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1. Multiple-Slit Diffraction Pattern

A flat, perfectly absorbing screen has N infinite slits, each of width d, separated by
distance D.

Light of wavelength λ is normally incident on the screen.

Show that for Fraunhofer diffraction, the angular distribution of the transmitted in-
tensity, far from the screen, is,

I(θ) = I0

(
sin(ud)

ud

)2 (
sin(NuD)

N sin(uD)

)2

, where u =
π

λ
sin θ. (1)

Sketch this for N = 4 and D = 2d.

If this “grating” is used to resolve spectral lines of different λ, show that the “resolving
power” is λ/Δλ = ND/λ according to Rayleigh’s criterion.

The greatest resolving power involves use of the largest principal maximum visible in
the diffraction pattern.

Show that the angle between a principal maximum and the nearest minimum of I(θ)
is Δθ ≈ λ/ND.
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2. Rectangular Aperture

Show that the Fraunhofer diffraction pattern for plane waves of wavelength λ normally
incident on a rectangular aperture of size a× b in a perfectly absorbing screen is,

I(θ) = I0

(
sinu

u

)2 (sin v

v

)2

, where u =
πa

λ
sin θ cos φ, v =

πb

λ
sin θ sinφ. (2)
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3. Circular Aperture

A plane wave ψ = Aei(kz−ωt) is incident on an opaque screen at z = 0 with a circular
aperture of radius a centered on the origin.

Expand the Fraunhofer diffraction integral in a power series, and evaluate it term by
term to show that,

ψ ∝∑
n

(−1)n (u/2)2n

n!(n+ 1)!
, where u = ka sin θ. (3)

This turns out to be,

ψ ∝ J1(u)

u
, (4)

where J1 is the ordinary Bessel function of order 1.

Given that the first zero of J1(u) is at u = 3.832, what is the minimum angle between
distant sources than can be resolved, when viewed through the circular aperture (which
might also contain a lens)?

Ans: Δθmin = 1.22λ/d according to Rayleigh’s criterion, where d = 2a is the diameter
of the aperture.

This problem was first solved by Airy, before Bessel functions were well known: G.B. Airy,
On the Diffraction of an Object-glass with Circular Aperture, Trans. Camb. Phil. Soc.
5. 283 (1834), http://kirkmcd.princeton.edu/examples/optics/airy_tcps_5-3_283_34.pdf
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4. Partially Opaque Disk

Suppose a circular disk of radius a absorbs only a fraction η of the amplitude of incident
radiation.

Consider Fraunhofer diffraction of normally incident plane waves of wave number k.

Calculate the cross sections σscattering, σabsorption, σtotal as well as the relative scattering
amplitude f(θ).

Show that,

σtotal =
4π

k
Imf(0) = 2πa2η, (5)

so that the optical theorem holds here.

Hint: Consider Babinet’s principle. When calculating σabsorption note that the absorbed
intensity is that which is not transmitted.
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5. Fresnel Diffraction by an Opaque Circular Disk

A source s and observer o both lie on the axis of an opaque circular disk of radius a.

Qualitatively, do you expect the observed intensity to increase or decrease as the ob-
server moves slightly off axis?

To be more quantitative, suppose both s and o are at the same distance b from the
center of the disk. Include the obliquity factor (cos θs+cos θ0/2 in the Fresnel diffraction
integral. Show by appropriate manipulation of the integral into a power series that

I(b) ≈ I0
4

b2

b2 + a2
, (6)

where I0 is the intensity at the edge of the disk.
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6. Time-Reversed Diffraction

In the usual formulation of the Kirchhoff diffraction integral, a scalar field with har-
monic time dependence at frequency ω is deduced at the interior of a charge-free
volume from knowledge of the field (or its normal derivative) on the bounding surface.
In particular, the field is propagated forwards in time from the boundary to the desired
observation point.

