident power is either absorbed or transmitted, so recalling
prob. 8 we can write

〈Sout〉 = 〈Sin〉 − Joule heating = 〈Sin〉 −
∫ a

0
〈J · E〉 dz =

c |E0|2

8π
− σ |E0|2

2

∫ a

0
e−2z/d dz

≈ c |E0|2

8π
− σa |E0|2

2
, (146)

where the approximation holds since a 
 d. The relative transmitted intensity is

T =
〈Sout〉
〈Sin〉

= 1 − 4πσa

c
. (147)

To analyze the reflected intensity, we first consider the reflected and transmitted ampli-
tudes. In particular, we focus on the magnetic field H, since its transverse component
is continuous across a metallic boundary. Furthermore, since the thickness of the sheet
is much less than the skin depth, the magnitude H is essentially unchanged from one
side of the sheet to the other. That is,

Hi + Hr ≈ Ht, (148)

where i, r and t indicate incident, reflected and transmitted, respectively. We can
deduce Ht from the transmitted intensity ratio T = |Ht|2 / |Hi|2,

|Ht| = |Hi|
√
T ≈ |Hi|

(
1 − 2πσa

c

)
. (149)

Thus, from eq. (148)

Hr ≈ −2πσa

c
Hi, (150)

and

R =
|Hr|2

|Hi|2
≈
(

2πσa

c

)2

. (151)
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11. According to Snell’s law, the angle θ2 of the transmitted wave obeys the formal relation

sin θ2 =
n1

n2
sin θ1. (152)

For the stated conditions, sin θ2 > 1. Then,

cos θ2 =
√

1 − sin2 θ2 = i

√√√√n2
1

n2
2

sin2 θ1 − 1. (153)

We take the x axis to be normal to the 1-2 boundary, and the y axis along the boundary
in plane of incidence.

Formally, the transmitted wave vector kt has components

kx =
n2ω

c
cos θ2 = i

ω

c

√
n2

1 sin2 θ1 − n2
2 ≡ iβ, ky =

n2ω

c
sin θ2 =

n1ω

c
sin θ1. (154)

The space-time dependence of the transmitted wave is therefore

ei(kt·r−ωt) = e−βxei(kyy−ωt), (155)

which describes a surface wave that propagates in the +y direction at phase velocity
c/(n1 sin θ1) < c, and whose amplitude is significant only for x <∼ 1/β.

For incident electric field perpendicular to the plane of incidence, the Fresnel equation
(48) and eq. (155) tell us that

Et = Etẑ =
2 sin θ2 cos θ1

sin(θ1 + θ2)
E0iẑe

−βxei(kyy−ωt). (156)

We can find the magnetic field via Faraday’s equation:

∇× Et = −1

c

∂Bt

∂t
= i

ω

c
Bt, (157)

so that

Bt = −i
c

ω
x̂

∂Ez

∂y
+ i

c

ω
ŷ

∂Ez

∂x
=
(
n1 sin θ1x̂− iβ

c

ω
ŷ
)

Et. (158)

The electric field (156) satisfies ∇ ·E = 0 since Ez does not depend on z. Similarly, the
magnetic field (158) satisfies ∇ · B = 0, and hence Maxwell’s equations are satisfied.
The wave equation is also obeyed by eq. (156) since

∇2Et = (β2 − k2
y)Et =

n2
2ω

2

c2
Et =

n2
2

c2

∂2Et

∂t2
. (159)
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The time-averaged Poynting vector of the transmitted wave is

〈St〉 =
c

8π
Re(Et ×B�

t ) =
c

8π

4 sin2 θ2 cos2 θ1

|sin(θ1 + θ2)|2
|E0i|2 e−2βxn1 sin θ1 ŷ. (160)

Now,

|sin(θ1 + θ2)|2 = |sin θ1 cos θ2 + cos θ1 sin θ2|2

= sin2 θ1 |cos θ2|2 + cos2 θ1 sin2 θ2

= sin2 θ1(sin
2 θ2 − 1) + (1 − sin2 θ1) sin2 θ2

= sin2 θ2 − sin2 θ1

= sin2 θ2

(
1 − n2

2

n2
1

)
, (161)

so that
〈St〉 =

c

2π

n1

1 − n2
2

n2
1

sin θ1 cos2 θ1 |E0i|2 e−2βx ŷ. (162)

As expected, the Poynting vector is parallel to the y axis, so no energy is transmitted
into medium 2. However, the formal result (162) is that a non-negligible energy flows
in the thin layer near the bounding surface of medium 2.

