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1. Polarization Dependence of Emissivity

Deduce the emissive power Pν of radiation of frequency ν into vacuum at angle θ to
the normal to the surface of a good conductor at temperature T , for polarization both
parallel and perpendicular to the plane of emission.

Recall Kirchhoff’s law of heat radiation (as clarified by Planck, The Theory of Heat
Radiation, chap. II, especially sec. 28) that

Pν

Aν
= K(ν, T ) =

hν3/c2

ehν/kT − 1
, (1)

where Pν is the emissive power per unit area per unit frequency interval (emissivity)
and

Aν = 1 −R = 1 −
∣∣∣∣E0r

E0i

∣∣∣∣
2

(2)

is the absorption coefficient (0 ≤ Aν ≤ 1), c is the speed of light, h is Plank’s constant
and k is Boltzmann’s constant.
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2. Rayleigh Resistance

A circular wire of conductivity σ and radius a � d, where d(ω) � λ is the skin depth,
carries current that varies as I(t) = I0e

−iωt. As in prob. 9, set 6, consider the time-
averaged Poynting vector at the surface of the wire. Relate this to the Joule loss 〈I2R〉
to show that

R(ω) =
a

2d
R0, where R0 =

1

πa2σ
is the dc resistance per unit length. (3)
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3. Telegrapher’s Equation

Deduce the differential equation for current (or voltage) in a two-conductor trans-
mission line that is characterized by resistance R (summed over both conductors),
inductance L, capacitance C and leakage conductivity K, all defined per unit length.
The leakage conductivity describes the undesirable current that flows directly from one
conductor to the other across the dielectric that separate them according to

Ileakage = KV, (4)

where V (x, t) is the voltage between the two conductors, taken to be along the x axis.

Deduce a relation among R, L, C and K that permits ‘distortionless’ waves of the form

e−γxf(x − vt) (5)

to propagate along the transmission line. Give expressions for v and γ in terms of R,
L and C ; relate γ to the transmission line impedance defined by Z = V/I in the limit
that R and K vanish.
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4. Transmission Line Impedance

a) Consider a two-wire transmission line with zero resistance (and zero leakage current)
that lies along the z axis in vacuum. We define the line impedance Z by V = ZI , where
I(z, t) is the current in each of the wires (+I in one, −I in the other), and V (z, t) is
the voltage difference between the two wires. Show that Z is real (⇒ V and I are in

phase), and that Z =
√

L/C , where C and L are the capacitance and inductance per
unit length.

b) Impedance Matching

A transmission line of impedance Z1 for z < 0 is connected to a line of impedance Z2

for z > 0. A wave Vie
i(k1z−ωt) is incident from z = −∞.

Show that the reflected wave Vre
−i(k1z+ωt) (z < 0) and the transmitted wave Vte

i(k2z−ωt)

(z > 0) obey
Vr

Vi
=

Z2 − Z1

Z2 + Z1
, and

Vt

Vi
=

2Z2

Z2 + Z1
. (6)

Note the boundary conditions on I and Z at z = 0.

Since Z1 and Z2 are real, the transmission line of impedance Z2 could be replaced by
a pure resistance R = Z1 and no reflection would occur.

Even when line 2 is present, we can avoid a reflection by a kind of “antireflection”
coating as discussed in prob. 5, set 6. Another way to deduce this is by consideration
of the complex impedance Z(z) = V (z)/I(z) where V and I are the total voltage and
total current. If the line for z < z0 < 0 were replaced by a source whose impedance is
exactly Z(z0), then the waves for z > z0 would be unchanged.

Show that

Z(−l) = Z1
Z2 − iZ1 tan k1l

Z1 − iZ2 tan k1l
. (7)

Also show that when l = λ1/4 then Z(−l) = Z2
1/Z2, which is real. Hence, the source

at z = −l could be a transmission line of impedance Z0 = Z2
1/Z2.

That is, a quarter-wave section of impedance Z1 =
√

Z0Z2 matches lines of impedances
Z0 and Z2 with no reflections.

c) Impedance Matching with Resistors

The quarter-wave matching of part b) works only at a single frequency. Impedance
matching of transmission lines over a broad range of frequencies can be accomplished
with appropriate resistors, as illustrated in the following examples. The key to an
analysis is that a transmission line of impedance Z acts on an input signal like a pure
resistance of R = Z which is connected to ground potential.

Thus, a resistor of value R = Z1 − Z2 matches signals that moves from a line of
impedance Z1 into one of impedance Z2 < Z1, as shown below
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However, if Z1 < Z2, then a matching circuit (for signals moving from line 1 into line
2) can be based on a resistor R = Z1Z2/(Z2 −Z1) the connects the junction to ground,
as shown below.

It might be desirable to have a circuit that matches lines 1 and 2 no matter which
direction the signals are propagating. This could be accomplished with resistors R1 =√

Z1(Z1 − Z2) and R2 = Z2

√
Z1/(Z1 − Z2) as shown below, assuming Z1 > Z2.

Another type of matching problem involves lines of a single impedance Z, where it
is desired to split the signal into two parts with ratio A between the currents and
voltages. This could be accomplished with resistors R1 = Z/A and R2 = AZ as shown
below.

In case of a 1:1 split, then R1 = R2 = Z. In this case, a reflectionless split could also
be accomplished with three identical resistors of value R = Z/3 arranged as in the
figure below. If these resistors are mounted in a box with three terminals, the split is
accomplished properly no matter how the lines are connected.
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5. In the manufacture of printed circuit boards it is common to construct transmission
lines consisting of a “wire” separated from a “ground plane” by a layer of dielectric.
Estimate the transmission line impedance for two typical configurations:

a) Wire over Ground

The wire has diameter d, centered at height h 	 d above the conducting ground plane.
The other space above the ground plane is filled with a dielectric of constant ε (= 4.7
for G-10, a fiberglass-epoxy composite often used in circuit boards).

Estimate the capacitance C per unit length, and from this show the transmission line
impedance is

Z ≈ 60 Ω√
ε

ln
4h

d
. (8)

b) Stripline

A conducting strip of width w is at height h above the conductor.

It may be difficult to estimate the capacitance for w <∼ h, so consider the case that
w 	 h to show that

Z ≈ 377 Ω
h√
εw

. (9)
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6. Off-Center Coaxial Cable

A “coaxial” transmission line has inner conductor of radius a and outer conductor
of radius b, but the axes of these two cylinders are offset by a small distance δ � b.
Deduce the capacitance and inductance per unit length, and the impedance Z, accurate
to order δ2/b2.

The (relative) dielectric constant and permeability of the medium between the two
conductors both unity. The relevant frequencies and conductivities are so large that
the skin depth is small compared to δ.
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7. Cavity Q

a) A rectangular cavity with conducting walls of length Δx = Δy = a, Δz = l is
excited in the (1,1,0) mode:

Ez = E0 sin
πx

a
sin

πy

a
e−iωt, Ex = Ey + Hz = 0. (10)

Calculate the time-averaged force on each of the six faces.

b) The cavity Q (quality factor) is defined by

Q =
〈stored energy〉

〈energy lost per cycle〉 . (11)

Show that

Q =
al

2πd(a + 2l)
≈ volume

d · surface area
, (12)

where d is the skin depth. The approximate version of eq. (12) provides a reasonable
estimate for the Q of the lowest mode of any cavity.



Princeton University 2001 Ph501 Set 7, Problem 8 9

8. Cavity Line Broadening

According to the definition of cavity Q given in prob. 4,

dU

dt
= − ω0

2πQ
U, (13)

where U is the averaged energy stored in the cavity fields, whose angular frequency is
ω0. Thus, if the cavity were left to itself, the energy would die away:

U(t) = U0e
−ω0t/2πQ. (14)

Since the field energy U is proportional to the square of the electric field E, we have

E(t) ∝ E0e
−ω0t/4πQe−iω0t. (15)

This is not the behavior of a pure frequency ω0.

Perform a Fourier analysis of the electric field:

E(t) =
∫

Eωe−iωt dω, (16)

supposing that the cavity is turned on at t = 0, which implies that

Eω =
1

2π

∫ ∞

0
E(t)eiωt dt. (17)

Show that this leads to

Uω ∝ |Eω|2 ∝ 1

(ω − ω0)2 + (ω0/4πQ)2
, (18)

which has the form of a resonance curve.