Construct a time-reversed version of the Kirchhoff integral in which the knowledge
of the field on the boundary is propagated backwards in time into the interior of the
volume.

Consider the example of an optical focus at the origin for a system with the z axis
as the optic axis. In the far field beyond the focus a Gaussian beam has cone angle
θ0 ≡

√
2σθ, and the x component of the electric field in a spherical coordinate system

is given approximately by,

Ex(r, θ, φ, t) = E(r)ei(kr−ωt)e−θ2/θ2
0 , (7)

where k = ω/c and c is the speed of light. Deduce the field near the focus.

Since the Kirchhoff diffraction formalism requires the volume to be charge free, the
time-reversed technique is not applicable to cases where the source of the field is inside
the volume. Nonetheless, apply the time-reversed diffraction integral to the example
of an oscillating dipole at the origin.
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7. Compton Effect

In 1905, Einstein suggested that a light wave (in vacuum) of angular frequency ω and
direction k̂ can be thought of (in some situations) as consisting of quanta of energy
E = hν = h̄ω and momentum P = h̄k = h̄ω k̂/c, where c is the speed of light in
vacuum, and h is Planck’s constant. Then, the energy-momentum 4-vector of such a
quantum is,

(E,Pc) = (h̄ω, h̄kc) = h̄(ω,kc) = h̄ω(1, k̂)m (8)

where (ω,kc) = ω(1, k̂) is the wave 4-vector.

A striking consequence of the light-quantum hypothesis was demonstrated by Compton
in 1923, in the scatter of very short wavelength light by “free” electrons at rest.

Suppose a single quantum of light with 4-vector h̄(ω,kc) strikes an electron of rest mass
m that is initially at rest. Apply energy and momentum conservation to the 4-vectors
involved to show that if the quantum (photon) scatters by angle θ, it emerges with
angular frequency,

ω′ =
ω

1 + h̄ω
mc2

(1 − cos θ)
< ω. (9)

The result that ω′ < ω is not expected in a classical analysis of light scattering. The
observation of this effect by Compton convinced most physicists (including Niels Bohr!)
to take the light-quantum hypothesis seriously.
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8. A coaxial cable has inner conductor of radius a, outer conductor of radius b, and vac-
uum between. A constant voltage V is maintained between the conductors, and steady
current I flows on the inner conductor (with current −I on the outer conductor). Elec-
trons leave the inner conductor with negligible velocity (due to thermionic emission)
and are attracted to the outer conductor. Show that the electrons cannot reach the
outer conductor if,

I >
cV

2 ln b/a

√
1 +

2mc2

eV
, (10)

in Gaussian units, where e > 0 and m are the charge and mass of the electron and c is
the speed of light. The fields due to the electrons in the vacuum can be ignored.

A relativistic analysis adds the term 1 in eq. (10), which is negligible compared to
mc2/eV in most practical cases.

The problem can be solved in the lab frame, or by transforming to a moving frame in
which one of E or B is zero.
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9. Magnetic Lens

A beam of particles of electric charge e and momentum |P| = P passes through a
circular aperture of radius a. The beam diverges slightly, with maximum angle α� 1
with respect to the beam axis. To have the beam pass through a second aperture of
radius a, at distance d from the first, a uniform, axial magnetic field is applied over
that distance.

Show that the minimum field strength to accomplish this is,

Bmin =
πPc

ed

(
1 +

2αd

π2a

)
. (11)

If B is increased above Bmin, what is the value, Bmax, for which the beam no longer
entirely passes through the second aperture?

There are additional ranges of larger B for which the beam does pass completely
through the second aperture.
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10. Fields of a Uniformly Moving Charge

Obtain expressions for the electric and magnetic fields of a charge e moving with
uniform velocity v via a Lorentz transformation of the static electric field of the charge.

Show that,

E =
eR

γ2R3(1 − β2 sin2 θ)3/2
, B = β × E , (12)

where β = v/c, γ = 1/
√

1 − β2, R is its present position of the charge, and θ is the
angle between v and R.

