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1. Wire with a Linearly Rising Current

A neutral wire along the z-axis carries current I that varies with time t according to,

I(t) =

⎧⎪⎨
⎪⎩

0 (t ≤ 0),

αt (t > 0), α is a constant.
(1)

Deduce the time-dependence of the electric and magnetic fields, E and B, observed at
a point (r, θ = 0, z = 0) in a cylindrical coordinate system about the wire. Use your
expressions to discuss the fields in the two limiting cases that ct � r and ct = r + ε,
where c is the speed of light and ε � r.

The related, but more intricate case of a solenoid with a linearly rising current is
considered in http://kirkmcd.princeton.edu/examples/solenoid.pdf
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2. Harmonic Multipole Expansion

A common alternative to the multipole expansion of electromagnetic radiation given
in Lecture 16 of the Notes assumes from the beginning that the motion of the charges
is oscillatory with angular frequency ω. However, we still use the essence of the Hertz
method wherein the current density is related to the time derivative of a polarization:1

J = ṗ. (2)

The radiation fields will be deduced from the retarded vector potential,

A =
1

c

∫
[J]

r
dVol =

1

c

∫
[ṗ]

r
dVol, (3)

which is a solution of the (Lorenz gauge) wave equation,

∇2A− 1

c2

∂2A

∂t2
= −4π

c
J. (4)

Suppose that the Hertzian electric dipole vector p has oscillatory time dependence,

p(x, t) = pω(x)e−iωt. (5)

Using the expansion,
r = R − r′ · n̂ + ... (6)

of the distance r from source to observer,

to show that

A = −iω
ei(kR−ωt)

cR

∫
pω(r′)

(
1 + r′ · n̂

(
1

R
− ik

)
+ ...

)
dVol′, (7)

where no assumption is made that R � source size or that R � λ = 2π/k = 2πc/ω.

Consider now only the leading term in this expansion, which corresponds to electric
dipole radiation. Introducing the total electric dipole moment,

P ≡
∫

pω(r′) dVol′, (8)

1Some consideration of the related topics of Hertz vectors and scalars is given in the Appendix of
http://kirkmcd.princeton.edu/examples/smallloop.pdf
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use,

B = ∇ × A and ∇ × B =
1

c

∂E

∂t
(9)

to show that for an observer in vacuum the electric dipole radiation fields are,,

B = k2 ei(kR−ωt)

R

(
1 +

i

kR

)
n̂× P, (10)

E = k2ei(kR−ωt)

R

{
n̂× (P × n̂) + [3(n̂ · P)n̂− P]

(
1

k2R2
− i

kR

)}
. (11)

Alternatively, deduce the electric field from both the scalar and vector potentials via,

E = −∇φ − 1

c

∂A

∂t
, (12)

in both the Lorenz and Coulomb gauges.

For large R,

Bfar ≈ k2ei(kR−ωt)

R
n̂× P, Efar ≈ Bfar × n̂, (13)

while for small R,

Bnear ≈ ik

R2
(n̂ ×P)e−iωt, Enear ≈ 3(n̂ ·P)n̂ − P

R3
e−iωt, (14)

Thus, Bnear � Enear, and the electric field Enear has the shape of the static dipole field
of moment P, modulated at frequency ω.

Calculate the Poynting vector of the fields of a Hertzian oscillating electric dipole (10)-
(11) at all points in space. Show that the time-averaged Poynting vector has the same
form in the near zone as it does in the far zone, which confirms that (classical) radiation
exists both close to and far from the source.

Extend your discussion to the case of an oscillating, point magnetic dipole by noting
that if E(r, t) and B(r, t) are solutions to Maxwell’s equations in free space (i.e., where
the charge density ρ and current density J are zero), then the dual fields,

E′(r, t) = −B(r, t), B′(r, t) = E(r, t), (15)

are also solutions.
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3. Rotating Electric Dipole

An electric dipole of moment p0 lies in the x-y plane and rotates about the x axis with
angular velocity ω.

Calculate the radiation fields and the radiated power according to an observer at angle
θ to the z axis in the x-z plane.

Define n̂ towards the observer, so that n̂ · ẑ = cos θ, and let l̂ = ŷ × n̂.

Show that,

Brad = p0k
2 ei(kr−ωt)

r
(cos θ ŷ − i l̂), Erad = p0k

2 ei(kr−ωt)

r
(cos θ l̂ + i ŷ), (16)

where r is the distance from the center of the dipole to the observer.

Note that for an observer in the x-y plane (n̂ = x̂), the radiation is linearly polarized,
while for an observer along the z axis it is circularly polarized.

Show that the (time-averaged) radiated power is given by,

d 〈P 〉
dΩ

=
c

8π
p2

0k
4(1 + cos2 θ), 〈P 〉 =

2cp2
0k

4

3
=

2p2
0ω

4

3c3
. (17)

This example gives another simple picture of how radiation fields are generated. The
field lines emanating from the dipole become twisted into spirals as the dipole rotates.
At large distances, the field lines are transverse...
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4. Magnetars

The x-ray pulsar SGR1806-20 has recently been observed to have a period T of 7.5 s
and a relatively large “spindown” rate

∣∣∣Ṫ ∣∣∣ = 8× 10−11. See, C. Kouveliotou et al., An
X-ray pulsar with a superstrong magnetic field in the soft γ-ray repeater SGR1806-20,
Nature 393, 235-237 (1998).2

Calculate the maximum magnetic field at the surface of this pulsar, assuming it to be
a standard neutron star of mass 1.4M� = 2.8 × 1030 kg and radius 10 km, that the
mass density is uniform, that the spindown is due to electromagnetic radiation, and
that the angular velocity vector is perpendicular to the magnetic dipole moment of the
pulsar.

Compare the surface magnetic field strength to the so-called QED critical field strength
m2c3/eh̄ = 4.4× 1013 gauss, at which electron-positron pair creation processes become
highly probable.

2http://kirkmcd.princeton.edu/examples/EM/kouveliotou_nature_393_235_98.pdf
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5. Radiation of Angular Momentum

Recall that we identified a field momentum density,

Pfield =
S

c2
=

U

c
k̂, (18)

and angular momentum density,

Lfield = r × Pfield. (19)

Show that for oscillatory sources, the time-average angular momentum radiated into
unit solid angle per second is (the real part of),

d 〈L〉
dt dΩ

=
1

8π
r3[E(n̂ · B�) − B�(n̂ · E)]. (20)

Thus, the radiated angular momentum is zero for purely transverse fields.

In eq. (11) of Prob. 2 above, we found that for electric dipole radiation there is a term
in E with E · n̂ ∝ 1/r2. Show that for radiation by an oscillating electric dipole p,

d 〈L〉
dt dΩ

=
ik3

4π
(n̂ · p)(n̂× p�). (21)

If the dipole moment p is real, eq. (21) tells us that no angular momentum is radiated.
However, when p is real, the radiation is linearly polarized and we expect it to carry
no angular momentum.

Rather, we need circular (or elliptical) polarization to have radiated angular momen-
tum.

The radiation fields (16) of Prob. 2 are elliptically polarized. Show that in this case
the radiated angular momentum distribution is,

d 〈L〉
dt dΩ

= − k3

4π
p2

0 sin θ l̂, and
d 〈L〉
dt

=
〈P 〉
ω

ẑ . (22)

[These relations carry over into the quantum realm where a single (left-hand) circularly
polarized photon has U = h̄ω, p = h̄k, and L = h̄.]

For a another view of electromagnetic waves that carry angular momentum, see
http://kirkmcd.princeton.edu/examples/oblate_wave.pdf
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6. Oscillating Electric Quadrupole

An oscillating linear quadrupole consists of charge 2e at the origin, and two charges
−e each at z = ±a cos ωt.

Show that for an observer in the x-z plane at distance r from the origin,

Erad = −4k3a2e
sin(2kr − 2ωt)

r
sin θ cos θ l̂, (23)

where l̂ = ŷ × n̂. This radiation is linearly polarized.

Show also that the time-averaged total power is,

〈P 〉 =
16

15
ck6a4e2. (24)
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7. Charge with Uniform Circular Motion at Low Velocity

A single charge e rotates with angular velocity ω in a circle of radius a, centered in the
x-y plane. The velocity v = ωa is much less that c, the speed of light in vacuum.

The time-varying electric-dipole moment of this charge distribution with respect to the
origin has magnitude p = ae, so from Larmor’s formula (prob. 2) we know that the
(time-averaged) power in electric dipole radiation is,

〈PE1〉 =
2a2e2ω4

3c3
. (25)

This charge distribution also has a magnetic dipole moment and an electric-quadrupole
moment (plus higher moments as well!). Calculate the total radiation fields due to the
E1, M1 and E2 moments, as well as the angular distribution of the radiated power and
the total radiated power from these three moments. In this pedagogic problem you
may ignore the interference between the various moments.

Show, for example, that the part of the radiation due only to the electric-quadrupole
moment obeys,

d 〈PE2〉
dΩ

=
a4e2ω6

2πc5
(1 − cos4 θ), 〈PE2〉 =

8a4e2ω6

5c5
. (26)

Thus,
〈PE2〉
〈PE1〉 =

12a2ω2

5c2
∝ v2

c2
. (27)



Princeton University 2001 Ph501 Set 8, Problem 8 9

8. Radiation by a Classical Atom

a) Consider a classical atom consisting of charge +e fixed at the origin, and charge −e
in a circular orbit of radius a. As in Prob. 5, this atom emits electric-dipole radiation
⇒ loss of energy ⇒ the electron falls into the nucleus!

Calculate the time to fall to the origin supposing the electron’s motion is nearly circular
at all times (i.e., it spirals into the origin with only a small change in radius per turn).
You may ignore relativistic corrections.

Show that,

tfall =
a3

4r2
0c

, (28)

where r0 = e2/mc2 is the classical electron radius. Evaluate tfall for a = 5 × 10−9 cm
= the Bohr radius.

b) The energy loss of part a) can be written as,

dU

dt
= Pdipole ∝ e2aω4

c
=

e2

a

(
aω

c

)3

ω ∝ U
(

v

c

)3

ω ∝ U

T

(
v

c

)3

, (29)

or,
dipole energy loss per revolution

energy
∝
(

v

c

)3

. (30)

For quadrupole radiation, Prob. 5 shows that,

quadrupole energy loss per revolution

energy
∝
(

v

c

)5

. (31)

Consider the Earth-Sun system. The motion of the Earth around the Sun causes a
quadrupole moment, so gravitational radiation is emitted (although, of course, there
is no dipole gravitational radiation since the dipole moment of any system of masses
about its center of mass is zero). Estimate the time for the Earth to fall into the Sun
due to gravitational-radiation energy loss.

What is the analog of the factor ea2 that appears in the electrical-quadrupole moment
(Prob. 5) for masses m1 and m2 that are in circular motion about each other, separated
by distance a?

Also note that in Gaussian units the electrical coupling constant k in the force law
F = ke1e2/r

2 has been set to 1, but for gravity k = G, Newton’s constant.

The general-relativity expression for quadrupole radiation in the present example is,3

PG2 =
32

5

G

c5

m2
1m

2
2

(m1 + m2)2
a4ω6. (32)

The extra factor of 4 compared to E2 radiation arises because the source term in the
gravitational wave equation has a factor of 16π, rather than 4π as for E&M.

3P.C. Peters and J. Mathews, Phys. Rev. 131, 435 (1963),
http://kirkmcd.princeton.edu/examples/GR/peters_pr_131_435_63.pdf
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9. Why Doesn’t a Steady Current Loop Radiate?

A steady current in a circular loop presumably involves a large number of electrons in
uniform circular motion. Each electron undergoes accelerated motion, and according
to Prob. 5 emits radiation. Yet, the current density J is independent of time in the
limit of a continuous current distribution, and therefore does not radiate. How can we
reconcile these two views?

The answer must be that the radiation is canceled by destructive interference between
the radiation fields of the large number N of electrons that make up the steady current.

Prob. 5 showed that a single electron in uniform circular motion emits electric dipole ra-
diation, whose power is proportional to (v/c)4. But the electric-dipole moment vanishes
for two electrons in uniform circular motion at opposite ends of a common diameter;
quadrupole radiation is the highest multipole in this case, with power proportional to
(v/c)6. It is suggestive that in case of 3 electrons 120◦ apart in uniform circular motion
the (time-dependent) quadrupole moment vanishes, and the highest multipole radia-
tion is octupole. For N electrons evenly spaced around a ring, the highest multipole
that radiates in the Nth, and the power of this radiation is proportional to (v/c)2N+2.
Then, for steady motion with v/c � 1, the radiated power of a ring of N electrons is
very small.

Verify this argument with a detailed calculation.