For the case of the electric field parallel to the plane of incidence, the Fresnel equation
(53) is

E0t(x = 0)

E0i
=

2 sin θ2 cos θ1

sin θ1 cos θ1 + sin θ2 cos θ2
(163)

However, the transmitted electric field cannot be only in the x direction, as this would
not satisfy ∇ · E = 0. There must be a y component as well, as we found for the
magnetic field when the electric field was perpendicular to the plane of incidence.
Hence, we expect that

Et =
(
n1 sin θ1x̂− iβ

c

ω
ŷ
)

Ae−βxei(kyy−ωt), (164)

where A is chosen to satisfy eq. (163) at x = 0. That is,

(2n2
1 sin2 θ1 − n2

2) |A|2 =
4 sin2 θ2 cos2 θ1

|sin θ1 cos θ1 + sin θ2 cos θ2|2
|E0i|2

=
4

n2
1

n2
2
sin2 θ1 cos2 θ1

sin2 θ1(1 − sin2 θ1) +
n2

1

n2
2
sin2 θ1(

n2
1

n2
2
sin2 θ1 − 1)

|E0i|2

=
4cos2 θ1

(1 − n2
2

n2
1
)((1 +

n2
1

n2
2
) sin2 θ1 − 1)

|E0i|2 . (165)

Faraday’s law (157) gives us the magnetic field as

Bt = i
c

ω

(
∂Etx

∂y
− ∂Ety

∂x

)
= −n2

2Ae−βxei(kyy−ωt)ẑ. (166)
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The time-averaged Poynting vector of the transmitted wave is

〈St〉 =
c

8π
Re(Et × B�

t ) =
c

8π
n1n

2
2 sin θ1 |A|2 e−2βxŷ

=
c

2π

n1 sin θ1 cos2 θ1(
1 − n2

2

n2
1

) ((
1 +

n2
1

n2
2

)
sin2 θ1 − 1

) |E0i|2 e−2βxŷ(
2

n2
1

n2
2
sin2 θ1 − 1

) . (167)

Perhaps the most interesting feature of the surface wave for the case of polarization in
the plane of incidence is that the electric field (164) includes a component along the
direction of propagation of the wave, and the wave velocity is less than c. A charged
particle moving along with this wave would experience a continual force in the direction
of motion, and would therefore be accelerated.

A related concept for particle acceleration by surface waves will be explored in prob. 12.
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12. The interaction between particle beams and diffraction gratings was first considered by
Smith and Purcell, Phys. Rev. 62, 1069 (1953),5 who emphasized energy transfer from
the particle to free electromagnetic waves. The excitation of surface waves by particles
near conducting structures was first discussed by Pierce, J. Appl. Phys. 26, 627-638
(1955),6 which led to the extensive topic of wakefields in particle accelerators. The
presence of surface waves in the Smith-Purcell effect was noted by di Francia, Nuovo
Cim. 16, 61-77 (1960).7 A detailed treatment of surface waves near a diffraction grating
was given by van den Berg, Appl. Sci. Res. 24, 261-293 (1971).8 Here, we construct a
solution containing surface waves by starting with only free waves, then adding surface
waves to satisfy the boundary condition at the grating surface.

If the (perfectly) conducting surface were flat, the reflected wave would be

Er = −E0x̂ei(kyy+kz z−ωt). (168)

However, the sum Ein + Er does not satisfy the boundary condition that Etotal must
be perpendicular to the wavy surface (30). Indeed,

[Ein + Er]surface = 2iE0x̂ei(kyy−ωt) sin kzz ≈ 2iakzE0x̂ei(kyy−ωt) sin kxx, (169)

where the approximation holds for a 
 d, and we have defined kx = 2π/d.