Thus, E is radial with respect to the present position of the charge. The magnitude
E(θ) is minimal for θ = 0 and 180◦, and maximal for θ = 90◦. Lines of E are “squeezed”
towards the plane θ = 90◦.

E(θ = 0) = e/γ2R2 < e/R2. How can this be consistent with the transformation
E‖ = E‖?

Show also that,

E =
e(r− rβ)

γ2(r − r · β)3
, B = r̂ × E , (13)

where r is the retarded position of the charge.
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11. Two electrons with equal velocity v move side by side, separated by distance a. Midway
between them is an infinite sheet of surface charge density σ. What must this density
be such that the two electrons maintain constant separation a?

Solve this problem both in the rest frame of the sheet and in the rest frame of the
electrons.
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Solutions

1. Multiple-Slit Diffraction Pattern

A flat, perfectly absorbing screen has N infinite slits, each of width d, separated by
distance D.

Light of wavelength λ = 2π/k is normally incident on the screen. Observations are
made at angle θ, at a distance from the screen large compared to λ.

The Fraunhofer diffraction approximation for the transmitted amplitude of a wave
incident on a set of N slits in an opaque screen is, from pp. 203-204, Lecture 17 of the
Notes, http://kirkmcd.princeton.edu/examples/ph501/ph501lecture17.pdf,

ψ(θ) ∝
∫
eikx·(n̂s−n̂o) dx =

N−1∑
n=0

∫ xn,upper

xn,lower

eikx sin θ dx =
N−1∑
n=0

eiknD sin θ
∫ d/2

−d/2
eikx sin θ dx

=
eikd sin θ/2 − e−ikd sin θ/2

ik sin θ

N−1∑
n=0

eiknD sin θ =
2

k sin θ
sin

kd sin θ

2

1 − eikND sin θ

1 − eikD sin θ

= d
sin(ud)

ud
ei(N−1)kD sin θ/2 sin(NkD sin θ/2)

sin(kD sin θ/2)
= d ei(N−1)uD sin(ud)

ud

sin(NuD)

sin(uD)
, (14)

where u = (π/λ) sin θ = (k/2) sin θ.

The transmitted intensity is,

IN(θ) = |ψ|2 ∝ d2

(
sin(ud)

ud

)2 (
sin(NuD)

sin(uD)

)2

, (15)

such that IN(0) ≡ I0 ∝ N2d2, and hence,

IN(θ) = I0

(
sin(ud)

ud

)2 (
sin(NuD)

N sin(uD)

)2

. (16)

For N = 1, we find the single-slit (Fraunhofer) diffraction pattern,

I1(θ) = I0

(
sin(ud)

ud

)2

. (17)

and hence we can write,

IN(θ) = I1(θ)

(
sin(NuD)

N sin(uD)

)2

. (18)
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The factor sin(NuD) vanishes for uD = lπ/N , while sin(uD) vanishes when uD = mπ,
for integers l and m. Whenever l/N = m, the ratio sin(NuD)/N sin(uD) is just 1,
and the diffraction pattern is a maximum (called a principal maximum) rather than a
zero.

Between adjacent principal maxima, there are at N − 1 zeroes of the pattern, and
hence N − 2 secondary maxima between adjacent principal maxima.

The rapidly varying function [sin(NuD)/N sin(uD)]2 is modulated by the slowly vary-
ing single-slit diffraction pattern (17).

Note that if D = kNd, then for uD = mπ, where k is a positive integer, we have
ud = mπ/kN , and the single-slit pattern has a zero when m is an integer multiple of
kN . In this case, the principal maximum of order m is “missing”.

The 4-slit diffraction pattern, with D = 4d looks like:

The principal maxima of orders 4k are missing.

Show that the angle between a principal maximum and the nearest minimum of I(θ)
is Δθ ≈ λ/ND.