Since we do not have on record a time-dependent multipole expansion to arbitrary
order, return to the basic expression for the vector potential of the radiation fields,

A(r, t) =
1

c

∫ [J]

r
dVol′ ≈ 1

cR

∫
[J] dVol′ =

1

cR

∫
J(r′, t′ = t − r/c) dVol′, (33)

where R is the (large) distance from the observer to the center of the ring of radius
a. For uniform circular motion of N electrons with angular frequency ω, the current
density J is a periodic function with period T = 2π/ω, so a Fourier analysis can be
made where,

J(r′, t′) =
∞∑

m=−∞
Jm(r′)e−imωt′, (34)

with,

Jm(r′) =
1

T

∫ T

0
J(r′, t′)eimωt′ dt′. (35)

Then,
A(r, t) =

∑
m

Am(r)e−imωt, (36)

etc. The radiated power follows from the Poynting vector,

dP

dΩ
=

c

4π
R2 |B|2 =

c

4π
R2 |∇ × A|2 . (37)

However, as discussed on p. 181, Lecture 15 of the Notes, one must be careful in going
from a Fourier analysis of an amplitude, such as B, to a Fourier analysis of an intensity
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that depends on the square of the amplitude. Transcribing the argument there to the
present case, a Fourier analysis of the average power radiated during one period T can
be given as,

d 〈P 〉
dΩ

=
1

T

∫ T

0

dP

dΩ
dt =

cR2

4πT

∫ T

0
|B|2 dt =

cR2

4πT

∫ T

0
B�
∑
m

Bme−imωt dt

=
cR2

4π

∑
m

Bm
1

T

∫ T

0
B�e−imωt dt =

cR2

4π

∞∑
m=−∞

BmB�
m

=
cR2

2π

∞∑
m=0

|Bm|2 ≡
∞∑

m=0

dPm

dΩ
. (38)

That is, the Fourier components of the time-averaged radiated power can be written
as,

dPm

dΩ
=

cR2

2π
|Bm|2 =

cR2

2π
|∇× Am|2 =

cR2

2π
|imkn̂× Am|2 , (39)

where k = ω/c and n̂ points from the center of the ring to the observer.

Evaluate the Fourier components of the vector potential and of the radiated power
first for a single electron, with geometry as in Prob. 5, and then for N electrons evenly
spaced around the ring. It will come as no surprise that a 3-dimensional problem with
charges distributed on a ring leads to Bessel functions, and we must be aware of the
integral representation,

Jm(z) =
im

2π

∫ 2π

0
eimφ−iz cosφ dφ. (40)

Use the asymptotic expansion for large index and small argument,

Jm(mx) ≈ (ex/2)m

√
2πm

(m � 1, x � 1), (41)

to verify the suppression of the radiation for large N .

This problem was first posed (and solved via series expansions without explicit mention
of Bessel functions) by J.J. Thomson, Phil. Mag. 45, 673 (1903).4 He knew that atoms
(in what we now call their ground state) don’t radiate, and used this calculation to
support his model that the electric charge in an atom must be smoothly distributed.
This was a classical precursor to the view of a continuous probability distribution for
the electron’s position in an atom.

Thomson’s work was followed shortly by an extensive treatise by G.A. Schott, Electro-
magnetic Radiation (Cambridge U.P., 1912),5 that included analyses in term of Bessel
functions correct for any value of v/c.

These pioneering works were largely forgotten during the following era of nonrelativis-
tic quantum mechanics, and were reinvented around 1945 when interest emerged in
relativistic particle accelerators. See Arzimovitch and Pomeranchuk,6 and Schwinger.7

4http://kirkmcd.princeton.edu/examples/EM/thomson_pm_45_673_03.pdf
5http://kirkmcd.princeton.edu/examples/EM/schott_radiation_12.pdf
6http://kirkmcd.princeton.edu/examples/EM/arzimovitch_jpussr_9_267_45.pdf
7http://kirkmcd.princeton.edu/accel/schwinger.pdf



Princeton University 2001 Ph501 Set 8, Problem 10 12

10. Spherical Cavity Radiation

Thus far we have only considered waves arising from the retarded potentials, and have
ignored solutions via the advanced potentials. “Advanced” spherical waves converge
on the source rather than propagate away – so we usually ignore them.

Inside a cavity, an outward going wave can bounce off the walls and become an inward
going wave. Thus, a general description of cavity radiation should include both kinds
of waves.

Reconsider your derivation in Prob. 1 above, this time emphasizing the advanced waves,
for which t′ = t + r/c is the “advanced” time. It suffices to consider only the fields due
to oscillation of an electric dipole moment.

If one superimposes outgoing waves due to oscillating dipole p = p0e
−iωt at the origin

with incoming waves associated with dipole −p, then we can have standing waves –
and zero total dipole moment.

Suppose all this occurs inside a spherical cavity with perfectly conducting walls at
radius a. Show that the condition for standing waves associated with the virtual
electric dipole is,

cot ka =
1

ka
− ka ⇒ ωmin = 2.74

c

a
, (42)

where k = ω/c. [A quick estimate would be λmax = 2a ⇒ ωmin = πc/a.]

By a simple transformation, use your result to find the condition for standing magnetic
dipoles waves inside a spherical cavity,

tan ka = ka ⇒ ωmin = 4.49
c

a
. (43)
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11. Maximum Energy of a Betatron

A betatron is a circular device of radius R designed to accelerate electrons (charge e,
mass m) via a changing magnetic flux Φ̇ = πR2Ḃave through the circle.

Deduce the relation between the magnetic field B at radius R and the magnetic field
Bave averaged over the area of the circle needed for a betatron to function. Also deduce
the maximum energy E to which an electron could be accelerated by a betatron in terms
of B, Ḃave and R.

Hints: The electrons in this problem are relativistic, so it is useful to introduce the
factor γ = E/mc2 where c is the speed of light. Recall that Newton’s second law has
the same form for nonrelativistic and relativistic electrons except that in the latter case
the effective mass is γm. Recall also that for circular motion the rest frame acceleration
is γ2 times that in the lab frame.
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12. a) An oscillating electric dipole of angular frequency ω is located at distance d � λ
away from a perfectly conducting plane. The dipole is oriented parallel to the plane,
as shown below.

Show that the power radiated in the direction (θ, φ) is,

dP

dΩ
= 4A sin2 θ sin2 Δ, (44)

where,

Δ =
2πλ

d
sin θ cosφ, (45)

and the power radiated by the dipole alone is,

dP

dΩ
= A sin2 θ. (46)

Sketch the shape of the radiation pattern for d = λ/2 and d = λ/4.

b) Suppose instead that the dipole was oriented perpendicular to the conducting plane.

Show that the radiated power in this case is,

dP

dΩ
= 4A sin2 θ′ cos2 Δ, (47)

where,

Δ =
2πλ

d
cos θ′. (48)

In parts a) and b), the polar angles θ and θ′ are measured with respect to the axes of
the dipoles.

c) Repeat parts a) and b) for a magnetic dipole oscillator in the two orientations.
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13. Force on an Antenna Array

In an array of antennas, their relative phases can be adjusted as well as their relative
spacing, which leads to additional freedom to shape the radiation pattern.

Consider two short, center-fed linear antennas of length L � λ, peak current I0 and
angular frequency ω, as discussed on p. 191, Lecture 16 of the Notes. The axes of the
antennas are collinear, their centers are λ/4 apart, and the currents have a 90◦ phase
difference.

Show that the angular distribution of the radiated power is,

dU

dt dΩ
=

ω2

16πc3
I2
0L

2 sin2 θ
[
1 + sin

(
π

2
cos θ

)]
. (49)

Unlike the radiation patterns of previous examples, this is not symmetric about the
plane z = 0. Therefore, this antenna array emits nonzero momentum Prad. As a
consequence, there is a net reaction force F = −dPrad/dt. Show that,

F = −1

c

dU

dt

(
1 − π2

12

)
ẑ. (50)

A variant on this problem is at
http://kirkmcd.princeton.edu/examples/endfire.pdf
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14. a) Consider a full-wave “end-fire” antenna whose current distribution (along the z axis)
is,

I(z) = I0 sin
2πz

L
e−iωt, (−L/2 < z < L/2), (51)

where L = λ = 2πc/ω.

Use the result of p. 182, Lecture 15 of the Notes to calculate the radiated power
“exactly”. Note that the real part of the integral vanishes, so you must evaluate the
imaginary part. Show that,

dP

dΩ
=

I2
0

2πc

sin2(π cos θ)

sin2 θ
. (52)

Sketch the radiation pattern.

Use tricks like,
1

1 − u2
=

1

1 + u
+

1

1 − u
(53)

to show that the total radiated power is,

P =
∫

dP

dΩ
(54)

(c.f., Abramowitz and Stegun, pp. 231, 244.)
http://kirkmcd.princeton.edu/examples/EM/abramowitz_and_stegun.pdf

b) Calculate the lowest-order nonvanishing multipole radiation. You may need the fact
that, ∫

z2 cos z dz = (z2 − 2) sin z + 2z cos z. (55)

Show that to this order,

P =
8π2

15

I2
0

2c
= 5.26

I2
0

2c
. (56)

which gives a sense of the accuracy of the multipole expansion.
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15. Scattering Off a Conducting Sphere

Calculate the scattering cross section for plane electromagnetic waves of angular fre-
quency ω incident on a perfectly conducting sphere of radius a when the wavelength
obeys λ � a (ka � 1).

Note that both electric and magnetic dipole moments are induced. Inside the sphere,
Btotal must vanish. Surface currents are generated such that Binduced = −Bincident, and
because of the long wavelength, these fields are essentially uniform over the sphere.
(c.f., Set 4, Prob. 8a).

Show that,

Escat = a3k2 ei(kr−ωt)

r

[
(E0 × n̂) × n̂− 1

2
(B0 × n̂

]
, (57)

where n̂ is along the vector r that points from the center of the sphere to the distant
observer.

Suppose that the incident wave propagates in the +z direction, and the electric field
is linearly polarized along direction l̂, so E0 = E0 l̂ and l̂ · ẑ = 0. Show that in this case
the scattering cross section can be written as,

dσ

dΩ
= a6k4

⎡
⎣(1 − n̂ · ẑ

2

)2

− 3

4
(̂l · n̂)2

⎤
⎦ . (58)

Consider an observer in the x-z plane to distinguish between the cases of electric
polarization parallel and perpendicular to the scattering plane to show that,

dσ‖
dΩ

= a6k4
(

1

2
− cos θ

)2

,
dσ⊥
dΩ

= a6k4

(
1 − cos θ

2

)2

. (59)

Then, for an unpolarized incident wave, show that,

dσ

dΩ
= a6k4

[
5

8
(1 + cos2 θ) − cos θ

]
, (60)

σ =
∫

dσ

dΩ
dΩ =

10π

3
a6k4. (61)

Sketch the angular distribution (60). Note that,

dσ(180◦)
dΩ

/
dσ(0◦)

dΩ
= 9, (62)

so the sphere reflects much more backwards than it radiates forwards.

Is there any angle θ for which the scattered radiation is linearly polarized for unpolar-
ized incident waves?
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Solutions

1. The suggested approach is to calculate the retarded potentials and then take derivatives
to find the fields. The retarded scalar and vector potentials φ and A are given by,

φ(x, t) =
∫

ρ(x′, t − R/c)

R
d3x′, and A(x, t) =

1

c

∫
J(x′, t −R/c)

R
d3x′, (63)

where ρ and J are the charge and current densities, respectively, and R = |x− x′|.
In the present case, we assume the wire remains neutral when the current flows (com-
pare Prob. 3, Set 4). Then the scalar potential vanishes. For the vector potential, we
see that only the component Az will be nonzero. Also, J d3x′ can be rewritten as I dz for
current in a wire along the z-axis. For an observer at (r, 0, 0) and a current element at
(0, 0, z), we have R =

√
r2 + z2. Further, the condition that I is nonzero only for time

t > 0 implies that it contributes to the fields only for z such that (ct)2 > R2 = r2 + z2.
That is, we need to evaluate the integral only for,

|z| < z0 ≡
√

(ct)2 − r2, (64)

which must be positive to have physical significance. Altogether,

Az(r, 0, 0, t) =
α

c

∫ z0

−z0

(
t√

r2 + z2
− 1

c

)
dz =

α

c

(
t ln

ct + z0

ct − z0
− 2z0

c

)

=
2α

c

(
t ln

z0 + ct

r
− z0

c

)
. (65)

[The two forms tend to arise depending on whether or not one notices that the integrand
is even in z.]

The magnetic field is obtained via B = ∇ × A. Since only Az is nonzero, the only
nonzero component of B is,

Bφ = −∂Az

∂r
=

2αz0

c2r
. (66)

[Some chance of algebraic error in this step!]

The only nonzero component of the electric field is,

Ez = −1

c

∂Az

∂t
= −2α

c2
ln

z0 + ct

r
. (67)

For long times, ct � r, ⇒ z0 ≈ ct, and the fields become,

Bφ ≈ 2αt

cr
=

2I(t)

cr
= B0(t), Ez ≈ −2α

c2
ln

2ct

r
= −B0

r

ct
ln

2ct

r
� B0, (68)

where B0(t) = 2I(t)/cr is the instantaneous magnetic field corresponding to current
I(t). That is, we recover the magnetostatic limit at large times.