The damping due to resistive wall losses gives a finite width to the resonance: FWHM
Δω = ω0/2πQ. Thus, the relation

Q =
ω0

2πΔω
(19)

gives additional meaning to the concept of cavity Q. That is, the Q is a measure of
the sharpness of the cavity frequency spectrum.
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9. Rayleigh-Jeans Law

One of the most significant uses of a cavity was the measurement of the spectrum
of the waves inside when the walls were “red hot”. Maxwell told us that if thermal
equilibrium holds, each cavity mode carries energy kT (considering a mode as a kind
of oscillator with two polarizations). Here, T is the temperature and k is Boltzmann’s
constant.

Show that the number of modes per unit interval of angular frequency in a cubical
cavity of edge a is

dN =
a3ω2dω

π2c3
, (20)

for frequencies such that the mode indices l, m, n are all large compared to one.

The famous hint is that each mode (l, m, n) corresponds to a point on a cubical lattice.

Then, the energy spectrum of the cavity radiation would be

dE =
a3ω2kTdω

π2c3
=

8πa3ν2kTdν

c3
, (21)

where ν = ω/2π is the ordinary frequency.

The Rayleigh-Jeans expression (21) implies that the total energy of the cavity radiation
grows arbitrarily large as one include the contributions at high frequency.

Such behavior was, of course, not observed in the laboratory. Planck saw that this
requires a rather fundamental change in our thinking...
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10. Right Circular Cavity

A simple mode of a right circular cavity is sketched below:

We expect that the electric field of angular frequency ω has the form

E = ẑE(r)e−iωt. (22)

Plugging in to the wave equation

∇2E =
1

c2

∂2E

∂t
, (23)

we see that
1

r

∂

∂r

r∂E

∂r
+

ω2

c2
E = 0, (24)

which we recognize as Bessel’s equation of order zero,

⇒ E ∼ J0

(
ωr

c

)
. (25)

Alternatively, ignore the cylindrical walls initially, and simply consider the cavity to
be a parallel plate capacitor. This suggests that the time-dependent electric field of
angular frequency ω has the form

Ez = E0e
−iωt. (26)

Show, however, that the time dependence of the displacement current induces an az-
imuthal magnetic field

Hφ = − iωr

2c
E0e

−iωt. (27)

Than, Faraday’s law tells us that a correction to E is induced by the time variation of
H...

Follow this logic enough to demonstrate the first and second corrections to Ez, which
form the first terms of the series

Ez = E0e
−iωt

∞∑
n=0

(−1)n

(n!)2

(
ωr

2c

)2n

= E0J0

(
ωr

c

)
e−iωt. (28)

J0(x) oscillates, with zeros at x = 2.405, 5.520, 8.654, .... Hence, the boundary condi-
tion that Ez = 0 at r = a is satisfied if

ωa

c
= 2.405, 5.520, 8.654, ..., (29)

which describes an important class of modes of a right circular cavity.



Princeton University 2001 Ph501 Set 7, Problem 11 12

11. RF Cavity with Fields that vary Linearly with Radius

A simple rf cavity is a right circular cylinder of radius a and length d (see the preceding
problem), for which the TM0,1,0 mode has electromagnetic fields

Ez(r, θ, z, t) = E0J0(kr) cos ωt, (30)

Bθ(r, θ, z, t) = E0J1(kr) sin ωt, (31)

where ka = 2.405 is the first zero of the Bessel function J0.

Such a cavity is potentially interesting for particle acceleration in that the electric
field points only along the axis and is independent of z, so that a large fraction of
the maximal energy eEd could be imparted to a particle of charge e as it traverses
the cavity. However, such cavities are not useful in practice for at least two reasons:
the particles must pass through the cavity wall to enter or exit the cavity and thereby
suffer undesirable scattering; the magnetic field does not vary linearly with radius, and
so acts like a nonlinear lens for particles whose motion is not exactly parallel to the
axis.

Practical accelerating cavities have apertures (irises) of radius b in the entrance and
exit surfaces, so that a beam of particles can pass through without encountering any
material. In this case, the electric field can no longer be purely axial. Deduce the
simplest electromagnetic mode of a cavity with apertures for which the transverse
components of the electric and magnetic fields vary linearly with radius. Deduce also
the shape of the wall of a perfectly conducting cavity that could support this mode.

Consider a cavity of extent −d < z < d, with azimuthal symmetry and symmetry
about the plane z = 0, that could be a unit cell of a repetitive structure. This implies
that either Ez = 0 at (r, z) = (0, d) and (0,−d), or ∂Ez/∂z = 0 at these points.
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12. Reflex Klystron

The figure below shows a slice through a kind of cylindrical cavity used in generation
of high strength radio frequency fields, the so-called reflex klystron.

This is something like a piece of (vacuum) coaxial cable of length h, inner radius a
and outer radius b terminated with a conducting plate on the right, but with a small
gap d between the termination plate and the center conductor on the left. An electron
beam is made to pass along the axis of the cavity through small holes. The beam is
modulated at the cavity resonant frequency, and transforms its energy to the cavity
field if it crosses the gap ≈ 180◦ out of phase with the cavity field.

Estimate the lowest resonant frequency of the cavity.
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13. Guide Loss

Consider propagation of waves in the lowest TE mode of a rectangular waveguide with
edges a < b, as shown in the figure below. The walls have conductivity σ and the
interior of the guide is at vacuum.

Due to Joule losses in the walls, the intensity of the propagating field dies out like e−βz

where

β =
〈power loss per unit length along guide〉
〈power transmitted down the guide〉 . (32)

For waves of wavelength λ show that

β =
c

4π
· 4π

a
· 1√

σλc
· 1 + 2a

b

(
λ
2b

)2

√
1 −

(
λ
2b

)2
, (33)

which could be minimized to find the best choice for λ.
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14. Loop Coupling

A common way of feeding waves into a guide is shown in the figure below. The center
conductor of a coaxial cable is bent into a semicircle of radius r and “grounded” on the
guide wall. Then, for waves with r � λ it is a good approximation that the current
I0e

−iωt is constant over the loop.

a) Explain briefly why essentially no power is radiated into a TM mode by this coupler.

b) If r � b < a, where a and b are the lengths of the edges of the guide, show that the
power radiated into the lowest TE mode is

〈P 〉 =
4π

c
I2
0

k

kg

a

b

(
πr

2a

)4

, (34)

in each direction, independent of the position h of the coupling loop.
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Solutions

1. This solution is adapted from Born and Wolf, Principles of Optics, 7th ed., sec. 14.2.
(see also Landau and Lifshitz, The Electrodynamics of Continuous Media, sec. 67),
and finds application in the calibration of the polarization dependence of detectors for
cosmic microwave background radiation (E.J. Wollack, Princeton Ph.D. dissertation,
1994, Appendix C.1.1; C. Herzog, Princeton U. Generals Expt., 1999).

In eq. (2) we need the Fresnel equations of reflection that

E0r

E0i

∣∣∣∣
⊥

=
sin(θt − θi)

sin(θt + θi)
,

E0r

E0i

∣∣∣∣
‖

=
tan(θt − θi)

tan(θt + θi)
, (35)

where i, r, and t label the incident, reflected, and transmitted waves, respectively.

The solution is based on the fact that eq. (1) holds separately for each polarization
of the emitted radiation, and is also independent of the angle of the radiation. This
result is implicit in Planck’s derivation of Kirchhoff’s law of radiation, and is stated
explicitly in Reif, Fundamentals of statistical and thermal physics, sec. 9.14.

That law describes the thermodynamic equilibrium of radiation emitted and absorbed
throughout a volume. The emissivity Pv and the absorption coefficient Aν can depend
on the polarization of the radiation and on the angle of the radiation, but the definitions
of polarization parallel and perpendicular to a plane of emission, and of angle relative
to the normal to a surface element, are local, while the energy conservation relation
Pν = AνK(ν, T ) is global. A “ray” of radiation whose polarization can be described as
parallel to the plane of emission is, in general, a mixture of parallel and perpendicular
polarization from the point of view of the absorption process. Similarly, the angles of
emission and absorption of a ray are different in general. Thus, the concepts of parallel
and perpendicular polarization and of the angle of the radiation are not well defined
after integrating over the entire volume. Thermodynamic equilibrium can exist only if
a single spectral intensity function K(ν, T ) holds independent of polarization and of
angle.

All that remains is to evaluate the reflection coefficients R⊥ and R‖ for the two polar-
izations at a vacuum-metal interface. These are well known, but we derive them for
completeness.