If this “grating” is used to resolve spectral lines of wavelengths λ and λ′ = λ + Δλ,
Rayleigh’s criterion is that the largest visible maximum for λ′ is at the minimum next
to the largest visible principal maximum in the pattern for λ.

Recalling that u = (π/λ) sin θ, the order mmax of the largest visible principal maximum
is related by

sin θ =
λu

π
=
λmmax

D
≈ 1, mmax =

D

λ
. (19)

The minimum next to the largest visible principal maximum occurs in the pattern for



Princeton University 2001 Ph501 Set 9, Solution 1 14

λ at,

uD = mmaxπ +
π

N
, sin θ =

uλ

π
=
λ

D

(
mmax +

1

N

)
=
mmaxλ

D

(
1 +

λ

ND

)
, (20)

while the largest visible principal maximum in the pattern for λ′ is at,

mmaxπ = u′D =
πD

λ′
sin θ′, sin θ′ = mmax

λ′

D
= mmax

λ+ Δλ

D
=
mmaxλ

D

(
1 +

Δλ

λ

)
.(21)

When angles θ and θ′ are the same,

Δλ

λ
=

λ

ND
, (22)

which is the resolving power of the grating.
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2. Rectangular Aperture

The Fraunhofer diffraction approximation for the transmitted amplitude of a wave
normally incident on a rectangular aperture of size a × b in an opaque screen in the
plane z = 0 is, noting that for a point in the aperture, x = x x̂ = y ŷ, n̂s = ẑ and
n̂o = sin θ cos φ x̂ + sin θ sinφ ŷ + cos θ ẑ,

ψ(θ, φ) ∝
∫
eikx·(n̂s−n̂o) dArea =

∫ a/2

−a/2
dx e−ikx sin θ cosφ

∫ b/2

−b/2
dy e−iky sin θ sinφ

=
−eika sin θ cosφ/2 + e−ikd sin θ cosφ/2

−ik sin θ cosφ

−eikb sin θ sinφ/2 + e−ikd sin θ sinφ/2

−ik sin θ sin φ

=
2

k sin θ cosφ
sin

ka sin θ cos φ

2

2

k sin θ sin φ
sin

kb sin θ sinφ

2
= ab

sinu

u

sin v

v
, (23)

where u = (π/λ)a sin θ cosφ = (ka/2) sin θ cos φ and
v = (π/λ)b sin θ sinφ = (kb/2) sin θ sinφ.

The intensity is the square of the diffraction amplitude,

I(θ, φ) = I0

(
sinu

u

)2 (sin v

v

)2

, (24)

where I0 = I(0, 0).
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3. Circular Aperture

The Fraunhofer diffraction approximation for the transmitted amplitude of a wave
normally incident on a circular aperture of radius a in an opaque screen in the plane z =
0 is azimuthally symmetric, so if suffices to consider an observe in the x-z plane at angle
θ to the z axis. Noting that for a point in the aperture, x = r r̂ = r cosφ x̂ + r sinφ ŷ,
n̂s = ẑ and n̂o = sin θ x̂ + cos θ ẑ, we have,

ψ(θ) ∝
∫
eikx·(n̂s−n̂o) dArea =

∫ 2π

0
dφ
∫ a

0
r dr e−ikr sin θ cosφ

=
∞∑

n=0

(−ik sin θ)n

n!

∫ 2π

0
dφ cosn φ

∫ a

0
rn+1 dr =

∑
n even

(−ik sin θ)n

n!

2π(n− 1)!

2n−1(n
2
)!(n−2

2
)!

an+2

n+ 2

= πa2
∞∑

m=0

(−1)m

m!(m+ 1)!

(
ka sin θ

2

)2m

= 2πa2J1(u)

u
, (25)

using Dwight 858.44, http://kirkmcd.princeton.edu/examples/EM/dwight_57.pdf,
where u = ka sin θ, and J1 is the ordinary Bessel function of order 1.