For short times, ct = r + ε with ε � r, after the fields first become nonzero we have,

z0 =
√

2rε + ε2 ≈ √
2rε, (69)
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so,

Bφ ≈ 2α

c2

√
2ε

r
, and Ez ≈ −2α

c2
ln

r + ε +
√

2rε

r
≈ −2α

c2

√
2ε

r
= −Bφ. (70)

In this regime, the fields have the character of radiation, with E and B of equal
magnitude, mutually orthogonal, and both orthogonal to the line of sight to the closest
point on the wire. (Because of the cylindrical geometry the radiation fields do not have
1/r dependence – which holds instead for static fields.)

In sum, the fields build up from zero only after time ct = r. The initial fields propagate
outwards at the speed of light and have the character of cylindrical waves. But at a
fixed r, the electric field dies out with time, and the magnetic field approaches the
instantaneous magnetostatic field due to the current in the wire.

Of possible amusement is a direct calculation of the vector potential for the case of a
constant current I0.

First, from Ampère’s law we know that Bφ = 2I0/cr = −∂Az/∂r, so we have that,

Az = −2I0

c
ln r + const. (71)

Whereas, if we use the integral form for the vector potential we have,

Az(r, 0, 0) =
1

c

∫ ∞

−∞
I0 dz√
r2 + z2

=
2I0

c

∫ ∞

0

dz√
r2 + z2

= −2I0

c
ln r + lim

z→∞ ln(z +
√

z2 + r2). (72)

Only by ignoring the last term, which does not depend on r for a long wire, do we
recover the “elementary” result.
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2. The expansion,
r = R − r′ · n̂ + ... (73)

implies that the retarded time derivative of the polarization vector is,

[ṗ] = ṗ(r′, t′ = t − r/c) ≈ −iωpω(r′) e−iω(t−R/c+r′·n̂/c) = −iω ei(kR−ωt)pω(r′) e−ikr′·n̂

≈ −iω ei(kR−ωt)pω(r′)(1 − ikr′ · n̂), (74)

where k = ω/c. Likewise,
1

r
≈ 1

R

(
1 +

r′ · n̂
R

)
. (75)

Then, the retarded vector potential can be written (in the Lorenz gauge) as,

A(L) =
1

c

∫
[ṗ]

r
dVol′ ≈ −iω

ei(kR−ωt)

cR

∫
pω(r′)

[
1 + r′ · n̂

(
1

R
− ik

)
+ ...

]
dVol′, (76)

The electric-dipole (E1) approximation is to keep only the first term of eq. (76),

A
(L)
E1 = −iω

ei(kR−ωt)

cR

∫
pω(r′) dVol′ ≡ −ik

ei(kR−ωt)

R
P (Lorenz gauge). (77)

We obtain the magnetic field by taking the curl of eq. (77). The curl operation with
respect to the observer acts only on the distance R. In particular,

∇R =
R

R
= n̂. (78)

Hence,

BE1 = ∇× A
(L)
E1 = −ik∇ei(kR−ωt)

R
× P = −ik

ei(kR−ωt)

R

(
ikn̂− n̂

R

)
× P

= k2ei(kR−ωt)

R

(
1 +

i

kR

)
n̂× P. (79)

The 4th Maxwell equation in vacuum tells us that,

∇ ×BE1 =
1

c

∂EE1

∂t
= −ikEE1. (80)

Hence,

EE1 =
i

k
∇ × BE1 = ∇ ×

[
ei(kR−ωt)

(
ik

R2
− 1

R3

)
R × P

]

= ∇ei(kR−ωt)

(
ik

R2
− 1

R3

)
× (R × P) + ei(kR−ωt)

(
ik

R2
− 1

R3

)
∇ × (R × P)

= ei(kR−ωt)

[
−k2

R
− 3

(
ik

R2
− 1

R3

)]
n̂× (n̂× P) − 2Pei(kR−ωt)

(
ik

R2
− 1

R3

)

= k2 ei(kR−ωt)

R
n̂× (P× n̂) + ei(kR−ωt)

(
ik

R2
− 1

R3

)
[P− 3(P · n̂)n̂]. (81)
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We could also deduce the electric field from the general relation,

E = −∇V − 1

c

∂A

∂t
= −∇V + ikA. (82)

For this, we need to know the scalar potential V (L), which we can deduce from the
Lorenz gauge condition:

∇ · A(L) +
1

c

∂V (L)

∂t
= 0. (83)

For an oscillatory source this becomes,

V (L) = − i

k
∇ · A(L). (84)

In the electric-dipole approximation (77) this yields,8

V
(L)

E1 = ei(kR−ωt)

(
1

R2
− ik

R

)
(P · n̂) (Lorenz gauge). (85)

For small R the scalar potential is that of a time-varying dipole,

V
(L)
E1,near ≈

P · n̂
R2

e−iωt. (86)

The electric field is given by,

EE1 = −∇V
(L)

E1 + ikA
(L)
E1

= (P · R)∇ei(kR−ωt)

(
ik

R2
− 1

R3

)
+ ei(kR−ωt)

(
ik

R2
− 1

R3

)
∇(P · R) + k2ei(kR−ωt)

R
P

= ei(kR−ωt)

[
−k2

R
− 3

(
ik

R2
− 1

R3

)]
(P · n̂)n̂ + ei(kR−ωt)

(
ik

R2
− 1

R3

)
P

+k2 ei(kR−ωt)

R
P

= k2 ei(kR−ωt)

R
n̂× (P × n̂) + ei(kR−ωt)

(
ik

R2
− 1

R3

)
[P− 3(P · n̂)n̂], (87)

as before. The angular distribution in the far field (for which the radial dependence is
1/R) is n̂×(P× n̂) = P−(P · n̂)n̂. The isotropic term P is due to the vector potential,
while the variable term −(P · n̂)n̂ is due to the scalar potential and is purely radial.
Spherical waves associated with a scalar potential must be radial (longitudinal), but
the transverse character of electromagnetic waves in the far field does not imply the
absence of a contribution of the scalar potential; the latter is needed (in the Lorenz
gauge) to cancel to radial component of the waves from the vector potential.

8Equation (85) is not simply the electrostatic-dipole potential times a spherical wave because the retarded
positions at time t of the two charges of a point dipole correspond to two different retarded times t′.
For a calculation of the retarded scalar potential via V (L) =

∫
Vol

[ρ]/r, see sec. 11.1.2 of Introduction to
Electrodynamics by D.J. Griffiths.
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We could also work in the Coulomb gauge, meaning that we set ∇ · A(C) = 0. Recall
(Lecture 15, p. 174) that the “wave” equations for the potentials in the Coulomb gauge
are,

∇2V (C) = −4πρ, (88)

∇2A(C) − 1

c2

∂2A(C)

∂t2
= −4π

c
J +

1

c

∂∇V (C)

∂t
. (89)

Equation (88) is the familiar Poisson equation of electrostatics, so the scalar potential
is just the “instantaneous” electric-dipole potential,

V
(C)
E1 =

P · n̂
R2

e−iωt (Coulomb gauge). (90)

One way to deduce the Coulomb-gauge vector potential is via eq. (82),

A
(C)
E1 = − i

k
EE1 − i

k
∇V

(C)
E1

= −ik
ei(kR−ωt)

R
n̂× (P× n̂) +

[
ei(kR−ωt)

R2
+

i(ei(kR−ωt) − e−iωt)

kR3

]
[P− 3(P · n̂)n̂]

≡ A
(C)
far + A(C)

near (Coulomb gauge). (91)

We learn that the far-zone, Coulomb gauge vector potential (i.e., the part of the vector
potential that varies as 1/R) is purely transverse, and can be written as

A
(C)
far = −ik

ei(kR−ωt)

R
n̂× (P× n̂) (Coulomb gauge). (92)

Because the radiation part of the Coulomb-gauge vector potential is transverse, the
Coulomb gauge is sometimes called the “transverse” gauge.

The Coulomb-gauge scalar potential is negligible in the far zone, and we can say that
the radiation fields are entirely due to the far-zone, Coulomb-gauge vector potential.
That is,

Efar = ikA
(C)
far = k2 ei(kR−ωt)

R
n̂× (P× n̂), (93)

Bfar = ∇ ×A
(C)
far = ik × A

(C)
far = k2 ei(kR−ωt)

R
n̂× P. (94)

It is possible to choose gauges for the electromagnetic potentials such that some of
their components appear to propagate at any velocity v, as discussed by J.D. Jackson,
Am. J. Phys. 70, 917 (2002) and by K.-H. Yang, Am. J. Phys. 73, 742 (2005).9 The

9http://kirkmcd.princeton.edu/examples/EM/jackson_ajp_70_917_02.pdf
http://kirkmcd.princeton.edu/examples/EM/yang_ajp_73_742_05.pdf
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potentials A(v) and V (v) in the so-called velocity gauge with the parameter v obey the
gauge condition,

∇ ·A(v) +
c

v2

∂V (v)

∂t
= 0. (95)

The scalar potential V (v) is obtained by replacing the speed of light c in the Lorenz-
gauge scalar potential by v. Equivalently, we replace the wave number k = ω/c by
k′ = ω/v. Thus, from eq. (85) we find,

V
(v)

E1 = −ei(k′R−ωt)

(
ik′

R2
− 1

R3

)
(P ·R) (velocity gauge). (96)

Then, as in eq. (87) we obtain

− ∇V
(v)

E1 = ei(k′R−ωt)

[
−k′2

R
− 3

(
ik′

R2
− 1

R3

)]
(P · n̂)n̂ + ei(kR−ωt)

(
ik′

R2
− 1

R3

)
P

= −k′2 ei(k′R−ωt)

R
(P · n̂)n̂ + ei(k′R−ωt)

(
ik′

R2
− 1

R3

)
[P− 3(P · n̂)n̂]. (97)

The vector potential in the v-gauge can be obtained from eq. (82) as,

A
(v)
E1 = − i

k
EE1 − i

k
∇V

(v)
E1

= −ik
ei(kR−ωt)

R
n̂ × (P × n̂) + ei(kR−ωt)

(
1

R2
+

i

kR3

)
[P− 3(P · n̂)n̂]

−i
k′2

k

ei(k′R−ωt)

R
(P · n̂)n̂− ei(k′R−ωt)

(
k′

kR2
+

i

kR3

)
[P− 3(P · n̂)n̂]. (98)

This vector potential includes terms that propagate with velocity v both in the near
and far zones. When v = c, then k′ = k and the velocity-gauge vector potential (98)
reduces to the Lorenz-gauge potential (77); and when v → ∞, then k′ = 0 and the
velocity-gauge vector potential reduces to the Coulomb-gauge potential (91).10

Turning to the question of energy flow, we calculate the Poynting vector,

S =
c

4π
E× B, (99)

where we use the real parts of the fields (79) and (81),

E = k2P n̂×(P̂× n̂)
cos(kR − ωt)

R
+P [3P̂ · n̂)n̂−P̂]

[
cos(kR − ωt)

R3
+

k sin(kR − ωt)

R2

]
,

(100)

10Thanks to J.D Jackson and K.-H. Yang for discussions of the Coulomb gauge and the velocity gauge.
See also, J.D. Jackson and L.B. Okun, Historical roots of gauge invariance, Rev. Mod. Phys. 73, 663 (2001),
http://kirkmcd.princeton.edu/examples/EM/jackson_rmp_73_663_01.pdf,
and http://kirkmcd.princeton.edu/examples/gauge.pdf
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B = k2P (n̂ × P̂)

[
cos(kR − ωt)

R
− sin(kR − ωt)

kR2

]
. (101)

The Poynting vector contains six terms, some of which do not point along the radial
vector n̂:

S =
c

4π

{
k4P 2[n̂× (P̂× n̂)] × (n̂ × P̂)

[
cos2(kR − ωt)

R2
− cos(kR − ωt) sin(kR − ωt)

kR3

]

+k2P 2[3(P̂ · n̂)n̂− P̂] × (n̂× P̂)

[
cos2(kR − ωt) − sin2(kR − ωt)

R4

+cos(kR − ωt) sin(kR − ωt)

(
k

R3
− 1

kR5

)]}

=
c

4π

{
k4P 2 sin2 θn̂

[
cos2(kR − ωt)

R2
− cos(kR − ωt) sin(kR − ωt)

kR3

]

+k2P 2[4 cos θP̂ + (3 cos2 θ − 1)n̂]

[
cos2(kR − ωt) − sin2(kR − ωt)

R4

+cos(kR − ωt) sin(kR − ωt)

(
k

R3
− 1

kR5

)]}
, (102)

where θ is the angle between vectors n̂ and P. As well as the expected radial flow
of energy, there is a flow in the direction of the dipole moment P. Since the product
cos(kR − ωt) sin(kR − ωt) can be both positive and negative, part of the energy flow
is inwards at times, rather than outwards as expected for pure radiation.