Hence, we require additional fields near the surface to cancel that given by (169). For
z ≈ 0, these fields therefore have the form

E = −akzE0x̂ei(kyy−ωt)
(
eikxx − e−ikxx

)
. (170)

This can be decomposed into two waves E± given by

E± = ∓akzE0x̂ei(±kxx+kyy−ωt). (171)

Away from the surface, we suppose that the z dependence of the additional waves can
be described by including a factor eik′

zz. Then, the full form of the additional waves is

E± = ∓akzE0x̂ei(±kxx+kyy+k′
zz−ωt). (172)

The constant k′
z is determined on requiring that each of the additional waves satisfy

the wave equation,

∇2E± =
1

c2

∂2E±
∂t2

. (173)

This leads to the dispersion relation

k2
x + k2

y + k
′2
z =

ω2

c2
. (174)

5http://physics.princeton.edu/~mcdonald/examples/accel/smith_pr_92_1069_53.pdf
6http://physics.princeton.edu/~mcdonald/examples/accel/pierce_jap_26_627_55.pdf
7http://physics.princeton.edu/~mcdonald/examples/accel/toraldo_di_francia_nc_16_61_60.pdf
8http://physics.princeton.edu/~mcdonald/examples/accel/vandenberg_asr_24_261_71.pdf
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The component ky of the incident wave vector can be written in terms of the angle of
incidence θin and the wavelength λ as

ky =
2π

λ
sin θin. (175)

Combining (174) and (175), we have

k′
z = 2πi

√√√√ 1

d2
−
(

cos θin

λ

)2

. (176)

For short wavelengths, k′
z is real and positive, so the reflected wave (168) is accompanied

by two additional plane waves with direction cosines (kx, ky, k
′
z). But for long enough

wavelengths, k′
z is imaginary, and the additional waves are exponentially attenuated in

z.

When surface waves are present, consider the fields along the line y = 0, z = π/2kz .
Here, the incident plus reflected fields vanish (see the first form of (169)), and the
surface waves are

E± = ∓akze
−π|k′

z |/2kzE0x̂ei(±kxx−ωt). (177)

The phase velocity of these waves is

vp =
ω

kx
=

d

λ
c. (178)

When d = λ, the phase velocity is c, and k′
z = iky according to (176). The surface

waves are then,

E± = ∓2πa cos θin

d
e−(π/2) tan θinE0x̂ei(±kxx−ωt). (179)

A relativistic charged particle that moves in, say, the +x direction remains in phase
with the wave E+, and can extract energy from that wave for phases near π. On
average, the particle’s energy is not affected by the counterpropagating wave E−. In
principle, significant particle acceleration can be achieved via this technique. For a
small angle of incidence, and with a/d = 1/2π, the accelerating field strength is equal
to that of the incident wave.
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13. This problem was abstracted from T.P. Wangler, Strong focusing and the radiofre-
quency quadrupole accelerator, Am. J. Phys. 64, 177 (1996).9

The electric field in the RFQ can be obtained from the potential via E = −∇φ, so

Ex =
x

d
E0 sinωt, (180)

Ey = −y

d
E0 sinωt. (181)

The equations of motion are

ẍ =
x

d

eE0

m
sinωt, (182)

ÿ = −y

d

eE0

m
sinωt, (183)

z̈ = 0. (184)

Then,
z(t) = z0 + v0zt = v0t (185)

for the particular case specified.