Noting that J1(u)/u → 1/2 as u → 0, the transmitted intensity is.

I(θ) = I0

(
2J1(u)

u

)2

(26)

By Rayleigh’s criterion, two sources of wavelength λ at θs = 0 and Δθ can be resolved
via their diffraction pattern as seen through a circular aperture if the first minimum
of one pattern coincides with the central bright spot of the other.

That is, for the source at, say angle θs = Δθ in the x-z we need the amplitude to be
zero when observed at θ = 0 = θo. The Fraunhofer amplitude for this case is, with
n̂s = − sin θs x̂ + cos θs ẑ and n̂0 = ẑ,

ψ(θ = 0) ∝
∫
eikx·(n̂s−n̂o) dArea =

∫ 2π

0
dφ
∫ a

0
r dr e−ikr sin θs cosφ = 2πa2J1(us)

us
, (27)

as in eq. (25), but now us = ka sin θs ≈ kaΔθ.

The first zero of J1(u) is at u = 3.832, so the amplitude (27) is zero for 3.823 = us ≈
2πaΔθ/λ, and hence the two sources can be resolved if,

Δθ =
3.823

π

λ

2a
= 1.22

λ

d
, (28)

where d = 2a is the diameter of the aperture.
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4. Partially Opaque Disk

This problem is based on sec. 8.8, p. 293 of M. Schwartz, Principles of Electrodynamics
(McGraw-Hill, 1972), http://kirkmcd.princeton.edu/examples/EM/schwartz_72.pdf

The diffraction/scattering of a plane wave normally incident on a disk of radius a that
absorbs only a fraction η of the incident amplitude is the complement the case of an
opaque screen with a circular aperture of radius a that transmits only fraction η of the
incident amplitude.

The complementary problem is the same as Prob. 3 above, but with the diffraction
amplitude multiplied by the transmission factor η.

As indicated on p. 207, Lecture 17 of the Notes, we should include the normalization
factors in the diffraction amplitude:

ψ1 = ηA
ka2

i

ei(kr−ωt)

r

J1(ka sin θ)

ka sin θ
, (29)

where A is the amplitude of the incident plane wave, ψin = Aei(kz−ωt).

Then, by Babinet’s principle the outgoing amplitude for the case of the partially ab-
sorbing disk is,

ψout = ψin − ψ1. (30)

As on p. 207 of the Notes, we write ψout = ψin + ψscat, such that,

ψscat = −ψ1 = iηka2A
ei(kr−ωt)

r

J1(ka sin θ)

ka sin θ
. (31)

The relative scattering amplitude is,

f(θ) = iηka2J1(ka sin θ)

ka sin θ
, f(0) =

iηka2

2
, (32)

recalling that J1(u)/u → 1/2 as u → 0.

The scattering cross section is,1

σscat =
∫
dσ

dΩ
dΩ = 2π

∫ π

0
|f(θ)|2 dθ = η2πa2 , (33)

recalling the factoid at the top of p. 208 of the Notes.

We also consider the absorption cross section, which is just the area of the absorber
if it is completely opaque. The partially opaque disk absorbs fraction η of the wave
amplitude incident on it, so the transmitted amplitude is 1 − η of the incident ampli-
tude. The fraction of the intensity absorbed is 1 minus the fraction of the transmitted
intensity, 1 − (1 − η)2 = 2η − η2. Hence, the absorption cross section is,

σabs = (2η − η2)πa2 . (34)

The total cross section is,

σtot = σscat + σabs = 2ηπa2 =
4π

k
Imf(0), (35)

recalling eq. (32). This result is called the optical theorem.

1The cross section (33) is sometimes called the elastic cross section.
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5. Fresnel Diffraction by an Opaque Circular Disk

This problem follows sec. 35C, p. 213 of A. Sommerfeld, Optics (Academic Press, 1952)

A source s and observer o both lie on the axis of an opaque circular disk of radius a,
at the same distances b from the disk.