However, we obtain a simple result if we consider only the time-average Poynting
vector, 〈S〉. Noting that 〈cos2(kR − ωt)〉 =

〈
sin2(kR − ωt)

〉
= 1/2 and

〈cos(kR − ωt) sin(kR − ωt)〉 = (1/2) 〈sin 2(kR − ωt)〉 = 0, eq (102) leads to

〈S〉 =
ck4P 2 sin2 θ

8πR2
n̂. (103)

The time-average Poynting vector is purely radially outwards, and falls off as 1/R2

at all radii, as expected for a flow of energy that originates in the oscillating point
dipole (which must be driven by an external power source). The time-average angular
distribution d 〈P 〉 /dΩ of the radiated power is related to the Poynting vector by

d 〈P 〉
dΩ

= R2n̂ · 〈S〉 =
ck4P 2 sin2 θ

8π
=

P 2ω4 sin2 θ

8πc3
, (104)

which is the expression often quoted for dipole radiation in the far zone. Here we see
that this expression holds in the near zone as well.

We conclude that radiation, as measured by the time-average Poynting vector, exists
in the near zone as well as in the far zone.

Our considerations of an oscillating electric dipole can be extended to include an oscil-
lating magnetic dipole by noting that if E(r, t) and B(r, t) are solutions to Maxwell’s
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equations in free space (i.e., where the charge density ρ and current density J are zero),
then the dual fields,

E′(r, t) = −B(r, t), B′(r, t) = E(r, t), (105)

are solutions also. The Poynting vector is the same for the dual fields as for the original
fields,

S′ =
c

4π
E′ × B′ = − c

4π
B× E = S. (106)

Taking the dual of fields (10)-(11), we find the fields,

E′ = EM1 = −k2ei(kR−ωt)

R

(
1 +

i

kR

)
n̂× M, (107)

B′ = BM1 = k2 ei(kR−ωt)

R

{
n̂ × (M× n̂) + [3(n̂ · M)n̂− M]

(
1

k2R2
− i

kR

)}
. (108)

which are also solutions to Maxwell’s equations. These are the fields of an oscillating
point magnetic dipole, whose peak magnetic moment is M. In the near zone, the
magnetic field (108) looks like that of a (magnetic) dipole.

While the fields of eqs. (10)-(11) are not identical to those of eqs. (107)-(108), the
Poynting vectors are the same in the two cases. Hence, the time-average Poynting
vector, and also the angular distribution of the time-averaged radiated power are the
same in the two cases. The radiation of a point electric dipole is the same as that
of a point magnetic dipole (assuming that M = P), both in the near and in the far
zones. Measurements of only the intensity of the radiation could not distinguish the
two cases.

However, if measurements were made of both the electric and magnetic fields, then the
near zone fields of an oscillating electric dipole, eqs. (10)-(11), would be found to be
quite different from those of a magnetic dipole, eqs. (107)-(108). This is illustrated in
the figure on the previous page, which plots the ratio E/H = E/B of the magnitudes
of the electric and magnetic fields as a function of the distance r from the center of
the dipoles.
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To distinguish between the cases of electric and magnetic dipole radiation, it suffices
to measure only the polarization (i.e., the direction, but not the magnitude) of either
the electric of the magnetic field vectors.
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3. The rotating dipole p can be thought of as two oscillating linear dipoles oriented 90◦

apart in space, and phased 90◦ apart in time. This is conveniently summarized in
complex vector notation:

p = p0(x̂ + iŷ) e−iωt, (109)

for a rotation from the +x̂ axis towards the +ŷ axis. Thus,

[p̈] = p̈(t′ = t − r/c) = −ω2p0(x̂ + iŷ) ei(kr−ωt). (110)

The radiation fields of this oscillating dipole are given by,

Brad =
[p̈] × n̂

c2r
= −k2p0 e−i(kr−ωt)

r
(x̂ + iŷ) × n̂

=
k2p0 e−i(kr−ωt)

r
(cos θ ŷ − i l̂), (111)

Erad = Brad × n̂ =
k2p0 e−i(kr−ωt)

r
(cos θ l̂ + i ŷ). (112)

The time-averaged angular distribution of the radiated power is given by,

d 〈P 〉
dΩ

=
c

8π
r2 |Brad|2 =

c

8π
k4p2

0(1 + cos2 θ), (113)

since l̂ and ŷ are orthogonal. The total radiated power is therefore,

〈P 〉 =
∫

d 〈P 〉
dΩ

dΩ =
2c

3
k4p2

0 =
2

3c3
ω4p2

0. (114)

The total power also follows from the Larmor formula,

〈P 〉 =
1

2

2 |p̈|2
3c3

=
2

3c3
ω4p2

0, (115)

since |p̈| =
√

2ω2p0 in the present example.
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4. According to the Larmor formula, the rate of magnetic dipole radiation is,

dU

dt
=

2

3

m̈2

c3
=

2

3

m2ω4

c3
, (116)

where ω = 2π/T is the angular velocity, taken to be perpendicular to the magnetic
dipole moment m.

The radiated power (116) is derived from a decrease in the rotational kinetic energy,
U = Iω2/2, of the pulsar:

dU

dt
= −Iωω̇ =

2

5
MR2ω |ω̇| , (117)

where the moment of inertia I is taken to be that of a sphere of uniform mass density.
Combining eqs. (116) and (117), we have,

m2 =
3

5

MR2 |ω̇| c3

ω3
. (118)

Substituting ω = 2π/T , and |ω̇| = 2π
∣∣∣Ṫ ∣∣∣ /T 2, we find,

m2 =
3

20π2
MR2T

∣∣∣Ṫ ∣∣∣ c3. (119)

The static magnetic field B due to dipole m is,

B =
3(m · r̂)r̂ − m

r3
, (120)

so the peak field at radius R is,

B =
2m

R3
. (121)

Inserting this in eq. (119), the peak surface magnetic field is related by,

B2 =
3

5π2

MT
∣∣∣Ṫ ∣∣∣ c3

R4
=

3

5π2

(2.8 × 1033)(7.5)(8 × 10−11)(3 × 1010)3

(106)4
= 2.8×1030 gauss2.

(122)
Thus, Bpeak = 1.7 × 1015 G = 38Bcrit, where Bcrit = 4.4 × 1013 G.

When electrons and photons of kinetic energies greater than 1 MeV exist in a magnetic
field with B > Bcrit, they rapidly lose this energy via electron-positron pair creation.

Kouveliotou et al. report that Bpeak = 8 × 1014 G without discussing details of their
calculation.
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5. The time-average field momentum density is given in terms of the Poynting vector as
(the real part of),

〈P〉field =
〈S〉
c2

=
c

8π
E × B�. (123)

Hence, the time-averaged angular momentum density is,

〈L〉field = r × Pfield =
1

8πc
r × (E × B�) =

1

8πc
r[E(n̂ ·B�) − B�(n̂ ·E)]. (124)

writing r = rn̂.

The time-average rate of radiation of angular momentum into solid angle dΩ is there-
fore,

d 〈L〉
dt dΩ

= cr2 〈L〉field =
1

8π
r3[E(n̂ · B�) − B�(n̂ · E)], (125)

since the angular momentum density L is moving with velocity c.

The radiation fields of an oscillating electric dipole moment p including both the 1/r
and 1/r2 terms of eqs. (79) and (87) are,

E = k
ei(kr−ωt)

r

[(
k +

i

r

)
p−

(
k +

3i

r

)
(n̂ · p)n̂

]
, (126)

B = k2 ei(kr−ωt)

r

(
1 +

i

kr

)
(n̂ × p). (127)

Since n̂ · B� = 0 for this case, only the second term in eq. (125) contributes to the
radiated angular momentum. We therefore find,

d 〈L〉
dt dΩ

= −k3r

8π

(
1 − i

kr

)
(n̂× p�)

(
−2i

r

)
(n̂ · p) =

ik3

4π
(n̂ · p)(n̂× p�), (128)

ignoring terms in the final expression that have positive powers of r in the denominator,
as these grow small at large distances.

For the example of a rotating dipole moment (Prob. 2),

p = p0(x̂ + iŷ) e−iωt, (129)

we have,

d 〈L〉
dt dΩ

= Re
ik3p2

0

4π
[n̂ · (x̂ + iŷ)][n̂× (x̂− iŷ)] = Re

ik3p2
0

4π
sin θ[cos θ ŷ + i l̂]

= − k3

4π
p2

0 sin θ l̂. (130)

To find d 〈L〉 /dt we integrate eq. (129) over solid angle. When vector n̂ is in the x-z
plane, vector l̂ can be expressed as,

l̂ = cos θ x̂− sin θ ẑ. (131)
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As we integrate over all directions of n̂, the contributions to d 〈L〉 /dt in the x-y plane
sum to zero, and only its z component survives. Hence,

d 〈L〉
dt

= ẑ
∫

d 〈Lz〉
dt dΩ

dΩ = 2π
k3

4π
p2

0 ẑ
∫ 1

−1
sin2 θ d cos θ =

2k3

3
p2

0 ẑ

=
2ck3

3ω
p2

0 ẑ =
〈P 〉
ω

ẑ, (132)

recalling eq. (115) for the radiated power 〈P 〉. Of course, the motion described by
eq. (129) has its angular momentum along the +z axis.
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6. The magnetic field radiated by a time-dependent, axially symmetric quadrupole is
given by,

B =
[
...

Q] × n̂

6c3r
, (133)

where the unit vector n̂ has rectangular components,

n̂ = (sin θ, 0, cos θ), (134)

and the quadrupole vector Q is related to the quadrupole tensor Qij by,

Qi = Qijnj. (135)

The charge distribution is symmetric about the z axis, so the quadrupole-moment
tensor Qij may be expressed entirely in terms of,

Qzz =
∫

ρ(3z2 − r2) dVol = −4a2e cos2 ωt = −2a2e(1 + cos 2ωt). (136)

Thus,

Qij =

⎛
⎜⎜⎜⎜⎜⎝

−Qzz/2 0 0

0 −Qzz/2 0

0 0 Qzz

⎞
⎟⎟⎟⎟⎟⎠ , (137)

and the quadrupole vector can be written as,

Q =

(
−Qzz sin θ

2
, 0, Qzz cos θ

)
= −Qzz

2
n̂ +

3Qzz cos θ

2
ẑ

= a2e(1 + cos 2ωt)(n̂− 3ẑ cos θ). (138)

Then,
[
...

Q] = 8ω3a2e sin 2ωt′(n̂− 3ẑ cos θ), (139)

where the retarded time is t′ = t − r/c. Hence,

B =
[
...

Q] × n̂

6c3r
= −4k3a2e

r
ŷ sin(2kr − 2ωt) sin θ cos θ, (140)

since ẑ × n̂ = ŷ sin θ. The radiated electric field is given by,

E = B× n̂ = −4k3a2e

r
l̂ sin(2kr − 2ωt) sin θ cos θ, (141)

using ŷ × n̂ = l̂.

As we are not using complex notation, we revert to the basic definitions to find that
the time-averaged angular distribution of radiated power is,

d 〈P 〉
dΩ

= r2 〈S〉 · n̂ =
cr2

4π
〈E × B · n̂〉 =

2ck6a4e2

π
sin2 θ cos2 θ, (142)

since l̂ × ŷ = n̂. This integrates to give,

〈P 〉 = 2π
∫ 1

−1

d 〈P 〉
dΩ

d cos θ =
16ck6a4e2

15
. (143)
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7. Since the charge is assumed to rotate with constant angular velocity, the magnetic
moment it generates is constant in time, and there is no magnetic-dipole radiation.
Hence, we consider only electric-quadrupole radiation in addition to the electric-dipole
radiation. The radiated fields are therefore,

B =
[p̈] × n̂

c2r
+

[
...

Q] × n̂

6c3r
, E = B × n̂. (144)

The electric dipole radiation fields are given by eqs. (111) and 112) when we write
p0 = ae.

The charge distribution is not azimuthally symmetric about any fixed axis, so we must
evaluate the full quadrupole tensor,

Qij = e(3rirj − r2δij). (145)

to find the components of the quadrupole vector Q. The position vector of the charge
has components,

ri = (a cos ωt, a sinωt, 0), (146)

so the nonzero components of Qij are,

Qxx = e(3x2 − r2) = a2e(3 cos2 ωt − 1) =
a2e

2
(1 + 3 cos 2ωt), (147)

Qyy = e(3y2 − r2) = a2e(3 sin2 ωt − 1) =
a2e

2
(1 − 3 cos 2ωt), (148)

Qzz = −er2 = −a2e, (149)

Qxy = Qyx = 3exy = 3a2e sin ωt cosωt =
3a2e

2
sin 2ωt. (150)

Only the time-dependent part of Qij contributes to the radiation, so we write,

Qij(time dependent) =
3a2e

2

⎛
⎜⎜⎜⎜⎜⎝

cos 2ωt sin 2ωt 0

sin 2ωt − cos 2ωt 0

0 0 0

⎞
⎟⎟⎟⎟⎟⎠ . (151)

The unit vector n̂ towards the observer has components given in eq. (134), so the
time-dependent part of the quadrupole vector Q has components,

Qi = Qijnj =
3a2e

2
(cos 2ωt sin θ, sin 2ωt sin θ, 0). (152)

Thus,

[
...

Qi] =
...

Qi(t
′ = t − r/c) = −12a2eω3 sin θ(sin(2kr − 2ωt), cos(2kr − 2ωt), 0). (153)

It is preferable to express this vector in terms of the orthonormal triad n̂, ŷ, and
l̂ = ŷ × n̂, by noting that,

x̂ = n̂ sin θ − l̂ cos θ. (154)
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Hence,

[
...