For the x motion, we consider the form (33),

ẋ = ḟ + ġ sinωt + ωg cosωt, (186)

ẍ = f̈ + g̈ sinωt + 2ωġ cos ωt − ω2g sinωt. (187)

The x equation of motion now yields

f̈ + 2ωġ cosωt =

[
−g̈ + ω2g +

f + g sinωt

d

eE0

m

]
sinωt. (188)

Since g is both small and slowly varying by hypothesis, we neglect the terms involving
ġ and g̈, leaving

f̈ ≈
[
ω2g +

f

d

eE0

m

]
sinωt +

g

d

eE0

m
sin2 ωt. (189)

In this, the coefficent of the rapidly varying term sinωt should vanish, and f̈ should
be the average of the term in sin2 ωt. The first condition tells us that

g = − eE0

mω2d
f, (190)

which combines with the (averaged) second condtion to give a differential equation for
f :

f̈ = −1

2

(
eE0

mωd

)2

f. (191)

9http://physics.princeton.edu/~mcdonald/examples/accel/wangler_ajp_64_177_96.pdf
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Thus,

f ≈ A cosΩt + B sinΩt, where Ω =
eE0√
2mωd

. (192)

Together we have

x(t) ≈ (A cosΩt + B sinΩt)
(
1 − eE0

mω2d
sinωt

)
. (193)

The particular initial conditions (34)-(36) are satisifed by

x(t) ≈ v0θ0

Ω
sinΩt

(
1 − eE0

mω2d
sinωt

)
. (194)

For this to be consistent we must have that

eE0

mω2d

 1. (195)

Then, the beam returns to the z-axis at time t = π/Ω, corresponding to distance
z = πv0/Ω.

The argument is similar for the y motion. The opposite sign of the electric field leads
to

g = +
eE0

mω2d
f, (196)

and so

y(t) ≈ (C cos Ωt + D sinΩt)
(
1 +

eE0

mω2d
sin ωt

)
. (197)

The particular initial conditions (34)-(36), however, require that both C and D vanish.

Experts will recognize that the dimensionless quantity

η ≡ eE0

mωc
, (198)

where c is the speed of light, is a useful invariant of the field. In terms of this invariant
the condition of validity of the solution is

η
λ

2πd

 1. (199)

If d is a characteristic aperture of the RFQ, we earlier required that λ � d so the qua-
sistatic approximation to the fields would be valid. Hence, the invariant field strength
η cannot be too large in the RFQ.

The physical meaning of the invariant η is that it is the ratio of the energy gain over
distance λ/2π to the electron rest energy mc2:

η =
eE0

mωc
=

eE0λ/2π

mc2
. (200)

Thus, the RFQ should not impart relativistic transverse motion to the particles if it is
to function as described above.
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14. a) We ignore the interstellar magnetic field (see prob. 7 for a discussion of the effect of
such fields), so the usual analysis of waves incident on free electrons applies:

mr̈ = eEei(kz−ωt), (201)

r = − eE

mω2
, (202)

p = Ner = −N
e2E

mω2
= χE, (203)

ε = 1 + 4πχ = 1 − 4πNe2

mω2
= 1 −

ω2
p

ω2
, (204)

where the plasma frequency ωp is given by

ω2
p =

4πNe2

m
=

4πNe2c2

mc2
= 4πNr0c

2, (205)

where r0 = e2/mc2 = 2.8 × 10−13 cm is the classical electron radius. Then,

n(ω) =
√

ε =

√
1 −

ω2
p

ω2
. (206)

b) The propagation time for a wave of frequency ω over distance L is

t(ω) =
n(ω)L

c
, (207)

so the propagation-time difference for frequencies separated by δω is

δt =
dt

dω
δω =

L

cn

ω2
p

ω2

δω

ω
. (208)

The higher frequency takes longer to arrive.

For the example that ω = 2000 MHz, δω/ω = 0.01, N = 0.04 electrons/cm3, and
|δt| = 0.004 s, we find that

ω2
p = 4πNr0c

2 = 4π · 0.04 · 2.8 × 10−13 · (3 × 1010)2 ≈ 1.3 × 108, (209)

n =

√
1 −

ω2
p

ω2
=

√
1 − 1.3 × 108

4 × 1018
≈ 1, (210)

and the distance to the pulsar is

L = cnδt
ω2

ω2
p

ω

δω
≈ 3× 1010 · 1 · 0.004 · 4 × 1018

1.3 × 108
· 100 ≈ 3.7× 1020 cm ≈ 400 light years.

(211)