The Fresnel diffraction integral, including the obliquity factor and normalization, is

ψ(a) =
kA

2πi

∫
eik(rs+r0)

rsro

cos θs + cos θ0

2
dArea =

∫ ∞

a
r dr,

e2ik
√

r2+b2

r2 + b2
b√

r2 + b2

=
bkA

i

∫ ∞
√

a2+b2
dx

e2ikx

x2
=
bkA

i

e2ikx

2ikx2

∣∣∣∣∣
∞

√
a2+b2

− bkA

i

∫ ∞
√

a2+b2
dx

−3e2ikx

ikx3

=
bA

2

e2ik
√

a2+b2

a2 + b2
+ O

(
1

(a2 + b2)3/2

)
, (36)

using x =
√
r2 + b2, dx = r dr/x, and noting that integrating the last integral in the

second line of eq. (36) by parts over and over again leads to terms of order 1/(a2+b2)3/2

and higher.

The intensity observed at distance a is,

I(a) = |ψ(a)|2 ≈ b2 |A|2
4(a2 + b2)2

=
I0
4

b2

a2 + b2
, (37)

where I0 = |A|2 /(a2 + b2) is the intensity at the edge of the disk.

The intensity observed on the axis is nonzero, although the observer is in the nominal
“shadow” of the opaque disk.

This result was first predicted by Fresnel in 1818,
http://kirkmcd.princeton.edu/examples/optics/fresnel_acp_11_337_19.pdf

It is counterintuitive, and Poisson immediately insisted that it must be wrong. How-
ever, Arago soon demonstrated experimentally that the (Arago/Fresnel/Poisson) bright
spot exists, http://kirkmcd.princeton.edu/examples/optics/arago_acp_11_5_19.pdf
This was a “turning point” for the acceptance of the wave theory of light.

There is a bright spot close to the axis of the disk, while the shadow exists beyond a
small radius � a, extending out to radii of order a.
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From http://kirkmcd.princeton.edu/examples/optics/rinard_ajp_44_70_76.pdf
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6. The solution to this problem is at http://kirkmcd.princeton.edu/examples/laserfocus.pdf
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7. Compton Effect

We write the Compton scattering process of elastic scattering of a photon by an electron
as ω + e→ ω′ + e′.

Taking the symbols to represent 4-vectors of the initial and final particles, energy and
momentum conservation in the collision can be written as,

ω + e = ω′ + e′. (38)

If we only want to deduce the details of the final-state photon, and no of the final-state
electron, a useful trick is to rearrange eq. (38) as,

e′ = ω + e− ω′, (39)

and square this, noting that the square of an energy momentum 4-vector (E,Pc) of a
particle of mass m is E2 − P 2c2 = m2c4. Since the rest mass of a photon is zero, and
e2 = m2c4 = e′2, squaring eq. (40) gives,

e′2 = ω2 + e2 + ω′2 + 2ω · e− 2ω′ · (ω + e), ω′ · (ω + e) = ω · e (40)

We take the initial photon to have 4-vector eμ = h̄ω(1, 0, 0, 1), while the 4-vector of
the initial electron (at rest) is just eμ = (mc2, 0, 0, 0). Taking the scattering to be in
the x=z plane, the 4-vector of the scattered photon is ωμ = h̄ω′(1, sin θ, 0, cos θ). Then
the needed 4-vector products are,

ω · e = h̄ωmc2, ω′ · (ω + e) = h̄ω′(h̄ω +mc2) − h̄ω′ cos θ h̄ω, (41)

and eq. (40) becomes,

ω = ω′
(
h̄ω

mc2
+ 1 − h̄ω

mc2
cos θ

)
, ω′ =

ω

1 + h̄ω
mc2

(1 − cos θ)
. (42)
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8. A solution to this problem is at http://kirkmcd.princeton.edu/examples/e_in_coax.pdf.
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9. Magnetic Lens

A beam of relativistic particles of electric charge e and momentum |P| = P passes
through a circular aperture of radius a. The beam diverges slightly, with maximum
angle α� 1 with respect to the beam axis. To have the beam pass through a second
aperture of radius a, at distance d from the first, a uniform, axial magnetic field is
applied over that distance.