Q] = −12a2eω3 sin θ(n̂ sin θ sin(2kr − 2ωt)− l̂ cos θ sin(2kr − 2ωt)+ ŷ cos(2kr − 2ωt)).
(155)

The fields due to electric-quadrupole radiation are therefore,

BE2 =
[
...

Q] × n̂

6c3r
= −2a2ek3

r
sin θ(̂l cos(2kr − 2ωt) + ŷ cos θ sin(2kr − 2ωt)),(156)

EE2 = BE2 × n̂ =
2a2ek3

r
sin θ(ŷ cos(2kr − 2ωt) − l̂ cos θ sin(2kr − 2ωt)). (157)

The angular distribution of the radiated power can be calculated from the combined
electric-dipole and electric-quadrupole fields, and will include a term ∝ k4 due only
to dipole radiation as found in Prob. 2 above, a term ∝ k6 due only to quadrupole
radiation, and a complicated cross term ∝ k5 due to both dipole and quadrupole fields.
Here, we only display the term due to the quadrupole fields by themselves:

d 〈PE2〉
dΩ

=
cr2

4π
〈EE2 × BE2 · n̂〉 =

ca4e2k6

2π
(1 − cos4 θ), (158)

which integrates to give,11

〈PE2〉 = 2π
∫ 1

−1

d 〈P 〉
dΩ

d cos θ =
8ca4e2k6

5
. (162)

11It is stated in eq. (71.5) of http://kirkmcd.princeton.edu/examples/EM/landau_ctf_75.pdf that, noting Lan-
dau’s Dαβ of his eq. (41.3) is our Qij,

PE2 =

...
Q

2

ij

180c5
. (159)

From the time-dependent part of the quadrupole tensor, eq. (151), we have,

...
Qij = 12eω3a2

⎛
⎜⎜⎜⎝

sin 2ωt − cos 2ωt 0

− cos 2ωt − sin 2ωt 0

0 0 0

⎞
⎟⎟⎟⎠ ,

...
Q

2

ij =
∑
i,j

Q̈2
ij = 288e2ω6a4, (160)

such that eq. (159) implies,

PE2 =
2e2ω6a4

5c5
=

8ca4e2k6

5
, (161)

as in eq. (162).
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8. a) The dominant energy loss is from electric-dipole radiation, which obeys eq. (25),

dU

dt
= −〈PE1〉 = −2a2e2ω4

3c3
. (163)

For an electron of charge −e and mass m in an orbit of radius a about a fixed nucleus
of charge +e, F = ma tells us that

e2

a2
= m

v2

a
= mω2a, (164)

so that,

ω2 =
e2

ma3
, (165)

and the total energy (kinetic plus potential) is,

U = −e2

a
+

1

2
mv2 = − e2

2a
. (166)

Using eqs. (165) and (166) in (163), we have,

dU

dt
=

e2

2a2
ȧ = − 2e6

3a4m2c3
, (167)

or

a2ȧ =
1

3

da3

dt
= − 4e4

3m2c3
= −4

3
r2
0c, (168)

where r0 = e2/mc2 is the classical electron radius. Hence,

a3 = a3
0 − 4r2

0ct. (169)

The time to fall to the origin is,

tfall =
a3

0

4r2
0c

. (170)

With r0 = 2.8 × 10−13 cm and a0 = 5.3 × 10−9 cm, tfall = 1.6 × 10−11 s.

This is of the order of magnitude of the lifetime of an excited hydrogen atom, but the
ground state appears to have infinite lifetime in Nature.

This classical puzzle is pursued further in Prob. 9 below.

b) The analog of the quadrupole factor ea2 in Prob. 7 above for masses m1 and m2

in circular orbits with distance a between them is m1r
2
1 + m2r

2
2, where r1 and r2 are

measured from the center of mass. That is,

m1r1 = m2r2, and r1 + r2 = a, (171)

so that,

r1 =
m2

m1 + m2
a, r2 =

m1

m1 + m2
a, (172)
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and the quadrupole factor is,

m1r
2
1 + m2r

2
2 =

m1m2

m1 + m2
a2. (173)

We are then led by eq. (26) to say that the power in gravitational quadrupole radiation
is,

PG2 =
8

5

G

c5

(
m1m2

m1 + m2

)2

a4ω6. (174)

We insert a single factor of Newton’s constant G in this expression, since it has dimen-
sions of mass2, and Gm2 is the gravitational analog of the square of the electric charge
in eq. (26).

We note that a general-relativity calculation12 yields a result a factor of 4 larger than
eq. (174):

PG2 =
32

5

G

c5

(
m1m2

m1 + m2

)2

a4ω6. (175)

To find tfall due to gravitational radiation, we follow the argument of part a):

Gm1m2

a2
= m1

v2
1

r1
= m1ω

2r1 = m2
v2

2

r2
, (176)

so that,

ω2 =
G(m1 + m2)

a3
, (177)

and also the total energy (kinetic plus potential) is,

U = −Gm1m2

a
+

1

2
m1v

2
1 +

1

2
m2v

2
2 = −Gm1m2

2a
. (178)

Using eqs. (177) and (178) in (175), we have,

dU

dt
=

Gm1m2

2a2
ȧ = −32G4m2

1m
2
2(m1 + m2)

5a5c5
, (179)

or,

a3ȧ =
1

4

da4

dt
= −64G3m1m2(m1 + m2)

5c5
. (180)

Hence,

a4 = a4
0 −

256G3m1m2(m1 + m2)

5c5
t. (181)

The time to fall to the origin is,

tfall =
5a4

0c
5

256G3m1m2(m1 + m2)
. (182)

For the Earth-Sun system, a0 = 1.5 × 1013 cm, m1 = 6 × 1027 gm, m2 = 2 × 1033 cm,
and G = 6.7 × 10−10 cm2/(g-s2), so that tfall ≈ 1.5 × 1036 s ≈ 5 × 1028 years!

12http://kirkmcd.princeton.edu/examples/GR/peters_pr_131_435_63.pdf
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9. The solution given here follows the succinct treatment by Landau, Classical Theory of
Fields, §74, http://kirkmcd.princeton.edu/examples/EM/landau_ctf_71.pdf
For charges in steady motion at angular frequency ω in a ring of radius a, the current
density J is periodic with period 2π/ω, so the Fourier analysis (34) at the retarded
time t′ can be evaluated via the usual approximation that r ≈ R − r′ · n̂, where R is
the distance from the center of the ring to the observer, r′ points from the center of
the ring to the electron, and n̂ is the unit vector pointing from the center of the ring
to the observer. Then,

[J] = J(r′, t′ = t − r/c) =
∑
m

Jm(r′) e−imω(t−R/c+r′·n̂/c

=
∑
m

eim(kR−ωt)Jm(r′) e−imωr′·n̂/c, (183)

where k = ω/c.

We first consider a single electron, whose azimuth varies as φ = ωt + φ0, and whose
velocity is, of course, v = aω. The current density of a point electron of charge e can
be written using Dirac delta functions in a cylindrical coordinate system (ρ, φ, z) (with
volume element ρdρ dφ dz) as,

J = ρchargev φ̂ = ev δ(ρ − a) δ(z) δ(ρ(φ − ωt− φ0)) φ̂. (184)

The Fourier components Jm are given by,

Jm =
1

T

∫ T

0
J(r, t) eimt dt = ev δ(ρ − a) δ(z)]

eim(φ−φ0)

ρωT
φ̂. (185)

Also,

r′ = ρ(cos φ x̂+sin φ ŷ), n̂ = sin θ x̂+cos θ ẑ, and φ̂ = − sinφ x̂+cos φ ŷ. (186)

Using eqs. (185) and (186) in (183) and noting that ωT = 2π, we find,

[J] =
ev

2πρ

∑
m

eim(kR−ωt) eim(φ−φ0−ωρ sin θ cosφ/c) δ(ρ − a) δ(z) φ̂. (187)

Inserting this in eq. (33), we have,

A ≈ 1

cR

∫
[J]ρ dρ dφ dz =

ev

2πcR

∑
m

eim(kR−ωt−φ0)
∫ 2π

0
eim(φ−ωa sin θ cosφ/c) φ̂ dφ

=
∑
m

Am e−imωt, (188)

so that the Fourier components of the vector potential are,

Am =
ev

2πcR
eim(kR−φ0)

∫ 2π

0
eim(φ−v sin θ cosφ/c)(− sinφ x̂ + cosφ ŷ) dφ. (189)



Princeton University 2001 Ph501 Set 8, Solution 9 37

The integrals yield Bessel functions with the aid of the integral representation (40).
The ŷ part of eq. (189) can be found by taking the derivative of this relation with
respect to z:

J ′
m(z) = − im+1

2π

∫ 2π

0
eimφ−iz cosφ cosφ dφ, (190)

For the x̂ part of eq. (189) we play the trick,

0 =
∫ 2π

0
ei(mφ−z cosφ)d(mφ − z cosφ)

= m
∫ 2π

0
eimφ−iz cosφ dφ + z

∫ 2π

0
eimφ−iz cosφ sinφdφ, (191)

so that,

1

2π

∫ 2π

0
eimφ−iz cosφ sinφdφ = −m

z

1

2π

∫ 2π

0
eimφ−iz cosφ dφ = − m

imz
Jm(z). (192)

Using eqs. (190) and (192) with z = mv sin θ/c in (189) we have,

Am =
ev

cR
eim(kR−φ0)

(
1

imv sin θ/c
Jm(mv sin θ/c) x̂− 1

im+1
J ′

m(mv sin θ/c) ŷ

)
. (193)

We skip the calculation of the electric and magnetic fields from the vector potential,
and proceed immediately to the angular distribution of the radiated power according
to eq. (39),

dPm

dΩ
=

cR2

2π
|imk n̂× Am|2 =

ck2m2R2

2π
|n̂× Am|2

=
ck2m2R2

2π

(
cos2 θ |Am,x|2 + |Am,y|2

)

=
ce2k2m2

2π

(
cot2 θJ2

m(mv sin θ/c) +
v2

c2
J

′2
m(mv sin θ/c)

)
. (194)

The present interest in this result is for v/c � 1, but in fact it holds for any value of
v/c. As such, it can be used for a detailed discussion of the radiation from a relativistic
electron that moves in a circle, which emits so-called synchrotron radiation. This topic
is discussed further in Lecture 20 of the Notes.

We now turn to the case of N electrons uniformly spaced around the ring. The initial
azimuth of the nth electron can be written as,

φn =
2πn

N
. (195)

The mth Fourier component of the total vector potential is simply the sum of compo-
nents (193) inserting φn in place of φ0:

Am =
N∑

n=1

ev

cR
eim(kR−φn)

(
1

imv sin θ/c
Jm(mv sin θ/c) x̂ − 1

im+1
J ′

m(mv sin θ/c) ŷ

)
(196)

=
ev eimkR

cR

(
1

imv sin θ/c
Jm(mv sin θ/c) x̂ − 1

im+1
J ′

m(mv sin θ/c) ŷ

)
N∑

n=1

e−i2πmn/N .
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This sum vanishes unless m is a multiple of N , in which case the sum is just N . The
lowest nonvanishing Fourier component has order N , and the radiation is at frequency
Nω. We recognize this as N th-order multipole radiation, whose radiated power follows
from eq. (194) as,

dPN

dΩ
=

ce2k2N2

2π

(
cot2 θJ2

N (Nv sin θ/c) +
v2

c2
J

′2
N (Nv sin θ/c)

)
. (197)

For large N , but v/c � 1, we can use the asymptotic expansion (41), and its derivative,

J ′
m(mx) ≈ (ex/2)m

√
2πm x

(m � 1, x � 1), (198)

to write eq. (197) as,

dPN

dΩ
≈ ce2k2N

4π2 sin2 θ

(
e

2

v

c
sin θ

)2N

(1 + cos2 θ) � N
dPE1

dΩ
(N � 1, v/c � 1). (199)

In eqs. (198) and (199) the symbol e inside the parentheses is not the charge but rather
the base of natural logarithms, 2.718...

For currents in, say, a loop of copper wire, v ≈ 1 cm/s, so v/c ≈ 10−10, while N ≈ 1023.
The radiated power predicted by eq. (199) is extraordinarily small!

Note, however, that this nearly complete destructive interference depends on the elec-
trons being uniformly distributed around the ring. Suppose instead that they were
distributed with random azimuths φn. Then the square of the magnetic field at order
m has the form ,

|Bm|2 ∝
∣∣∣∣∣

N∑
n=1

e−imφn

∣∣∣∣∣
2

= N +
∑
l 	=n

e−im(φl−φn) = N. (200)

Thus, for random azimuths the power radiated by N electrons (at any order) is just
N times that radiated by one electron.

If the charge carriers in a wire were localized to distances much smaller than their
separation, radiation of “steady” currents could occur. However, in the quantum view
of metallic conduction, such localization does not occur.