To use the Fresnel equations (35), we need expressions for sin θt and cos θt. The
boundary condition that the phase of the wave be continuous across the vacuum-metal
interface leads, as is well known, to the general form of Snell’s law:

ki sin θi = kt sin θt, (36)

where k = 2π/λ is the wave number. Then,

cos θt =

√√√√1 − k2
i

k2
t

sin2 θi. (37)
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To determine the relation between wave numbers ki and kt in vacuum and in the
conductor, we consider a plane wave of angular frequency ω = 2πν and complex wave
vector k,

E = E0e
i(kt·r−ωt), (38)

which propagates in a conducting medium with dielectric constant ε, permeability μ,
and conductivity σ. The wave equation for the electric field in such a medium is

∇2E − εμ

c2

∂2E

∂t2
=

4πμσ

c2

∂E

∂t
, (39)

where c is the speed of light. We find the dispersion relation for the wave vector kt on
inserting eq. (38) in eq. (39):

k2
t = εμ

ω2

c2
+ i

4πσμω

c2
. (40)

For a good conductor, the second term of eq. (40) is much larger than the first, so we
write

kt ≈
√

2πσμω

c
(1 + i) =

1 + i

d
=

2

d(1 − i)
, (41)

where
d =

c√
2πσμω

� λ (42)

is the frequency-dependent skin depth. Of course, on setting ε = 1 = μ and σ = 0 we
obtain expressions that hold in vacuum, where ki = ω/c.

We see that for a good conductor |kt| 	 ki, so according to eq. (37) we may take
cos θt ≈ 1 to first order of accuracy in the small ratio d/λ. Then the first of the Fresnel
equations becomes

E0r

E0i

∣∣∣∣
⊥

=
cos θi sin θt/ sin θi − 1

cos θi sin θt/ sin θi + 1
=

(ki/kt) cos θi − 1

(ki/kt) cos θi + 1
≈ (πd/λ)(1 − i) cos θi − 1

(πd/λ)(1 − i) cos θi + 1
, (43)

and the reflection coefficient is approximated by

R⊥ =
∣∣∣∣E0r

E0i

∣∣∣∣
2

⊥
≈ 1 − 4πd

λ
cos θi = 1 − 2 cos θi

√
ν

σ
. (44)

For the other polarization, we see that

E0r

E0i

∣∣∣∣
‖

=
E0r

E0i

∣∣∣∣
⊥

cos(θi + θt)

cos(θi − θt)
≈ E0r

E0i

∣∣∣∣
⊥

cos θi − (πd/λ)(1 − i) sin2 θi

cos θi + (πd/λ)(1 − i) sin2 θi

, (45)

so that

R‖ ≈ R⊥

(
1 − 4πd

λ

sin2 θi

cos θi

)
≈ 1 − 4πd

λ cos θi
= 1 − 2

cos θi

√
ν

σ
. (46)
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An expression for R‖ valid to second order in d/λ has been given in Stratton, Electro-
magnetic Theory, sec. 9.9. For θi near 90◦, R⊥ ≈ 1, but eq. (46) for R‖ is not accurate.
Writing θi = π/2 − ϑi with ϑi � 1, eq. (45) becomes

E0r

E0i

∣∣∣∣
‖
≈ ϑi − (πd/λ)(1 − i)

ϑi + (πd/λ)(1 − i)
, (47)

For θi = π/2, R‖ = 1, and R‖,min = (5 −√
2)/(5 +

√
2) = 0.58 for ϑi = 2

√
2πd/λ.

Finally, combining eqs. (1), (2), (44) and (46) we have

Pν⊥ ≈ 4πd cos θ

λ3

hν

ehν/kT − 1
, Pν‖ ≈ 4πd

λ3 cos θ

hν

ehν/kT − 1
, (48)

and
Pν⊥
Pν‖

= cos2 θ (49)

for the emissivities at angle θ such that cos θ 	 d/λ.

The conductivity σ that appears in eq. (48) can be taken as the dc conductivity so
long as the wavelength exceeds 10 μm. If in addition hν � kT , then eq. (48) can be
written

Pν⊥ ≈ 4πd kT cos θ

λ3 , Pν‖ ≈ 4πd kT

λ3 cos θ
, (50)

in terms of the skin depth d.
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2. Inside a conductor the magnetic field at angular frequency ω is related to the electric
field by

H =
c

μωd
(1 + i)k̂ × E, (51)

where c is the speed of light, μ is the permeability, and d = c/
√

2πσμω is the skin
depth. Hence, the time-averaged Poynting vector is

〈S〉 =
c2

8πμωd
|E|2 k̂, (52)

where for waves just inside the surface of the conductor k̂ is very nearly normal to the
surface.

Since λ � d, the electric field is very small inside the conductor, and Ampere’s law
applied to a loop of radius a gives

2πaH0 ≈ 4π

c
I, (53)

or
2I

ac
≈ H0 =

c

μωd
(1 + i)k̂× E0. (54)

Thus,

|E0| ≈
√

2μωd |I |
ac2

, (55)

and eq. (52) gives

〈S0〉 ≈ μωd

4πa2c2
|I |2 k̂. (56)

In terms of the effective resistance R per unit length of the wire, the average power
dissipated per unit length is

1

2
|I |2 R = 2πa 〈S0〉 ≈ μωd

2ac2
|I |2 . (57)

Hence, we identify the effective resistance at frequency ω as

R ≈ μωd

ac2
=

μω

ac
√

2πσμω
·
√

2πσμω√
2πσμω

=
1

2πadσ
=

a

2d

1

πa2σ
=

a

2d
R0, (58)

where R0 = 1/πa2σ is the dc resistance (per unit length) of the wire to longitudinal
currents.
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3. Referring to the sketch, Kirchoff’s rule for the circuit of length dz shown by dashed
lines tells us

V (x) − I(Rdx) − V (x + dx) − (Ldx)
∂I

∂t
= 0, or − ∂V

∂x
= L

∂I

∂t
+ IR. (59)

Next, the charge dQ that accumulates on length dx of the upper wire during time dt
is (Cdx)dV in terms of the change of voltage dV between the wires, which also can be
written in terms of currents as

Q = (Cdx)dV = (I(x)− I(x + dx)− Ileakage)dt, so − ∂I

∂x
= C

∂V

∂t
+ KV. (60)

Together these imply the desired wave equation

∂2I

∂x2
= LC

∂2I

∂t2
+ (RC + KL)

∂I

∂t
+ KRI. (61)

We seek solutions of the form

I = e−γxf(x − vt), (62)

for which
∂I

∂t
= −ve−γxf ′, and

∂2I

∂t2
= v2e−γxf ′′, (63)

while

∂I

∂x
= −γe−γxf + e−γxf ′, so

∂2I

∂x2
= γ2e−γxf − 2γe−γxf ′ + e−γxf ′′. (64)

Inserting these into the wave equation we find

γ2f − 2γf ′ + f ′′ = v2LCf ′′ − v(RC + KL)f ′ + KRf. (65)
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This should be true for an arbitrary function f , so the coefficients of each derivative
of f must separately be equal:

v =

√
1

LC
, γ =

√
KR, and 2

γ

v
= RC + KL = 2

√
RCKL, (66)

where we have used the first two relations in obtaining the second form of the third. In
general, a + b �= 2

√
ab; this only holds when a = b. So we deduce the desired condition

RC = KL, (67)

for distortionless telegraphy.

With this condition, we can re-express γ as

γ = R

√
C

L
. (68)

Finally, we relate this to the impedance Z = V/I when R = 0 = K. For this, we
suppose that V = V0f(x − vt) and I = I0f , where V0 and I0 can be related by either
of the first-order differential equations above. We quickly find that V0 = vLI0, so

Z =
√

L/C . Then,

γ =
R

Z
, (69)

once we have arranged that RC = KL.

Remark: This problem was solved by O. Heaviside (1887) who argued that long-
distance telegraph lines (including trans-Atlantic cables) should be designed to be
‘distortionless’. Previous cables were fairly far from this ideal. However, long ca-
bles are expensive so there was considerable hesitation to abandon the large existing
capital investment and implement the proposed improvements. Indeed, the editor of
the journal that published Heaviside’s papers was fired for being too sympathetic to
Heaviside’s views that were initially quite unpopular with industry. Heaviside, who
was unemployed for most of his life, could not be fired! Large-scale implementation
of ‘distortionless” telegraphy occured only after 1900 following vigorous advocacy by
M. Pupin of the U.S.A., for whom the physics building of Columbia U. is named.