The magnetic field does not change the energy E or magnitude P of the momentum
of a charged particle (dE/dt = F · v = e(v/c × B) · v = 0), so the direction of P
precesses around the direction of the constant field B. The trajectory of the charged
particle (when in the constant field B) is helix, of radius r.

A particle that grazes the edge of the first aperture must precess by at least π + r/a,
but not more than 2π, for r � a, when it arrives at the second aperture, if it is to pass
through that aperture.

For small angles α the axial velocity of a relativistic charged particle is essentially its
total velocity, ≈ c, so the velocity component perpendicular to B is v⊥ ≈ αc.

The equation of motion for the precession is,

F = e
v

c
×B, F =

γmv2
⊥

r
=
ev⊥B
c

, ω =
v⊥
r

=
eB

γmc
≈ eB

P
, r ≈ αcP

eB
.(43)

The angular velocity ω of the precession (called the cyclotron frequency) is independent
of angle α.

The travel time of the particle between the two aperture is t ≈ d/c, so the minimum
B such that the grazing particle passes through the second aperture is related by,

ωt ≈ eBmin

P

d

c
≈ π +

r

a
≈ π +

αcP

aeBmin
Bmin ≈ πPc

ed

(
1 +

2αd

π2a

)
, (44)
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using the positive root of the quadratic equation for Bmin.

The maximum field strength is roughly twice this (although for 3Bmin
<∼ B <∼ 4Bmin,

etc., the particles also all pass through the second aperture.
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10. Fields of a uniformly moving charge in terms of the present distance

We consider electric charge e that moves along the x-axis with constant velocity v = v x̂
in the lab (unprimed) frame, is observed at some time, say t = 0, when the charge is
at the origin, by an observer at (x0, y0, 0), at (present) distance from the charge,

R =
√
x2

0 + y2
0. (45)

We also consider the rest (primed) frame of the charge, where it is at the origin, and
whose axes are parallel to those of the lab frame. The Lorentz transformation between
these two frames is,

x′
‖ = γ(x‖ − vt), x′

⊥ = x⊥, ct′ = γ(ct− βx‖), β =
v

c
, γ =

1√
1 − β2

,(46)

where c is the speed of light in vacuum, and parallel means parallel to v, i.e., to the
x-axis.

At time t = 0, the coordinates of the observer in the rest frame of the charge are
r′ = (γx0, y0, 0), such that,

r′2 = γ2x2
0 + y2

0 = γ2R2 + (1 − γ2)y2
0 = γ2R2 − γ2β2y2

0 = γ2R2

(
1 − β2 y

2
0

R2

)

= γ2R2(1 − β2 sin2 θ), (47)

where θ is the angle between R and v.

In the rest frame of electric charge e its electromagnetic fields are simply,

E′ =
er′

r′3
= E′

‖ + E′
⊥ =

er′‖
r′3

+
er′⊥
r′3

, B′ = 0 . (48)

where according to eq. (46), r′‖ = γR‖ and r′⊥ = R⊥.

The Lorentz transformation of the electromagnetic fields to a frame in which the charge
has velocity v are, p. 221, Lecture 18 of the Notes,

E‖ = E′
‖ =

er′‖
r′3

=
γeR‖
r′3

, E⊥ = γE′
⊥ =

γer′⊥
r′3

=
γeR⊥
r′3

, (49)

E = E‖ + E⊥ =
γe(R‖ + R⊥)

r′3
=

eR

γ2R3(1 − β2 sin2 θ)3/2
, (50)

B‖ = B′
‖ = 0, B⊥ = γ(B′

⊥ + β × E′
⊥) = β × γE′

⊥ = β × E⊥ = β × E, (51)

B = β × E, (52)

Thus, E is radial with respect to the present position of the charge. The magnitude
E(θ) is minimal for θ = 0 and 180◦, and maximal for θ = 90◦. Lines of E are “squeezed”
towards the plane θ = 90◦.
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E(θ = 0) = e/γ2R2 < e/R2, which is consistent with eq. (47), in that at θ = 0, the lab
frame R is Lorentz contracted from the distance r′ in the rest frame, R = r′/γ.