The random-phase approximation is relevant for electrons in a so-called storage ring,
for which the radiated power is a major loss of energy – or source of desirable photon
beams of synchrotron radiation, depending on one’s point of view. We cannot expound
here on the interesting topic of the “formation length” for radiation by relativistic
electrons, which length sets the scale for interference of multiple electrons. See, for
example, http://kirkmcd.princeton.edu/accel/weizsacker.pdf
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10. We repeat the derivation of Prob. 1 above, this time emphasizing the advanced fields.

The advanced vector potential for the point electric dipole p = p0 e−iωt located at the
origin is,

AE1,adv =
{ṗ}
cr

=
ṗ(t′ = t + r/c)

cr
= −iω

e−i(kr+ωt)

cr
p0 = −ik

e−i(kr+ωt)

r
p0, (201)

where k = ω/c.

We obtain the magnetic field by taking the curl of eq. (201),

BE1,adv = ∇ × AE1,adv = −ik∇e−i(kr+ωt)

r
× p0 = −ik

e−i(kr+ωt)

r

(
−ik n̂ − n̂

r

)
× p0

= k2 e−i(kr+ωt)

r

(
−1 +

i

kr

)
n̂× p0. (202)

Then,

EE1,adv =
i

k
∇ ×BE1,adv = −∇ ×

[
e−i(kr+ωt)

(
ik

r2
+

1

r3

)
r × p0

]

= −∇e−i(kr+ωt)

(
ik

r2
+

1

r3

)
× (r × p0) − e−i(kr+ωt)

(
ik

r2
+

1

r3

)
∇ × (r × p0)

= e−i(kr+ωt)

[
−k2

r
+ 3

(
ik

r2
+

1

r3

)]
n̂× (n̂× p0) + 2p0 e−i(kr+ωt)

(
ik

r2
+

1

r3

)

= e−i(kr+ωt)

{[
−k2

r
+ 3

(
ik

r2
+

1

r3

)]
(p0 · n̂) n̂ +

[
k2

r
− ik

r2
− 1

r3

]
p0

}
. (203)

The retarded fields due to a point dipole −p are, from Prob. 1,

BE1,ret = −k2 ei(kr−ωt)

r

(
1 +

i

kr

)
n̂× p0, (204)

EE1,ret = ei(kr−ωt)

{[
k2

r
+ 3

(
ik

r2
− 1

r3

)]
(p0 · n̂) n̂ −

[
k2

r
+

ik

r2
− 1

r3

]
p0

}
.(205)

We now consider the superposition of the fields (202)-(205) inside a conducting sphere
of radius a. The spatial part of the total electric field is then,

EE1 =

[(
k2

r
− 3

r3

)
(eikr − e−ikr) + 3

ik

r2
(eikr + e−ikr)

]
(p0 · n̂) n̂

−
[(

k2

r
− 1

r3

)
(eikr − e−ikr) +

ik

r2
(eikr + e−ikr)

]
p0

= 2i

[(
k2

r
− 3

r3

)
sin kr + 3

k

r2
cos kr

]
(p0 · n̂) n̂

−2i

[(
k2

r
− 1

r3

)
sin kr +

k

r2
cos kr

]
p0. (206)
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Remarkably, this electric field is finite at the origin, although each of the fields (203)
and (205) diverges there. We also recognize that this electric field could be expressed
in terms of the so-called spherical Bessel functions,

j0(x) =
sinx

x
, j1(x) =

sinx

x2
− cosx

x
, j2(x) =

(
3

x3
− 1

x

)
sin x− 3 cosx

x2
, ... (207)

An expansion of the spherical cavity field in terms of spherical Bessel functions occurs
“naturally” when we use the more standard approach to this problem, seeking solutions
to the Helmholtz wave equation via separation of variables in spherical coordinates.
See Electromagnetic Theory by J.A. Stratton (McGraw-Hill, 1941)13 for details of this
method.

Because the sum of the magnetic fields (202) and (204) is purely transverse, this cavity
mode is called a TM mode.

The boundary conditions at the surface of the sphere are that the radial component
of the magnetic field and the transverse component of the electric field must vanish.
Since the magnetic fields (202) and (204) are transverse at any radius, we examine the
electric field at r = a. Of the terms in eq. (206), only those in p0 have transverse
components, so the boundary condition is,

0 =
k

a2
cos ka + sin ka

(
k2

a
− 1

a3

)
, (208)

or,

cot ka =
1

ka
− ka, ⇒ ka = 2.744. (209)

In case of a point magnetic dipole m = m0 e−iωt at the origin, the fields have the same
form as for an electric dipole, but with E and B interchanged. That is, the advanced
fields would be,

EM1,adv = k2 e−i(kr+ωt)

r

(
−1 +

i

kr

)
n̂× m0, (210)

BM1,adv = e−i(kr+ωt)

{[
−k2

r
+ 3

(
ik

r2
+

1

r3

)]
(m0 · n̂) n̂ +

[
k2

r
− ik

r2
− 1

r3

]
m0

}
. (211)

and the retarded field due to magnetic dipole −m would be

EM1,ret = −k2 ei(kr−ωt)

r

(
1 +

i

kr

)
n̂× m0, (212)

BM1,ret = ei(kr−ωt)

{[
k2

r
+ 3

(
ik

r2
− 1

r3

)]
(m0 · n̂) n̂−

[
k2

r
+

ik

r2
− 1

r3

]
m0

}
. (213)

If the advanced and retarded magnetic dipole fields are superposed inside a spheri-
cal cavity of radius a, the condition that the transverse electric field vanish at the
conducting surface is,

0 = eika
[
1 +

i

ka

]
+ e−ika

[
1 − i

ka

]
= 2

[
cos ka − sin ka

ka

]
, (214)

13http://kirkmcd.princeton.edu/examples/EM/stratton_electromagnetic_theory.pdf
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or,
tan ka = ka, ⇒ ka = 4.493. (215)

The electric field of this mode is purely transverse, so it is called a TE mode.

Clearly, other modes of a spherical cavity can be found by superposing the advanced
and retarded fields due to higher multipoles at the origin.
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11. This problem is due to D. Iwanenko and I. Pomeranchuk, On the Maximal Energy
Attainable in a Betatron, Phys. Rev. 65, 343 (1944).14

The electron is held in its circular orbit by the Lorentz force due to the magnetic field
B. Newton’s law, F = ma, for this circular motion can be written as,

F = γma =
γmv2

R
= e

v

c
B. (216)

For a relativistic electron, v ≈ c, so we have,

γ ≈ eRB

mc2
. (217)

The electron is being accelerated by the electric field that is induced by the changing
magnetic flux. Applying the integral form of Faraday’s law to the circle of radius R,
we have (ignoring the sign),

2πREφ =
Φ̇

c
=

πR2Ḃave

c
, (218)

and hence,

Eφ =
RḂave

2c
, (219)

The rate of change of the electron’s energy E due to Eφ is,

dE
dt

= F · v ≈ ecEφ =
eRḂave

2
, (220)

Since E = γmc2, we can write,

γ̇mc2 =
eRḂave

2
, (221)

which integrates to,

γ =
eRBave

2mc2
. (222)

Comparing with eq. (217), we find the required condition on the magnetic field:

B =
Bave

2
. (223)

As the electron accelerates it radiates energy at rate given by the Larmor formula in
the rest frame of the electron,

dE�

dt�
= −2e2p̈�2

3c3
= −2e2a�2

3c3
. (224)

14http://kirkmcd.princeton.edu/examples/EM/iwanenko_pr_65_343_44.pdf
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Because E and t are both the time components of 4-vectors, their transforms from
the rest frame to the lab frame have the same form, and the rate dE/dt is invariant.
However, acceleration at right angles to velocity transforms according to a� = γ2a.
Hence, the rate of radiation in the lab frame is,

dE
dt

= −2e2γ4a2

3c3
= −2e4γ2B2

3m2c3
, (225)

using eq. (216) for the acceleration a.

The maximal energy of the electrons in the betatron obtains when the energy loss (225)
cancels the energy gain (220), i.e., when,

eRḂave

2
=

2e4γ2
maxB

2

3m2c3
, (226)

and,

γmax =

√
3m2c3RḂave

4e3B2
=

√
3R

4αc

Ḃave

B

Bcrit

B
≈
√

3R

4αcτ

Bcrit

B
, (227)

where α = e2/h̄c = 1/137 is the fine structure constant, Bcrit = m2c3/eh̄ = 4.4×1013 G
is the so-called QED critical field strength, and τ is the characteristic cycle time of the
betatron such that Ḃave = B/τ . For example, with R = 1 m, τ = 0.03 sec (30 Hz),
and B = 104 G, we find that γmax ≈ 200, or Emax ≈ 100 MeV.

We have ignored the radiation due to the longitudinal acceleration of the electron,
since in the limiting case this acceleration ceases.
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12. Since the dipole is much less than a wavelength away from the conducting plane, the
fields between the dipole and the plane are essentially the instantaneous static fields.
Thus, charges arranges themselves on the plane as if there were an image dipole at
distance d on the other side of the plane. The radiation from the moving charges on
the plan is effectively that due to the oscillating image dipole. A distant observer sees
the sum of the radiation fields from the dipole and its image.

The image dipole is inverted with respect to the original, i.e., the two dipoles are 180◦

out of phase.

Furthermore, there is a difference s in path length between the two dipole and the
distant observer at angles (θ, φ). We first calculate in a spherical coordinate system
with z axis along the first dipole, and x axis pointing from the plane to that dipole.
Then,the path difference is,

s = 2dx̂ · n̂ = 2d sin θ cos φ. (228)

This path difference results in an additional phase difference δ between the fields from
the two dipoles at the observer, in the amount,

δ = 2π
s

λ
=

4πd

λ
sin θ cos φ. (229)

If we label the electric fields due to the original and image dipoles as E1 and E2,
respectively, then the total field is,

E = E1 + E2 = E1(1 − eiδ), (230)

and, recalling eq. (46), the power radiated is,

dP

dΩ
=

|E|2
|E1|2

dP1

dΩ
=
∣∣∣1 − eiδ

∣∣∣2 A sin2 θ = 2A sin2 θ(1 − cos δ) = 4A sin2 θ sin2 δ/2

= 4A sin2 θ sin2 Δ, (231)

where,

Δ =
δ

2
=

2πd

λ
sin θ cos φ. (232)

Suppose we had chosen to use a spherical coordinate system (r, θ′, φ′) with the z′ axis
pointing from the plane to dipole 1, and the x′ axis parallel to dipole 1. Then, the
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phase difference would have the simple form,

Δ =
δ

2
=

π

λ
2d ẑ′ · n̂ =

2πd

λ
cos θ′, (233)

but the factor sin2 θ would now become,

sin2 θ = n2
x + n2

y = n2
z′ + n2

y′ = cos2 θ′ + sin2 θ′ cos2 φ′ = 1 − sin2 θ′ sin2 φ′. (234)

If d = λ/4, then,
dP

dΩ
= 4A sin2 θ sin2

(
π

2
sin θ cos φ

)
. (235)

In the “side” view, φ = 0, so the pattern has shape,

sin2 θ sin2
(

π

2
sin θ

)
(side view), (236)

while in the “top” view, θ = π/2 and the shape is,

sin2
(

π

2
cos φ

)
(top view). (237)

This pattern has a single lobe in the forward hemisphere, as illustrated below:

If instead, d = λ/2, then,

dP

dΩ
= 4A sin2 θ sin2 (π sin θ cos φ) . (238)

In the “side” view, φ = 0, so the pattern has shape,

sin2 θ sin2 (π sin θ) (side view), (239)
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while in the “top” view, θ = π/2 and the shape is,

sin2 (π cos φ) (top view). (240)

This pattern does not radiate along the line from the plane to the dipole, as illustrated
below:

b) If the electric dipole is aligned with the line from the plane to the dipole, its image
has the same orientation.

The only phase difference between the radiation fields of the dipole and its image is
that due to the path difference δ, whose value has been given in eqs. (232) and (233).
It is simpler to use the angles (θ′, φ′) in this case, since the radiation pattern of a single
dipole varies as sin2 θ′. Then,

E = E1 + E2 = E1(1 + eiδ), (241)

and, recalling eq. (46), the power radiated is,

dP

dΩ
=

|E|2
|E1|2

dP1

dΩ
=
∣∣∣1 + eiδ

∣∣∣2 A sin2 θ′ = 2A sin2 θ′(1 + cos δ) = 4A sin2 θ′ cos2 δ/2

= 4A sin2 θ′ cos2 Δ, (242)

with,

Δ =
δ

2
=

2πd

λ
cos θ′. (243)

This radiation pattern is axially symmetric about the line from the plane to the dipole.
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If d = λ/4, then,
dP

dΩ
= 4A sin2 θ′ cos2

(
π

2
cos θ′

)
. (244)

This pattern is a flattened version of the “donut” pattern sin2 θ′, as illustrated below:

If instead, d = λ/2, then,

dP

dΩ
= 4A sin2 θ′ cos2 (π cos θ′) . (245)

This pattern has a forward lobe for θ′ < π/6 and a “donut” for π/6 < θ′ < π/2, as
illustrated below:

c) For a magnetic dipole with axis parallel to the conducting plane, the image dipole
has the same orientation, the image consists of the opposite charge rotating in the
opposite direction, as shown below:

We use angles (θ, φ) and modify the argument of part a) to find,

E = E1 + E2 = E1(1 + eiδ), (246)
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and, recalling eq. (46), the power radiated is,

dP

dΩ
=

|E|2
|E1|2

dP1

dΩ
=
∣∣∣1 + eiδ

∣∣∣2 A sin2 θ = 2A sin2 θ(1 + cos δ) = 4A cos2 θ sin2 δ/2

= 4A sin2 θ cos2 Δ, (247)

where,

Δ =
δ

2
=

2πd

λ
sin θ cos φ. (248)

If d = λ/4, then,
dP

dΩ
= 4A sin2 θ cos2

(
π

2
sin θ cosφ

)
. (249)

In the “side” view, φ = 0, so the pattern has shape,

sin2 θ cos2
(

π

2
sin θ

)
(side view), (250)

while in the “top” view, θ = π/2 and the shape is,

cos2
(

π

2
cosφ

)
(top view). (251)

This pattern, shown below, is somewhat similar to that of part a) for d = λ/2.