A typical cable has RC 	 KL. It costs a lot to reduce RC , although this was the
direction of industry prior to Heaviside. He noted that one shouldn’t even try to
reduce leakage K, so long as the signal is not attenuated until it is undetectable – and
the distortion-free condition makes it much easier to detect small signals. Rather one
should increase the inductance, or leakage, or both! This counterintuitive result did
not sit well with industry leaders, who, needless to say, were little guided by partial
differential equations.
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4. a) For a two-wire transmission line with negligible resistance, the voltage V between
the wires is related to the current I in each of the wires by

∂V

∂z
= L

∂I

∂t
, (70)

which follows from Kirchhoff’s law applied to a short length of the line, and

∂V

∂t
=

1

C

∂I

∂z
, (71)

which follows from charge conservation, where C and L are the capacitance and in-
ductance per unit length. For a wave of frequency ω moving in the +z direction, the
waveforms are

V = V0e
i(kz−ωt), and I = I0e

i(kz−ωt). (72)

Substituting these forms into eqs. (70)-(71) we find

kV = −ωLI, and − ωV =
kI

C
, (73)

and hence,

V

I
=

√
L

C
≡ Z. (74)

Since C and L are real numbers, the impedance Z is real in this case. This implies
that V0/I0 is also real, and so the current and voltage are in phase.

b) When a transmission line of impedance Z1 that occupies z < 0 is connected to a line
of impedance Z2 for z > 0, the current and voltage will be continuous at the boundary
z = 0.

An incident wave of frequency ω from a source at z = −∞ has current Iie
i(k1z−ωt). This

results in a reflected wave Ire
−i(k1z+ωt) for z > 0 and a transmitted wave Ite

i(k2z−ωt) for
z > 0. Of course, Vi = Z1Ii, Vr = Z1Ir, and Vt = Z2It.

Continuity of the current at z = 0 tells us that

Ii − Ir = It, and hence Vi − Vr =
Z1

Z2
Vt, (75)

since a positive value for Ir corresponds to current flowing in the −z direction.

Continuity of the voltage at z = 0 tells us that

Vi + Vr = Vt. (76)

Equations (75) and (76) yield

Vt =
2Z2

Z2 + Z1
Vi, and Vr =

Z2 − Z1

Z2 + Z1
Vi. (77)
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At position z = −l the total voltage is

V (−l) = Vie
i(−k1l−ωt) + Vre

−i(−k1l+ωt) = Vie
−iωt

(
e−ik1l +

Z2 − Z1

Z2 + Z1
eik1l

)

=
Vie

−iωt

Z2 + Z1

(
(Z2 + Z1)e

−ik1l + (Z2 − Z1)e
ik1l
)

=
Vie

−iωt

Z2 + Z1

(
Z2(e

ik1l + e−ik1l) − Z1(e
ik1l − e−ik1l)

)

=
2Vie

−iωt

Z2 + Z1
(Z2 cos k1l − iZ1 sin k1l) , (78)

and (again noting that positive Ir implies a negative current) the total current is

I(−l) = Iie
i(−k1l−ωt) − Ire

−i(−k1l+ωt) =
Vi

Z1
e−iωt

(
e−ik1l − Z2 − Z1

Z2 + Z1
eik1l

)

=
Vie

−iωt

Z1(Z2 + Z1)

(
(Z2 + Z1)e

−ik1l − (Z2 − Z1)e
ik1l
)

=
Vie

−iωt

Z1(Z2 + Z1)

(
Z1(e

ik1l + e−ik1l) − Z2(e
ik1l − e−ik1l)

)

=
2Vie

−iωt

Z1(Z2 + Z1)
(Z1 cos k1l − iZ2 sin k1l) , (79)

Hence, we find the impedance

Z(−l) =
V (−l)

I(−l)
= Z1

Z2 cos k1l − iZ1 sin k1l

Z1 cos k1l − iZ2 sin k1l
= Z1

Z2 − iZ1 tan k1l

Z1 − iZ2 tan k1l
. (80)

When l = λ1/4 = π/2k1, then tan k1l → ∞ and Z(−l) = Z2
1/Z2 is a real number, which

permits the region π/2k1 < z < 0 of impedance Z1 to be an antireflection matching
section between a line of impedance Z0 = Z2

1/Z2 and one of impedance Z2.

c) A signal propagates in line 1 without reflection is that line is terminated in (real)
impedance Z1. Thus, for the circuit

We need Z1 = R + Z2, since the resistor is in series with line 2 (as viewed from line
1). A proper match is possible so long as Z1 > Z2. The currents are the same in
lines 1 and 2, so the transmitted voltage is V2 = V1Z2/Z1. However, this is smaller
than the transmitted voltage (77) for an unmatched line, because the matching resistor
dissipates more power than is “lost” to the reflection at an unmatched junction.

If Z1 < Z2, then a proper match to line 1 can be obtained with a resistor R in parallel
with line 2, as shown below,
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provided the effective resistance of R and Z2 is again Z1, i.e.,

1

Z1
=

1

R
+

1

Z2
⇒ R =

Z1Z2

Z2 − Z1
. (81)

Here, the transmitted voltage is the same as that in line 1, but the transmitted current
is less: I2 = I1Z1/Z2.

To match lines 1 and 2 for signals moving in either direction, a combination of the
above two circuits can be used, as shown below for the case that Z1 > Z2:

Signals emanating from line 1 must be terminated in impedance Z1; hence,

Z1 = R1 +
R2Z2

R2 + Z2
. (82)

Likewise, signals from line 2 must be terminated in impedance Z2; hence,

Z2 =
R2(R1 + Z1)

R1 + R2 + Z1
. (83)

From eq. (82) we have

Z1Z2 = R1R2 + R1Z2 −R2(Z1 − Z2), (84)

while eq. (83) gives
Z1Z2 = R1R2 −R1Z2 + R2(Z1 − Z2), (85)

Adding eqs. (84) and (84) we find

Z1Z2 = R1R2, (86)

while subtracting gives

R1 = R2
Z1 − Z2

Z2
. (87)

Solving these, we find

R1 =
√

Z1(Z1 − Z2), and R2 = Z2

√
Z1

Z1 − Z2
. (88)

For signals emanating from line 1, the transmitted voltage is

V2 = V1

(
1 −

√
Z1 − Z2

Z1

)
, (89)
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while for signals emanating from line 2, the transmitted voltage is

V1 = V2
Z1

Z2

(
1 −

√
Z1 − Z2

Z1

)
. (90)

In both cases, the transmitted voltage is less than the incident.

For a reflectionless split of the signal in a line of impedance Z we case use the circuit:

where the desired ratio of currents (and voltages) is

A =
I1

I2
=

R1 + Z

R2 + Z
. (91)

Hence,
R2 = AR1 + (A − 1)Z. (92)

Also, the two output lines must combine to terminate the input line in impedance Z,
which tells us that

Z =
(R1 + Z)(R2 + Z)

R1 + R2 + 2Z
. (93)

Substituting eq. (92) in (93) we find

R1 = AZ, and R2 =
Z

A
. (94)

For a 50/50 split, A = 1 and R1 = R2 = Z.

If we perform this split with three identical resistors in the symmetric configuration

the matching condition is

Z = R +
R + Z

2
, (95)

and hence,

R =
Z

3
. (96)
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5. As shown on p. 156 of the Notes, the inductance and capacitance per unit length of
any two-conductor transmission line are related by

LC =
ε

c2
, (97)

where c is the speed of light in vacuum and the medium outside the conductors is
filled with a dielectric of constant ε. [The permeability μ is taken to be unity, and the
frequency of the waves of interest is high enough that the skin depth is small compared
to the transverse size of the conductors.] Thus, the impedance of the transmission line
can be expressed as

Z =

√
L

C
=

√
ε

cC
=

30
√

ε Ω

C
. (98)

a) Wire over Ground

The capacitance of the wire over ground is twice the capacitance of the wire plus its
image wire (since C = Q/ΔV and ΔV in the present example is 1/2 that for the case
of two wires):

Recall prob. 11b, Set 3 to obtain the “exact” solution:

C =
ε

2 ln
(

2h+
√

4h2−d2

d

) ≈ ε

2 ln 4h
d

. (99)

Here, the presence of the dielectric medium leads to the factor ε in the numerator.
Using the approximate form in eq. (99), which holds for d � h, we find

Z ≈ 60 Ω√
ε

ln
4h

d
. (100)