Fields in terms of the retarded distance

We can also express the fields in terms of the retarded distance between the charge,
and the observer, which we write as r. Recall that r = c(t − tret), so the distance
βc(t− tret) between the present and retarged positions of the charge is just rβ.

From the figure we see that,

R + rβ + r, R = r − rβ = r(r̂ − β), (53)

R2 = r2(1 − 2r̂ · β + β2), R · β = r(r̂ · β − β2). (54)

From eq. (47),2

r′2 = γ2R2(1 − β2 sin2 θ) = γ2R2(1 − β2 + β2 cos2 θ) = γ2[R2(1 − β2) + (R · β)2]

= γ2[r2(1 − 2r̂ · β + β2)(1 − β2) + r2((r̂ · β)2 − 2(r̂ · β)β2) + β4)]

= γ2r2[1 − 2r̂ · β + β2 − β2 + 2(r̂ · β)β2 − β4 + (r̂ · β)2 − 2(r̂ · β)β2) + β4]

= γ2r2[1 − 2r̂ · β + (r̂ · β)2] = γ2r2(1 − r̂ · β)2 = [γ(r − r · β)]2. (55)

Using eqs. (53) and (55) in eqs. (50) and (52), we have,

E =
e(r− rβ)

γ2(r − r · β)3
, B = β × E =

eβ × r

γ2(r − r · β)3
=

r̂ × e(r− rβ)

γ2(r − r · β)3
= r̂ ×E, (56)

which agree with the Liénard-Weichert fields for a uniformly moving charge, p. 234,
Lecture 19 of the Notes.3

2The result r′ = γ(r − r · β) looks like a Lorentz transformation, but actually is not, as r′ is the present
distance in the ′ frame, while r is the retarded distance in the lab frame.

3The Lieńard-Wiechert fields can be deduced via a Lorentz transformation, as in
kirkmcd.princeton.edu/examples/lw_potentials.pdf.
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11. Two electrons, of charge −e, with equal velocity v move side by side, separated by
distance a. Midway between them is an infinite sheet of surface charge density σ.

In the rest frame of the sheet, it supports a static electric field Eσ = sign(z)2πσ ẑ,
taking the sheet to lie in the plane z = 0.

Assuming the electrons move with constant velocity v x̂, the fields at the electron with
positive z due to the other electron are,

Ee = −γe ẑ
a2

, Be =
γe v ŷ

a2c
, γ =

1√
1 − v2/c2

, (57)

recalling prob. 10 above. The force on that electron is,

F = −e
(
Ee + Eσ +

v

c
×Be

)
=

[
γe2

a2

(
1 − v2

c2

)
− 2πeσ

]
ẑ . (58)

This force is zero for surface charge density,

σ =
e

2πγa2
. (59)

In the rest frame of the electrons, the fields at the electron with positive z due to the
other electron are,

E′
e = −e ẑ

a2
, B′

e = 0, (60)

while the electric fields due to the surface charge density σ, which has velocity −v x̂, is,
according to the Lorentz transformation of the fields, p. 221, Lecture 18 of the Notes,

E′
σ = γEσ = 2πγσ ẑ. (61)

The force on this charge (in its rest frame) is,

F′ = −e (E′
e + E′

σ) =

(
e2

a2
− 2πeγσ

)
ẑ , (62)

which is zero for σ = e/2πγa2, as found in eq. (47) via the analysis in the rest frame
of the sheet.