If instead, d = λ/2, then,

dP

dΩ
= 4A sin2 θ cos2 (π sin θ cosφ) . (252)

In the “side” view, φ = 0, so the pattern has shape,

sin2 θ cos2 (π sin θ) (side view), (253)

while in the “top” view, θ = π/2 and the shape is,

cos2 (π cosφ) (top view). (254)

This pattern, shown below, is somewhat similar to that of part b) for d = λ/2.
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Finally, we consider the case of a magnetic dipole aligned with the line from the plane
to the dipole, in which case its image has the opposite orientation.

As in part b), the only phase difference between the radiation fields of the dipole and
its image is that due to the path difference δ, whose value has been given in eqs. (232)
and (233). We use the angles (θ′, φ′) in this case, since the radiation pattern of a single
dipole varies as sin2 θ′. Then,

E = E1 + E2 = E1(1 − eiδ), (255)

and, recalling eq. (46), the power radiated is,

dP

dΩ
=

|E|2
|E1|2

dP1

dΩ
=
∣∣∣1 − eiδ

∣∣∣2 A sin2 θ′ = 2A sin2 θ′(1 − cos δ) = 4A sin2 θ′ sin2 δ/2

= 4A sin2 θ′ sin2 Δ, (256)

with,

Δ =
δ

2
=

2πd

λ
cos θ′. (257)

This radiation pattern is axially symmetric about the line from the plane to the dipole.

If d = λ/4, then,
dP

dΩ
= 4A sin2 θ′ sin2

(
π

2
cos θ′

)
. (258)

This pattern, shown below, is somewhat similar to that of part a) for d = λ/2.
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If instead, d = λ/2, then,

dP

dΩ
= 4A sin2 θ′ sin2 (π cos θ′) . (259)

This pattern is qualitatively similar to that for d = λ/4, shown just above, but the
maximum occurs at a larger value of θ′.



Princeton University 2001 Ph501 Set 8, Solution 13 51

13. From p. 191, Lecture 16 of the Notes we recall that a single, short, center-fed, linear
antenna of dipole moment,

p(t) = i
I0Le−iωt

2ω
(260)

radiates time-averaged power (according to the Larmor formula),

dU1

dtdΩ
=

〈p̈2〉 sin2 θ

4πc3
=

ω2I2
0L

2 sin2 θ

32πc3
. (261)

For the record, the current distribution in this short antenna is well approximated by
the triangular waveform,

I(z, t) = I0 e−iωt

(
1 − 2 |z|

L

)
. (262)

The associated charge distribution ρ(z, t) is related by charge conservation, ∇·J = −ρ̇,
which for a 1-d distribution is simply,

ρ̇ = −∂I

∂z
= −I0 e−iωt

(
∓ 2

L

)
, (263)

so that,

ρ = ±2iI0 e−iωt

ωL
, (264)

and the dipole moment is given by,

p =
∫ L/2

−L/2
ρz dz = i

I0Le−iωt

2ω
, (265)

as claimed above.

Turning to the case to two antennas, we proceed as in the previous problem and write
their combined electric field as,

E = E1 + E2 = E1(1 − eiδ), (266)

where now the phase difference δ has contributions due to the path difference for
radiation from the two antennas (whose separation is d = λ/4), as well as from their
intrinsic phase difference of 90◦. That is,

δ =
2π

λ

λ

4
cos θ +

π

2
=

π

2
(1 + cos θ). (267)

From eqs. (261), (266) and (267) we find

dU

dtdΩ
=

dU1

dtdΩ

∣∣∣1 − eiδ
∣∣∣2 =

ω2I2
0L

2 sin2 θ

16πc3
(1 − cos δ)

=
ω2I2

0L
2 sin2 θ

16πc3

[
1 + sin

(
π

2
cos θ

)]
. (268)
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This angular distribution favors the forward hemisphere, as shown in the sketch:

The total radiated power is,
dU

dt
=

ω2I2
0L2

6c3
. (269)

Associated with energy U radiated in direction n̂ is momentum P = U n̂/c. Thus, the
angular distribution of radiated momentum is,

dP

dt dΩ
=

ω2I2
0L

2 sin2 θ

16πc4

[
1 + sin

(
π

2
cos θ

)]
n̂. (270)

On integrating this over solid angle to find the total momentum radiated, only the
z-component is nonzero,

dPz

dt
= 2π

ω2I2
0L2

16πc4

∫ 1

−1
sin2 θ

[
1 + sin

(
π

2
cos θ

)]
cos θ d cos θ

=
2ω2I2

0L
2

π2c4

(
12

π2
− 1

)
=

12

π2c

dU

dt

(
12

π2
− 1

)
≈ 0.26

c

dU

dt
. (271)

The radiation reaction force on the antenna is Fz = −dPz/dt. For a broadcast antenna
radiating 105 Watts, the reaction force would be only ≈ 10−4 N.

The radiation-reaction force (271) cannot be deduced as the sum over charges of the
radiation-reaction force of Planck, Frad = 2e2v̈/3c3. Planck’s result is obtained by
an integration by parts of the integral of the radiated power over a period. This
procedure can be carried out if the power is a sum/integral of a square, as holds for an
isolated radiating charge. But it cannot be carried out when the power is the square
of a sum/integral as holds for (coherent) radiation by an extended charge/current
distribution. Rather, the radiation reaction force on a current distribution must be
deduced from the rate of radiation of momentum, as done here.
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14. According to p. 181, Lecture 16 of the Notes, the power radiated from a known current
distribution that oscillates at angular frequency ω is given by,

dPω

dΩ
=

1

8πc

∣∣∣∣
∫

Jω(r′) × k e−ik·r′ dVol′
∣∣∣∣2 , (272)

where k = n̂ω/c.

We take the z-axis along the antenna, so the radiated power due to the current distri-
bution,

I(z) = I0 sin
2πz

L
e−iωt (−L/2 < z < L/2), (273)

is,

dPω

dΩ
=

1

8πc

∣∣∣∣∣
∫ L/2

−L/2
I0 sin

(
2πz

L

)
k sin θ e−ikz cos θ dz

∣∣∣∣∣
2

=
k2I2

0

8πc
sin2 θ

∣∣∣∣
∫ ∣∣∣∣2 , (274)

where, ∫
=
∫ L/2

−L/2
sin
(

2πz

L

)
[cos(kz cos θ) − i sin(kz cos θ)] dz. (275)

For L = λ, we have k = 2π/L and,

∫
=
∫ π/k

−π/k
sin kz[cos(kz cos θ) − i sin(kz cos θ)] dz. (276)

The real part of this integral vanishes, while

Im
∫

= −2
∫ π/k

0
sin kz sin(kz sin θ) dz = −2

k

∫ π

0
sin x sin(x sin θ) dx. (277)

Using the identity,

2 sin A sinB = cos(A − B) − cos(A + B), (278)

we have,

Im
∫

=
1

k

∫ π

0
{[cos[x(1 + cos θ)] − cos[x(1 − cos θ)]} dx.

=
1

k

{
sin[π(1 + cos θ)]

1 + cos θ
− sin[π(1 − cos θ)]

1 − cos θ

}

=
1

k

{
−sin(π cos θ)

1 + cos θ
− sin(π cos θ)

1 − cos θ

}

=
2 sin(π cos θ)

k sin2 θ
. (279)
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Inserting this in eq. (274), we find,

dPω

dΩ
=

I2
0

2πc

sin2(π cos θ)

sin2 θ
. (280)

The radiation pattern is sketched below:

The total radiated power is, setting cos θ = u,

P =
∫

dPω

dΩ
, dΩ =

I2
0

c

∫ 1

−1

sin2(π cos θ)

sin2 θ
d cos θ =

I2
0

2c

∫ 1

−1

1 − cos(2πu)

1 − u2
du

=
I2
0

4c

∫ 1

−1

(
1 − cos(2πu)

1 + u
+

1 − cos(2πu)

1 − u

)
du =

I2
0

2c

∫ 1

−1

1 − cos(2πu)

1 + u
du. (281)

To cast this in the form of a known special function, we let 1 + u = v/2π, so that,

P =
I2
0

2c

∫ 4π

0

1 − cos v

v
dv =

I2
0

2c
Cin(4π) = 3.11

I2
0

2c
, (282)

where Cin is the so-called cosine integral.

b) To calculate the radiation in the multipole approximation, we need to convert the
current distribution I(z) e−iωt to a charge distribution ρ(z, t). This is accomplished via
the continuity equation,

∂I

∂z
= −ρ̇ = iωρ. (283)

For the current distribution (273) we find,

ρ = −2πi

ωL
I0 cos

2πz

L
e−iωt. (284)

The dipole moment of this distribution is,

p =
∫ L/2

−L/2
ρz dz = 0, (285)

so there is no electric-dipole radiation. As the current flows along a line, and not in a
loop, there is no magnetic-dipole radiation either.
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The charge distribution is symmetric about the z axis, so its tensor quadrupole moment
can be characterized in terms of the single quantity,

Qzz =
∫ L/2

−L/2
2ρz2 dz = 4

∫ L/2

0
ρz2 dz = −8πi

ωL
I0

∫ L/2

0
z2 cos

2πz

L
dz

= − L2i

π2ω
I0

∫ π

0
x2 cos x dx =

2L2i

πω
I0, (286)

using the integral (55).

The total power radiated by the symmetric quadrupole moment is, according to p. 190,
Lecture 16 of the Notes,

PE2 =
|Qzz |2 ω6

240c5
=

L4ω4

30π2c4

I2
0

2c
. (287)

When L = λ = 2πc/ω, this becomes,

PE2 =
8π2

15

I2
0

2c
= 5.26

I2
0

2c
. (288)

In this example, higher multipoles must contribute significantly to the total power,
reducing it to the “exact” result (282).
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15. This problem is also discussed at http://kirkmcd.princeton.edu/examples/small_sphere.pdf

The scattering cross section is given by,

dσ

dΩ
=

power scattered into dΩ

incident power per unit area
= r2 〈Sscat(θ, φ)〉

〈Sincident〉 = r2 |Escat|2
E2

0

, (289)

where in the dipole approximation, the far-zone scattered electric field is,

Escat = k2ei(kr−ωt)

r
[(n̂× p0) × n̂ − n̂ ×m0] , (290)

and p0e
iωt and m0e

−iωt are the electric- and magnetic-dipole moments induced in the
conducting sphere by the incident wave.

Because the incident wavelength is large compared to the radius of the sphere, the
incident fields are essentially uniform over the sphere, and the induced fields near the
sphere are the same as the static fields of a conducting sphere in an otherwise uniform
electric and magnetic field. Then, from p. 57, Lecture 5 of the Notes, the induced
electric-dipole moment is given by

p0 = a3E0. (291)

For the induced magnetic dipole, we recall p. 98, Lecture 8 of the Notes, remembering
that a conducting sphere can be thought of a permeable sphere with zero permeabil-
ity and a dielectric sphere of infinite dielectric constant. Hence, the magnetic-dipole
moment is,

m0 = −a3

2
B0. (292)

Then,

Escat = −k2a3ei(kr−ωt)

r

[
n̂× (E0 × n̂) +

1

2
(n̂× B0

]
, (293)

where n̂ is along the vector r that points from the center of the sphere to the distant
observer.

For a wave propagating in the +z direction with electric field linearly polarized along
direction l̂, E0 = E l̂, and the magnetic field obeys B0 = ẑ × E0. Then,

Escat = −k2a3E0
ei(kr−ωt)

r

[
n̂× (̂l× n̂) +

1

2
n̂× (ẑ × l̂)

]

= −k2a3E0
ei(kr−ωt)

r

[̂
l

(
1 − (n̂ · ẑ)

2

)
+

(
n̂− ẑ

2

)
(n̂ · l̂)

]
. (294)

Inserting this in (289) we find,

dσ

dΩ
= k4a6

⎡
⎣(1 − n̂ · ẑ

2

)2

− 3

4
(n̂ · l̂)2

⎤
⎦ . (295)
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For an observer in the x-z plane, n̂ · ẑ = cos θ. Then, for electric polarization parallel to
the scattering plane n̂ · l̂ = sin θ, while for polarization perpendicular to the scattering
plane n̂ · l̂ = 0.