The approximate result can be obtained quickly as follows. When d � h, the charge
on the wire is distributed nearly uniformly, so we may use the result that the potential
for a uniformly charged wire embedded in a medium of dielectric constant ε varies
as V (r) = 2(Q/ε) ln r. Thus, the potential difference between the wire of radius d/2
and its image are distance 2h due to charge Q per unit length on the wire is ΔV ≈
2(Q/ε) ln[2h/(d/2)]. In evaluating the capacitance, we suppose that the image wire
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has charge −Q per unit length, which doubles the potential difference between the two
wires. Finally, we recall that the voltage difference between the wire and the ground
plane is 1/2 that between the wire and its image. Hence,

ΔV = 2(Q/ε) ln
4h

d
=

Q

C
, (101)

which leads to the approximate result of eq. (99).

b) Stripline

If the strip width w is large compared to height h, then the capacitance per unit length
is roughly,

C ≈ εw

4πh
, (102)

as follows from Gauss’ law, ∇ · D = 4πρfree, and the stripline impedance is,

Z ≈ 120π Ω√
ε

h

w
=

377 Ω√
ε

h

w
. (103)

In practical circuit boards, w ≈ h, and we expect the impedance to be between the
estimates (103) and (100). If we use the “exact” form of eq. (99) and take d = h = w,
we find,

C =
ε

2 ln(2 +
√

3)
=

ε

2.6
, (104)

and we estimate a lower bound on the impedance to be,

Z ≈ 80 Ω√
ε

. (105)

There does not appear to be a closed-form analytic solution to the present problem,
but many numerical algorithms exist. See, for example,
http://www.ideaconsulting.com/strip.htm

This program estimates the impedance of a stripline with h = w embedded in a thick
dielectric medium to be,

Z ≈ 110 Ω√
ε

. (106)

Analytic approximations based on conformal mapping are given in sec. 5 of
http://kirkmcd.princeton.edu/examples/EM/assadourian_pire_40_1651_52.pdf

See also sec. 11, p. 353 of
http://kirkmcd.princeton.edu/examples/EM/love_plms_22_337_24.pdf

The case of an infinitely thin strip midway between two infinite, conducting planes can
be solved analytically,
http://kirkmcd.princeton.edu/examples/EM/bates_iretmtt_4_28_56.pdf
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6. We use Gaussian units, and convert the impedance Z =
√

L/C to MKSA units by

noting that 1/c = 30Ω, where c is the speed of light.

We don’t need to calculate both the capacitance C per unit length and the inductance
L per unit length, since in the case of a (perfectly conducting) transmission line they
are related by

LC =
εμ

c2
, (107)

where the dielectric constant ε and the permeability μ are unity in the present case. The
assumed smallness of the skin depth permits us to approximate the present transmission
line as perfectly conducting.

We first present two calculations of the capacitance (secs. a and b), and then a calcu-
lation of the inductance (sec. c) as illustrations of various possible techniques.

a) The Capacitance Via the Image Method

It is expedient to use the image method for 2-dimensional cylindrical geometries. Recall
that in the case of a wire of charge q per unit length at distance b from a ground
conducting cylinder of radius a, as shown in the figure, one can think of an image wire
of charge −q at radius a2/b.

To apply this to the present problem, sketched in the figure below, note that the image
wires of charge ±q per unit length are both located to the left of the center of the inner
conductor, say at distances ra and rb.

For the inner cylinder to be an equipotential, we must have

rb =
a2

rb
, (108)

and the outer cylinder is also an equipotential provided

rb + δ =
b2

ra + δ
, (109)
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noting the offset by δ between the inner and outer cylinder. Combining eqs. (108) and
(109), and noting that ra → 0 as δ → 0, we find

ra =
b2 − a2 − δ2 −

√
(b2 − a2 − δ2)2 − 4a2δ2

2δ
. (110)

The capacitance is related by C = q/ΔV , where ΔV = Vb−Va is the potential difference
between the two cylinders. Recall that the potential at distance r from a wire of charge
q per unit length is 2q ln r + constant. We evaluate the potentials at the points where
the cylinders are closest to one another:

Va = 2q ln(a − ra) − 2q ln(rb − a) = 2q ln
a − ra

a2/ra − a
= 2q ln

ra

a
, (111)

using eq. (108), and

Vb = 2q ln(b − δ − ra) − 2q ln(rb − b + δ) = 2q ln
b − ra − δ

b2/(ra + δ) − b
= 2q ln

ra + δ

b
, (112)

using eq. (109). Then,

ΔV = 2q ln

[
a

b

(
1 +

δ

ra

)]
. (113)

When combined with eq. (110), this is an “exact” solution for any δ < b − a. In
particular, as δ → b − a, then ra → a, and the cylinders touch with the result that
ΔV = 0.

Here, we suppose that δ � b − a, and expand δ/ra to second order:

δ

ra
=

b2 − a2 − δ2 +
√

(b2 − a2 − δ2)2 − 4a2δ2

2a2
≈ b2 − a2

a2
− b2δ2

a2(b2 − a2)
, (114)

so that

1 +
δ

ra
≈ b2

a2

(
1 − δ2

b2 − a2

)
. (115)

The capacitance per unit length is therefore,

C =
q

ΔV
≈ 1

2
(
ln b

a
− δ2

b2−a2

) , (116)

using eq. (113).

The inductance per unit length now follows from eq. (107):

L =
2

c2

(
ln

b

a
− δ2

b2 − a2

)
, (117)

and the impedance is

Z =

√
L

C
≈ 2

c

(
ln

b

a
− δ2

b2 − a2

)
= 60

(
ln

b

a
− δ2

b2 − a2

)
Ω. (118)
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Remark: The “exact” expression (113) is often written in a different fashion, which is
convenient for large δ, but perhaps less useful for small δ. The “exact” version of (114)
leads to

1 +
δ

ra
=

b2 + a2 − δ2 +
√

(b2 + a2 − δ2)2 − 4a2b2

2a2
, (119)

which in turn leads to

C =
q

ΔV
=

1

2 ln
b2+a2−δ2+

√
(b2+a2−δ2)2−4a2b2

2ab

=
1

2 cosh−1 a2+b2−δ2

2ab

. (120)

b) Capacitance Via Series Expansion of the Potential

The image method can be deduced by an application of series expansion techniques for
the electrostatic potential. In this section, we explore a direct use of such techniques.
A full solution is long, and when we leave off some steps at the end, we get an answer
that is not quite correct.

We define the electrostatic potential φ to be zero on the inner conductor,

φ(r = a) = 0, (121)

and V on the outer conductor whose surface is approximately given by r = b + δ cos θ,

φ(r = b + δ cos θ) = V. (122)

The potential is symmetric about θ = 0:

φ(−θ) = φ(θ), (123)

so terms in sin nθ cannot appear in the series expansion of the potential:

φ(r, θ) = A0 ln r +
∑
n=1

(
Anr

n +
Bn

rn

)
cos nθ. (124)

The capacitance C per unit length is, of course, given by C = Q/V , where the charge
Q per unit length on the inner conductor is given by

Q = 2πa
∫ 2π

0
σ(θ) dθ = 2πa

∫ 2π

0

Er(a, θ)

4π
dθ =

a

2

∫ 2π

0

∂φ(a, θ)

∂r
dθ =

A0

2
. (125)

Thus,

C =
A0

2V
. (126)

Applying the boundary condition (121) to the general form (124), we have

0 = A0 ln a +
∑
n=1

(
Ana

n +
Bn

an

)
cos nθ. (127)
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Likewise, the boundary condition (122) yields

V = A0 ln(b + δ cos θ) +
∑
n=1

(
An(b + δ cos θ)n +

Bn

(b + δ cos θ)n

)
cos nθ. (128)

With considerable effort, the terms in eq. (128) of the form cosl θ cosmθ can be ex-
pressed as sums of terms in the orthogonal set of functions cos nθ. Then, eqs. (127) and
(128) can be combined to yield the Fourier coefficients An and Bn. Thus, subtracting
eq. (127) from (128) and using the approximation (140), we have

V = A0

(
ln

b

a
+

δ cos θ

b
− δ2 cos2 θ

2b2

)
+ F (An, Bn, θ) (129)

IF the integral of F with respect to θ vanished, then integrating eq. (129) yields

V = A0

(
ln

b

a
− δ2

4b2

)
, (130)

and the capacitance would be

C =
A0

2V
≈ 1

2
(
ln b

a
− δ2

4b2

) . (131)

However, we the presence of terms like A1 cos2 θ in F means that we cannot expect its
integral to vanish, and eq. (131) is not quite correct.

c) Calculation of the Inductance

The calculation of the inductance is complicated by the fact that the currents in this
problem are distributed over surfaces, rather than flowing in filamentary wires. We
would like to use the relation,

Φ = cLI, (132)

where I is the total (steady) current flowing down the inner conductor (and back up
the outer conductor), and Φ is the magnetic flux per unit length linked by the circuit.
From Ampere’s law, with the assumption that the currents are uniformly distributed
on the inner and outer conductors, the azimuthal component Bθ of the magnetic field
in the region between the two conductors is given by

Bθ(r) =
2I

cr
. (133)

If the cable were truly coaxial, the flux would be simply

Φ0 =
∫ b

a
Bθ dr =

2I

c
ln

b

a
, (134)

and the corresponding inductance would be

L0 =
2

c2
ln

b

a
. (135)
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Then, from eq. (107) the capacitance would be

C0 =
1

2 ln(b/a)
, (136)

as is readily verified by an electrostatic analysis, and the transmission line impedance
would be

Z0 =

√
L0

C0
=

2

c
ln

b

a
= 60 ln

b

a
Ω. (137)

However, because the outer conductor is off center with respect to the inner, we cannot
simply use eq. (134). We can segment the currents on the conductors into filaments of
azimuthal extent dθ, and calculate the flux Φ(θ) linked the circuit element defined by
the segments centered on angle θ on the inner and outer conductors. Then, the effective
inductance of the whole cable can be estimated from eq. (132) using the average of
Φ(θ):

L =
1

2πcI

∫ 2π

0
Φ(θ) dθ =

1

2πcI

∫ 2π

0
dθ
∫ rmax(θ)

a
Bθ(r) dr =

1

πc2

∫ 2π

0
ln

rmax(θ)

a
dθ,

(138)
using (133) and (134). The result holds only to the extent that the current distribution
is independent of azimuth, as discussed in sec. d. However, there will be a small
azimuthal dependence to the current in this problem, so we will not obtain a completely
correct result.

To complete the analysis, we need rmax(θ), the maximum radius about the center
of the inner conductor of magnetic field lines that are linked by the segment of the
outer conductor at azimuthal angle θ. Assuming the currents is uniformly distributed
over the inner and outer conductors, the magnetic field between the two conductors is
entirely due to the current in the inner conductor, and the field is purely azimuthal
about the axis of the inner conductor as given by eq. (133). Then, the geometry shown
in the figure tells us that

rmax(θ) = b + δ cos θ. (139)
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This relation is “exact” to the extent that the currents are uniformly distributed;
however, this is not actually the case in the present problem.

To use relation (139) in eq. (138), we approximate

ln
rmax(θ)

a
= ln

b + δ cos θ

a
= ln

b

a
+ln

(
1 +

δ cos θ

b

)
≈ ln

b

a
+

δ cos θ

b
− δ2 cos2 θ

2b2
, (140)

which leads to

L ≈ 2

c2

(
ln

b

a
− δ2

4b2

)
. (141)

This result happens to agree with the result implied by sec. b, but differs somewhat
from the more accurate result of sec. a.

d) The Magnetic Flux Linked by a Distributed Circuit

The magnetic flux through a filamentary circuit (one in which the conductors are
idealized as wires) is well defined as

Φ =
∫

B · dS, (142)

where the integral is taken over any surface bounded by the circuit. However, when
the conductors of the circuit are distributed and have a finite cross sectional area A,
then eq. (142) is not well defined.

We wish to show that a consistent definition of the flux through a distributed circuit is
obtained by segmenting the conductors into a large number of circuits each with very
small cross sectional area Ai, and defining

Φ =
1

A

∑
i

AiΦi, (143)

where the magnetic flux through subcircuit i is given by eq. (142).

We are interested in a definition of flux that gives consistency to the relation (132) in
the context of circuit analysis. In particular, if the circuit has total resistance R, and
the magnetic flux is changing, then we desire Faraday’s law to be written as

IR = E = −1

c

dΦ

dt
, (144)

which is the same form as holds for each of the filamentary subcircuits:

IiRi = Ei = −1

c

dΦi

dt
. (145)

We suppose that the current flowing in subcircuit i is related to the total current
according to

Ii =
Ai

A
I, (146)
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in which case the resistance of subcircuit i is given by

Ri =
A

Ai
R. (147)

Then, we can combine eqs. (145)-(147) as

I =
∑

i

Ii = −1

c

∑
i

1

Ri

dΦi

dt
= − 1

cRA

∑
i

Ai
dΦi

dt
. (148)

Hence, the definition (143) leads to the desired relation (144) for the distributed circuit.
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7. a) The force on the cavity walls can be evaluated via the Maxwell stress tensor. Recall
that for a good conductor the electric field is perpendicular to a conducting surface, and
the magnetic field is parallel. Also, the Maxwell stress associated with a perpendicular
field E is +E2/8π, while that with a parallel field H is −H2/8π. That is, the total,
time-averaged force on a face of the cavity is given by

〈F 〉 =
1

2

∫
face

|E|2 − |H|2
8π

dArea. (149)

A positive value of F corresponds to an inward force.

The electromagnetic fields of the (1,1,0) mode are

Ex = 0, (150)

Ey = 0, (151)

Ez = E0 sin
πx

a
sin

πy

a
e−iωt, (152)

Hx = −i
E0√

2
sin

πx

a
cos

πy

a
e−iωt, (153)

Hy = −i
E0√

2
cos

πx

a
sin

πy

a
e−iωt, (154)

Hz = 0, (155)

using eq. (10), Faraday’s law

∇ ×E = −1

c

∂H

∂t
, (156)

and the wave equation

∇2E =
1

c2

∂2H

∂t2
, (157)

which latter tells us that

2
π2

a2
=

ω2

c2
. (158)

The force on each of the four faces perpendicular to the x or y axes is the same by the
symmetry of the problem, and can be calculated using the face at, say, x = 0 to be

〈F 〉 = − 1

16π

∫ a

0
dy
∫ l

0
dz |Hy|2 = −alE2

0

64π
. (159)

This force is outwards.

Likewise, the force on the two faces perpendicular to the z axis is the same, and is

〈F 〉 =
1

16π

∫ a

0
dx
∫ a

0
dy (|Ez|2 − |Hx|2 − |Hy|2) = 0. (160)

b) Turning to the cavity Q, we first calculate the time-averaged energy U in the cavity:

〈U〉 =
1

2

∫
dVol

|E|2 + |H|2
8π

=
a2lE2

0

32π
. (161)
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The energy lost per cycle into the walls is the time-averaged power loss 〈P 〉 times the
period T = 2π/ω.

The power 〈P 〉 lost in the cavity walls can be calculated by evaluating the component
of the (time-averaged) Poynting vector perpendicular to the walls:

〈P 〉 =
∫

〈S〉⊥ to walls dArea =
c

8π

∫
Re(E × H�)⊥ to walls dArea

=
c

8π

∫
Re(E‖ × H�

‖) dArea. (162)

If the fields were actually those specified by eqs. (150)-(155), which assume perfect
conductors, the power lost to the walls would be zero. For a good, but not perfect,
conductor, it is an excellent approximation to suppose the cavity magnetic field is that
given by the perfect-conductor approximation, eqs. (153)-(155), but to take the electric
field near the conducting walls as having a small parallel component given by

E‖ at the walls = −ωd

2c
(1 − i)n̂× H‖, (163)

where
d =

c√
2πσω

(164)

is the skin depth at frequency ω for the walls of conductivity σ, and n̂ is the outward
normal vector. This relation follows from the 4th Maxwell equation, evaluated just
inside the surface of the conductor where J = σE,

∇ ×H =
4π

c
J +

1

c

∂E

∂t
=

4πσ

c
E +

1

c

∂E

∂t
≈ 4πσ

c
E , (165)

the curl of which yields,

∇2H ≈ 4πσ

c2

∂H

∂t
, (166)

where the approximations are valid for a good conductor. [This diffusion equation, due
to Lord Kelvin, was the basis of time-dependent electrodynamics in the era shortly
before Maxwell clarified that if σ = 0 then waves can propagate with speed c without
diffusionlike distortion. It is amazing from a modern perspective that the first telegraph
systems were successfully constructed using eq. (166) as their theoretical model.]

Inside the conductor, and for waves of frequency ω and wave vector k of the form
ei(k·x−ωt), eq. (166) becomes

k2 ≈ 4πiσω

c2
, (167)

so that

k ≈
√

4πσω

c

1 + i√
2

≡ 1 + i

d
. (168)

Then, the Maxwell equation (165) becomes

ik × H ≡ ikn̂×H ≈ 4πσ

c
E, (169)
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which can also be written as eq. (163).