Thus, eq. (295) yields,

dσ‖
dΩ

= k4a6
(

1

2
− cos θ

)2

,
dσ⊥
dΩ

= a6k4

(
1 − cos θ

2

)2

. (296)

For an unpolarized incident wave,

dσ

dΩ
=

1

2

(
dσ‖
dΩ

+
dσ⊥
dΩ

)
= k4a6

[
5

8
(1 + cos2 θ) − cos θ

]
, (297)

and so,

σ =
∫ dσ

dΩ
dΩ =

10π

8
k4a6

∫ 1

−1
(1 + cos2 θ) d cos θ =

10πa2

3
k4a4. (298)

From eqs. (296) we see that dσ⊥/dΩ is always nonzero, but dσ‖/dΩ = 0 for θ = π/3,
so for this angle, the scattered radiation is linearly polarized parallel to the scattering
plane for arbitrary incident polarization.

Addendum: The Fields and Poynting Vector Close to the Sphere

Using the results of Prob. 2 above we can also discuss the fields close to the sphere.
In particular, from eqs. (11) and (107) the scattered electric field at any position r
outside the sphere is,

Escat(r, t) = k2 ei(kr−ωt)

r

{
(n̂× p0) × n̂ + [3(n̂ · p0) n̂ − p0]

(
1

k2r2
− i

kr

)
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−
(
1 +

i

kr

)
n̂× m0

}

= k2a3ei(kr−ωt)

r

{
(n̂× E0) × n̂ + [3(n̂ ·E0) n̂− E0]

(
1

k2r2
− i

kr

)

+
1

2

(
1 +

i

kr

)
n̂× B0

}
, (299)

also using eqs. (291) and (292). In this Addendum, we suppose that the electric field of
the incident plane wave is along the x-axis, so that E0 = E x̂ and B0 = E ŷ, while the
point of observation is at r = (r, θ, φ). We express the electric-field vector in spherical
coordinates, noting that,

n̂ = r̂, (300)

x̂ = sin θ cos φ r̂ + cos θ cos φ θ̂ − sinφ φ̂, (301)

ŷ = sin θ sin φ r̂ + cos θ sinφ θ̂ + cosφ φ̂, (302)

ẑ = cos θ r̂ − sin θ θ̂. (303)

Thus,

Escat(r, t) = k2a3E0
ei(kr−ωt)

r

{
cos θ cos φ θ̂ − sin φ φ̂

+(2 sin θ cosφ r̂ − cos θ cos φ θ̂ + sin φ φ̂)
(

1

k2r2
− i

kr

)

−1

2

(
1 +

i

kr

)
(cosφ θ̂ − cos θ sinφ φ̂)

}

= k2a3E0
ei(kr−ωt)

r

{
2 sin θ cos φ

(
1

k2r2
− i

kr

)
r̂

+cos φ
[
cos θ

(
1 − 1

k2r2
+

i

kr

)
− 1

2

(
1 +

i

kr

)]
θ̂

− sin φ

[
1 − 1

k2r2
+

i

kr
− cos θ

2

(
1 +

i

kr

)]
φ̂

}
. (304)

Similarly, using eqs. (8) and (108) the scattered magnetic field can be written as,

Bscat(r, t) = k2 ei(kr−ωt)

r

{
(n̂× m0) × n̂ + [3(n̂ · m0) n̂ −m0]

(
1

k2r2
− i

kr

)

+
(
1 +

i

kr

)
n̂× p0

}

= −k2a3 ei(kr−ωt)

2r

{
(n̂ ×B0) × n̂ + [3(n̂ · B0) n̂− B0]

(
1

k2r2
− i

kr

)

−2
(
1 +

i

kr

)
n̂× E0

}

= −k2a3E0
ei(kr−ωt)

2r

{
cos θ sinφ θ̂ + cosφ φ̂

, +(2 sin θ sinφ r̂ − cos θ sinφ θ̂ − cosφ φ̂)
(

1

k2r2
− i

kr

)
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−2
(
1 +

i

kr

)
(sinφ θ̂ + cos θ cos φ φ̂)

}

= −k2a3E0
ei(kr−ωt)

2r

{
2 sin θ sin φ

(
1

k2r2
− i

kr

)
r̂

+sinφ
[
cos θ

(
1 − 1

k2r2
+

i

kr

)
− 2

(
1 +

i

kr

)]
θ̂

+cos φ
[
1 − 1

k2r2
+

i

kr
− 2 cos θ

(
1 +

i

kr

)]
φ̂
}

. (305)

On the surface of the sphere, r = a, the scattered electromagnetic fields are, to the
leading approximation when ka � 1,

Escat(r = a) ≈ E0 e−iωt(2 sin θ cos φ r̂ − cos θ cos φ θ̂ + sin φ φ̂), (306)

Bscat(r = a) ≈ −E0

2
e−iωt(2 sin θ sinφ r̂ − cos θ sinφ θ̂ − cos φ φ̂). (307)

In the same approximation, the incident electromagnetic fields at the surface of the
sphere are,

Ein(r = a) ≈ E0 e−iωt x̂ = E0 e−iωt(sin θ cos φ r̂ + cos θ cosφ θ̂ − sinφ φ̂), (308)

Bin(r = a) ≈ E0 e−iωt ŷ = E0 e−iωt(sin θ sinφ r̂ + cos θ sinφ θ̂ + cos φ φ̂). (309)

Thus, the total electric field,

Etot(r = a) = Ein(r = a) + Escat(r = a) = 3E0 e−iωt sin θ cos φ r̂, (310)

on the surface of the sphere is purely radial, and the total magnetic field,

Btot(r = a) = Bin(r = a) + Bscat(r = a) =
3

2
E0 e−iωt(cos θ sinφ θ̂ + cos φ φ̂), (311)

is purely tangential, as expected for a perfect conductor.

The total charge density σtot on the surface of the conducting sphere follows from
Gauss’ law as,

σtot =
Etot(r = a) · r̂

4π
=

3E0

4π
e−iωt sin θ cosφ =

3

2
σscat, (312)

where σscat is the surface charge density corresponding to the scattered field (306).
Similarly, the total current density Ktot on the surface of the sphere follows from
Ampère’s law as,

Ktot =
c

4π
r̂ × Btot(r = a) =

3cE0

8π
e−iωt(− cos φ θ̂ + cos θ sinφ φ̂) = 3Kscat, (313)

where Kscat is the surface charge density corresponding to the scattered field (307).

We can now discuss the energy flow in the vicinity of the conductor sphere from two
perspectives. These two views have the same implications for energy flow in the far
zone, but differ in their description of the near zone.
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First, we can consider the Poynting vector constructed from the total electromagnetic
fields,

Stot =
c

4π
Etot × Btot. (314)

Because the tangential component of the total electric field vanishes at the surface of
the sphere, lines of the total Poynting vector do not begin or end on the sphere, but
rather they pass by it tangentially. In this view, the sphere does not absorb or emit
energy, but simply redirects (scatters) the flow of energy from the incident wave.

However, this view does not correspond closely to the “microscopic” interpretation that
atoms in the sphere are excited by the incident wave and emit radiation as a result,
thereby creating the scattered wave. We obtain a second view of the energy flow that
better matches the “microscopic” interpretation if we write,

Stot =
c

4π
Etot × Btot

=
c

4π
(Ein + Escat) × (Bin + Bscat)

=
c

4π
Ein × Bin +

c

4π
(Ein × Bscat + Escat × Bin) +

c

4π
Escat ×Bscat

= Sin + Sinteraction + Sscat. (315)

Since the scattered fields (306)-(307) at the surface of the sphere include tangential
components for both the electric and the magnetic field, the scattered Poynting vector,
Sscat, has a radial component, whose time average we wish to interpret as the flow of
energy radiated by the sphere. The scattered Poynting vector at any r is given by,

〈Sscat〉 =
c

8π
Re(E�

scat × Bscat)

=
c

8π
Re
[
(E�

θ,scatBφ,scat − E�
φ,scatBθ,scat) r̂ + (E�

φ,scatBr,scat − E�
r,scatBφ,scat) θ̂

+(E�
r,scatBθ,scat − E�

θ,scatBr,scat) φ̂
]

=
c

8π

k4a6E2
0

r2

⎧⎨
⎩
⎡
⎣cos2 φ

(
1

2
− cos θ

)2

+ sin2 φ

(
1 − cos θ

2

)2
⎤
⎦ r̂

− 1

k4r4

(
cos θ

2
r̂ + sin θ θ̂

)}
. (316)

The radial term of eq. (316) in square brackets is identical to the far-zone Poynting
vector. However, close to the sphere we find additional terms in 〈Sscat〉, so that in the
near zone 〈Srad〉 �= 〈Sscat〉. Indeed, at the surface of the sphere we find

〈Sscat(r = a)〉 =
c

8π
E2

0

⎧⎨
⎩k4a4

⎡
⎣cos2 φ

(
1

2
− cos θ

)2

+ sin2 φ

(
1 − cos θ

2

)2
⎤
⎦ r̂

−
(

cos θ

2
r̂ + sin θ θ̂

)}

≈ − c

8π
E2

0

(
cos θ

2
r̂ + sin θ θ̂

)
. (317)
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Of course, the conducting sphere is not an energy source by itself, and the radiated
energy is equal to the energy absorbed from the incident wave. For a description of
the flow of energy that is absorbed, we look to the time-average of the incident and
interaction terms of eq. (315). Lines of the incident Poynting vector,

〈Sin〉 =
c

8π
E,

0ẑ =
c

8π
E2

0(cos θ r̂ − sin θ θ̂), (318)

enter and leave the sphere with equal strength, and are therefore not to be associated
with energy transfer to the radiation fields. So, we look to the interaction term,

〈Sinteraction〉 =
c

8π
Re
[
(E�

θ,scatBφ,in + E�
θ,inBφ,scat − E�

φ,scatBθ,in − E�
φ,inBθ,scat) r̂

+(E�
φ,scatBr,in + E�

φ,inBr,scat − E�
r,scatBφ,in − E�

r,inBφ,scat), θ̂

+(E�
r,scatBθ,in + E�

r,inBθ,scat − E�
θ,scatBr,in − E�

θ,inBr,scat) φ̂
]

=
c

8π

k2a3E2
0

r

{[
− cos[kr(1 − cos θ)]

cos θ

2k2r2

+(1 + cos θ)

[
cos2 φ

(
1

2
− cos θ

)
+ sin2 φ

(
cos θ

2
− 1

)]
×

(
sin[kr(1 − cos θ)]

kr
− cos[kr(1 − cos θ)]

)]
r̂

+

[
cos[kr(1 − cos θ)]

sin θ

k2r2

(
2 − 9

2
cos2 φ

)
+ . . .

]
θ̂

+

[
9

8
cos[kr(1 − cos θ)]

sin 2θ sin 2φ

k2r2
+ . . .

]
φ̂

}
, (319)

where the omitted terms are small close to the sphere. Note that in the far zone
the time-average interaction Poynting vector contains terms that vary as 1/r times
cos[kr(1 − cos θ)]. These large terms oscillate with radius r with period λ, and might
be said to describe a radial “sloshing” of energy in the far zone, rather than a radial
flow. It appears in practice that one cannot detect this “sloshing” by means of a
small antenna placed in the far zone, so we consider these terms to be unphysical.
Nonetheless, it is interesting that they appear in the formalism.

At the surface of the sphere we have, again for ka � 1,

〈Sinteraction(r = a)〉 =
c

8π
E2

0

[
−cos θ

2
r̂ + sin θ

(
2 − 9

2
cos2 φ

)
θ̂ +

9

8
sin 2θ sin 2φ φ̂

]
.

(320)
The total Poynting vector on the surface of the sphere is the sum of eqs. (317), (318)
and (320),

〈Stot(r = a)〉 =
c

8π
E2

0

(
−9

2
sin θ cos2 φ θ̂ +

9

8
sin 2θ sin 2φ φ̂

)
. (321)

The radial component of the total Poynting vector vanishes on the surface of the sphere,
as expected for a perfect conductor.
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This exercise permits an additional perspective, of possible relevance to thinking about
radiation from antennas. Suppose that instead of knowing that a plane wave was
incident on the conducting sphere, we were simply given the surface current distribution
Kscat of eq. (313). Then, by use of retarded potentials, or the “antenna formula”
(p. 182, Lecture 15 of the Notes), we could calculate the radiated power in the far
zone, and would arrive at the usual expression (316) (ignoring the terms that fall off
as 1/r6). However, this procedure would lead to an incomplete understanding of the
near zone. In particular, the excitation of the conducting sphere by an external plane
wave leads to a total surface current that is three times larger than the current Kscat.
For a good, but not perfectly conducting sphere, an analysis based on Kscat alone
would lead to only 1/9 the actual amount of Joule heating of the sphere. And, if we
attempted to assign some kind of impedance or radiation resistance to the sphere via
the form Prad = RradI

2
0/2 where I0 is meant to be a measure of the peak total current,

an analysis based only on knowledge the current Kscat would lead to a value of Rrad

that is 9 times larger than desired.