Inserting eq. (163) into (162), we find the general expression

〈P 〉 =
ωd

16π

∫ ∣∣∣H‖
∣∣∣2 dArea. (170)

Evaluating this for the present example, we find

〈P 〉into walls =
ωdE2

0

32π
(a2 + 2al). (171)

The energy lost per cycle is 〈P 〉 T = 2π 〈P 〉 /ω, so the cavity Q is

Q =
〈U〉
〈P 〉

ω

2π
=

al

2πd(a + 2l)
=

volume

πd · surface area
. (172)
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8. Given the electric field

E(t) = E0e
−ω0t/4πQe−iω0t, t > 0, (173)

its Fourier components are given by

Eω =
1

2π

∫ ∞

0
E(t)eiωt dt =

E0

2π

∫ ∞

0
ei(ω−ω0+iω0/4πQ)t dt

=
iE0

2π

1

ω − ω0 + iω0/4πQ
,

(174)

where we ignore the oscillatory contribution associated with the limit t → ∞.

The Fourier analysis of the stored energy U therefore behaves as

Uω ∝ |Eω|2 ∝ 1

(ω − ω0)2 + (ω0/4πQ)2
. (175)
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9. The electric field of a standing wave mode of angular frequency ω inside a cubical
cavity of edge a has components of the form

Ex = E0 cos
lπx

a
sin

mπy

a
sin

nπz

a
e−iωt, (176)

etc. The wave equation,

∇2E =
1

c2

∂2E

∂t
, (177)

yields the dispersion relation

k =
π

a

√
l2 + m2 + n2 =

ω

c
. (178)

This leads to the interpretation that a mode (l, m, n) has a wave vector k whose
components are

π

a
(l, m, n). (179)

The modes populate a cubical lattice in the first octant of k-space, with π/a as the
lattice constant. For l, m, and n large, the number of modes in interval dω about
frequency ω = kc is equal to (a/π)3 times the volume of a shell of thickness dk = dω/c
in the first octant of k-space – times two since there are two possible polarization of
the electric field for each set of indices (l, m, n).

Thus,

dN = 2 · a3

π3
· 1

8
· 4π(ω/c)2(dω/c) =

a3ω2dω

π2c3
. (180)

Jeans’ contribution to this result was to note that only indices in the first octant
correspond to physical modes, and therefore Rayleigh’s original calculation was to be
divided by 8.
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10. Given the zeroth order electric field of a right circular cavity,

Ez,(0) = E0e
−iωt, (181)

we integrate the 4th Maxwell equation around a loop of radius r in the x-y plane to
find the first correction to the (initially zero) magnetic field,

∮
H(1) · dl = 2πrHφ,(1) =

1

c

∫ ∂Ez,(0)

∂t
· dS = − iωπr2

c
E0e

−iωt, (182)

so that

Hφ,(1) = − iωr

2c
E0e

−iωt. (183)

Next, we consider a loop in the x-z plane that includes the z axis and the line x = r,
for which Faraday’s law tells us that

∮
E(1) · dl = −hEz,(1) = −1

c

∫ ∂Hφ,(1)

∂t
· dS =

ω2hr2

4c2
E0e

−iωt, (184)

so that

Ez,(1) = −ω2r2

4c2
E0e

−iωt. (185)

We now iterate, first using a loop of radius r in the x-y plane to find

∮
H(2) · dl = 2πrHφ,(2) =

1

c

∫ ∂Ez,(1)

∂t
· dS =

iω3πr4

4c3
E0e

−iωt, (186)

so that

Hφ,(2) =
iω3r3

8c3
E0e

−iωt. (187)

Again, we consider a loop in the x-z plane that includes the z axis and the line x = r,
for which Faraday’s law tells us that

∮
E(2) · dl = hEz,(2) = −1

c

∫ ∂Hφ,(2)

∂t
· dS =

ω4hr4

16c4
E0e

−iωt, (188)

so that

Ez,(2) =
ω4r4

16c4
E0e

−iωt. (189)

Thus,

Ez = E0e
−iωt

(
1 − ω2r2

4c2
+

ω4r4

16c4
− ...

)
= E0e

−iωt
∞∑

n=0

(−1)n

(n!)2

(
ωr

2c

)2n

= E0J0

(
ωr

c

)
e−iωt.

(190)
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11. We seek a standing wave solution where, say, the time dependence of Ez is cos ωt. The
cavity is symmetric about the plane z = 0, so we expect the z dependence of Ez to
have the form cos knz, where

kn =

⎧⎪⎨
⎪⎩

(2n − 1)π/2d, if Ez(0,−d) = Ez(0, d) = 0,

nπ/d, if ∂Ez(0,−d)/∂z = ∂Ez(0, d)/∂z = 0.
(191)

We can combine these two cases in the notation

kn = (2n − n0)
π

2d
, where

⎧⎪⎨
⎪⎩

n0 = 1, if Ez(0,−d) = Ez(0, d) = 0,

n0 = 2, if ∂Ez(0,−d)/∂z = ∂Ez(0, d)/∂z = 0.
(192)

where n = 1, 2, 3, ...

Our trial solution,
Ez(r, z, t) = fn(r) cos knz cos ωt, (193)

must satisfy the wave equation

∇2Ez − 1

c2

∂2Ez

∂t2
=

1

r

∂

∂r

(
r∂fn

r

)
−
(
k2

n − ω2

c2

)
fn = 0. (194)

This is the differential equation for the modified Bessel function of order zero, I0(Knr),
where

K2
n = k2

n − ω2

c2
=
[
(2n − n0)

π

2d

]2
−
(

2π

λ

)2

, (195)

the free-space wavelength at frequency ω is λ = 2πc/ω, and

I0(x) = 1 + (x/2)2 +
(x/2)4

(2!)2
+

(x/2)6

(3!)2
+ · · · (196)

In the special case of kn = 0, eq. (194) reverts to that for the ordinary Bessel function
J0, and the fields (30)-(31) are obtained. Since this form cannot exist in a cavity with
apertures, we ignore it in further discussion.

A Fourier series for Ez with nonzero kn is then

Ez(r, z, t) =
∞∑

n=1

anI0(Knr) cos knz cos ωt. (197)

The radial component of the electric field is obtained from

∇ · E =
1

r

∂rEr

∂r
+

∂Ez

∂z
= 0, (198)

so that

Er(r, z, t) =
1

r

∑
n

ankn

∫
rI0(Knr) dr sin knz cos ωt

=
r

2

∑
n

anknĨ1(Knr) sin knz cosωt, (199)
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using the fact that d(xI1)/dx = xI0, and where

Ĩ1(x) =
2I1(x)

x
= 1 +

(x/2)2

1!2!
+

(x/2)4

2!3!
+ · · · (200)

The azimuthal component of the magnetic field is obtained from

(∇× E)θ =
∂Er

∂z
− ∂Ez

∂r
= −1

c

∂Bθ

∂t
, (201)

so that

Bθ(r, z, t) =
c

ω

∑
n

an

(
dI0(Knr)

dr
− k2

nr

2
Ĩ1(Knr)

)
cos knz sinωt

=
πr

λ

∑
n

anĨ1(Knr) cos knz sin ωt, (202)

using the fact that I ′
0(x) = I1(x).

We desire that the transverse fields Er and Bθ vary linearly with r. According to
eqs. (199)-(200) and (202), this requires that Kn = 0. The simplest choice is n = 1,
n0 = 1, so that kn = π/2d and d = λ/4. The fields are

Ez = E0 cos
πz

2d
cosωt, (203)

Er =
πr

4d
E0 sin

πz

2d
cosωt, (204)

Bθ =
πr

4d
E0 cos

πz

2d
sinωt. (205)

The cavity length is 2d = λ/2, and Ez vanishes on axis at the ends of the cavity. This
configuration is called the π mode in accelerator physics. Since Er(z = ±d) �= 0, this
mode cannot exist in a structure with conducting walls at the planes z = ±d; apertures
are required.

The electric field is perpendicular to the walls of a perfectly conducting cavity. Ex-
pressing the shape of the walls as r(z), we then have

dr

dz
= −Ez

Er
= −4d

πr
cot

πz

wd
, (206)

which integrates to the form

r2 = b2 −
(

4d

π

)2

ln
∣∣∣∣sin πz

2d

∣∣∣∣ , (207)

where b is the radius of the apertures at z = ±d. Near z = ±d, the profile is a
hyperbola. Since r → ∞ as z → 0, no real cavity can support the idealized fields
(203)-(205). However, it turns out that a cavity with maximum radius a = 0.4d has a
Fourier expansion (197) where a2 = 0.15a1, so the fields can be a good approximation
to eqs. (203)-(205) in real devices.
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We can obtain additional formal solutions in which Kn = 0 for any value of n, and
for n0 either 1 or 2. However, these solutions are not really distinct from eqs. (203)-
(205), but are simply the result of combining any number of λ/2 cells into a larger
structure. Such multicell π-mode structures are difficult to operate in practice, because
the strong coupling of the fields from one cell to the next makes the useful range of
drive frequencies extremely narrow. The main application of π-mode cavities is for
so-called rf guns, in which a half cell has a surface at z ≈ 0 suitable for laser-induced
photoemission of electrons, which are then accelerated further in one or a few more
subsequent cells. See K.T. McDonald, Design of the Laser-Driven RF Electron Gun for
the BNL Accelerator Test Facility, IEEE Trans. Electron Devices, 35, 2052 (1988).1

1http://kirkmcd.princeton.edu/examples/EM/mcdonald_ieeeted_35_2052_88.pdf
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12. An estimate of the lowest rf frequency of the reflex klystron cavity can be made via an
equivalent LC circuit:

ω ≈ 1√
LC

=
1√

L(C1 + C2)
, (208)

where C1 is the capacitance between the left termination plate and the disc of radius
a at the left end of the center conductor, C2 is the capacitance between the inner and
outer conductor, and L is the self inductance between the inner and outer conduc-
tor. The capacitances C1 and C2 are in parallel, and so are added to yield the total
capacitance C .

C1 is estimated by the usual parallel-plate formula,

C1 ≈ Area

4π · height
=

a2

4d
. (209)

C2 is estimated by the capacitance of length h − d of a coaxial cable,

C2 ≈ h − d

2 ln b/a
. (210)

The main interest in this type of cavity is for small gap d, so we write

C = C1 + C2 ≈ a2

4d

(
1 +

2dh

a2 ln b/a

)
. (211)

L is estimated by the inductance of length h − d ≈ h of a coaxial cable,

L ≈ h − d

c2[C2/(h − d)]
≈ 2h ln b/a

c2
, (212)

recalling that the product of the capacitance per unit length and the inductance per
unit length of a transmission line (in vacuum) is 1/c2.

The lowest cavity frequency is then estimated to be

ω ≈ 1√
LC

≈ c

a

√
2d

h(1 + 2dh/a2 ln b/a) ln b/a
. (213)

For d small enough, we can neglect the capacitance C2, and eq. (213) simplifies to

ω ≈ 1√
LC

≈ c

a

√
2d

h ln b/a
(d � a2/h). (214)
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This result is small compared to ω = πc/h, the resonant frequency of a terminated
coaxial cable of length h, which shows that it is possible to obtain low cavity frequencies
without large cavity size.

The book Klystrons and Microwave Triodes by Princetonian D.R. Hamilton (Dover,
1966) quotes (p. 75) a numerical analysis of the reflex klystron (dating from 1934) as
claiming that ω = 0.3c/a when b/a = 3, h/a = 3, and d/a = 0.32. Equation (213)
yields ω ≈ 0.44c/a for these values, in reasonable agreement.

Note that the simple coaxial cavity is not the limit of the reflex klystron cavity as
d → 0, since C1 → ∞ in that case. Rather, the coaxial cavity obtains when C1 and
d are both set to zero, in which case eq. (213) gives the estimate ω ≈ c/h, which is a
factor of π smaller than the “exact” result.
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13. The electric field of a TE mode in a rectangular waveguide of edges a < b has the form

Ex = E0 cos
mπx

a
sin

nπy

b
ei(kgz−ωt), (215)

Ey = E0 sin
mπx

a
cos

nπy

b
ei(kgz−ωt), (216)

Ez = 0, (217)

where the guide wave number kg is found from the wave equation to obey

w = c

√
k2

g +
(

mπ

a

)2

+
(

nπ

b

)2

. (218)

The lowest frequency mode has indices m = 0, n = 1, for which only Ex is nonzero.

The magnetic field of this mode follows from Faraday’s law,

∇× E = −1

c

∂H

∂t
=

iωH

c
, (219)

so that

Hx = 0, (220)

Hy =
ckg

ω
E0 sin

πy

b
ei(kgz−ωt), (221)

Hz =
icπ

ωb
E0 cos

πy

b
ei(kgz−ωt), (222)

and

kg =

√
ω2

c2
− π2

b2
=

ω

c

√√√√1 −
(

λ

2b

)2

. (223)

The time-averaged power transmitted down the guide follows from the Poynting vector,

〈P 〉transmitted =
∫
〈Sz〉 dx dy =

c

8π

∫
ExH

�
y dx dy =

c2

16π
ab

kg

ω
E2

0

=
c

16π
abE2

0

√√√√1 −
(

λ

2b

)2

. (224)

To find the time-averaged power loss in the walls, we recall the argument of prob. 4,
which led to the general result (170),

〈P 〉lost in walls =
ωd

16π

∫ ∣∣∣H‖
∣∣∣2 dArea, (225)

where d = c/
√

2πσω is the skin depth. For the present example, the power lost into
the walls per unit length along the guide is

〈P 〉lost = 2
ωd

16π

(∫ a

0
|Hz(x, 0, z)|2 dx +

∫ b

0
[|Hy(0, y, z)|2 + |Hz(0, y, z)|2] dy

)

=
ωd

8π
E2

0

(
c2π2

ω2b2
a +

[
c2k2

g

ω2
+

c2π2

ω2b2

]
b

2

)
=

ωd

8π
E2

0

(
c2π2

ω2b2
a +

b

2

)

=
bc

16π

√
c

σλ
E2

0

⎛
⎝1 +

2a

b

(
λ

2b

)2
⎞
⎠ . (226)
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Finally, the attenuation factor β is given by

β =
〈P 〉lost

〈P 〉trans

=
1

a

√
c

σλ

1 + 2a
b

(
λ
2b

)2

√
1 −

(
λ
2b

)2
=

c

4π
· 4π

a
·
√

1

cσλ
· 1 + 2a

b

(
λ
2b

)2

√
1 −

(
λ
2b

)2
. (227)
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14. a) The current in the semicircular loop creates a magnetic field that has a component
along the axis of the guide. Since TM modes have no longitudinal magnetic field, the
field of the loop does not couple to these modes.

b) It is “derived” on pp. 170-171 of the Notes that an oscillatory, transverse current
distribution J inside a waveguide excites a waveguide mode with normalized electric
field E0 to strength

E = −2π

c
ZE0

∫
J · E0⊥dArea, (228)

where Z = k/kg for TE modes and Z = kg/k for TM modes.

Comparing with prob. 9, the lowest TE mode in the present problem (0 < x < a,
0 < y < b < a) has

E0 =

√
2

ab
sin

πx

a
ŷ, (229)

where the normalization condition is
∫

E2
0 dArea = 1.

Since the electric field of this mode is independent of y, the excitation of this mode by
the loop current will be independent of the position of the loop in y.

Taking θ to measure the angle around the semicircular loop, we have

∫
J · E0⊥ dArea = −

∫ π

0
r dθ I0E0 sin θ = −rI0

√
2

ab

∫ π

0
dθ sin

πr sin θ

a
sin θ

≈ −πr2

a
I0

√
2

ab

∫ π

0
dθ sin2 θ = −π2r2

a

I0√
2ab

, (230)

where the approximation holds for r � a. The wave numbers are related by

kg =

√
ω2

c2
− π2

a2
= k

√√√√1 −
(

λ

2a

)2

(231)

According to eqs. (228)-(229), the strength of the field in the lowest TE mode is

E =
2π

c

k

kg

π2r2

a

I0

ab
sin

πx

a
ŷ, (232)

The (time-averaged) power in the lowest TE mode follows from the Poynting vector,

〈P 〉trans =
∫

〈Sz〉 dx dy =
c

8πZ

∫
E2

⊥ dx dy =
π

4c

k

kg

(
π2r2

a

)2
I2
0

ab

=
4π

c

k

kg

(
πr

2a

)4

I2
0

a

b
=

4π

c

(
πr

2a

)4 I2
0√

1 −
(

λ
2a

)2

a

b
. (233)

This calculation holds for TE waves excited in either direction down the guide.

As usual, to convert this result from Gaussian to SI units, simply replace 4π/c by
377 Ω.


