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1 Problem

Discuss how the concept of gauge invariance can lead to an understanding of how/why
electromagnetic waves can have only two independent polarization states.

Comment also on gravitational waves.

2 Solution

2.1 Electromagnetic Waves

A familiar argument considers a unit, plane electromagnetic wave in free space with electric
field given by the real part of,

E = Ê0 ei(k·x−ωt), (1)

where Ê0 is a unit vector (possibly complex), k is the wave vector and ω = kc is the angular
frequency, with c being the speed of light in vacuum. This field obeys the first Maxwell
equation, ∇ · E = 0 (in empty space), which implies that,

Ê0 · k = 0, (2)

and hence there are only two independent possibilities for the unit vector Ê0, which are
correspond to two independent “polarization” states of the wave, both of which have electric
field transverse to the wave vector. Whereas, for waves inside matter, in general ∇ · E �= 0,
so there can be waves with longitudinal, as well as transverse, polarization.

Here, we consider a longer argument based on the scalar and vector potentials φ and A,
which has the possible merit of being extendable to the case of gravitational waves.

The potentials can be considered as components of a 4-vector potential,

φμ = (φ,A). (3)

Plane waves of the potentials have the form,

φμ = εμ ei(k·x−ωt), (4)

where εμ is a constant 4-vector. In principle, there are 4 independent types of polarization
for waves of the 4-potential.

Because the electromagnetic fields E and B can be deduced from derivatives of the
potentials, the latter have some degree of arbitrariness, which fact has come to be discussed
under the theme of gauge invariance.1 One consequence of gauge invariance is that one can

1For a historical review, see [1].
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choose to enforce one relation among the derivatives of the potentials, now called a gauge
condition, or choice of gauge. When electromagnetic waves are concerned, a particularly
useful choice is the Lorenz condition [2],2

∂μφ
μ = 0 =

1

c

∂φ

∂t
−∇ · A (Lorenz), (5)

in Gaussian units. Applying the Lorenz-gauge condition (5) to the 4-potential wave (4), we
have that,

kμφμ = 0, (6)

where,

kμ = (ω,kc), (7)

is the wave 4-vector.
We can say that the Lorenz condition (5) has eliminated one of the four possible polar-

ization states, leaving three. In the rest of this note, we suppose that the wave vector k is
in the z-direction. Then we can write one basis for the three remaining polarization states
εμ of the 4-potential as,

ε(1)
μ = (0, 1, 0, 0), (8)

ε(2)
μ = (0, 0, 1, 0), (9)

ε(3)
μ = (kc/ω, 0, 0, 1). (10)

We now show that for waves with ω = kc, as holds in vacuum, the longitudinal polariza-
tion state ε

(3)
μ can be eliminated by a gauge transformation (while staying within the Lorenz

gauge).3

The (gauge) transformation,

φμ → φμ + ∂μΩ, φ → φ +
1

c

∂Ω

∂t
, A → A− ∇Ω, (11)

does not change the electromagnetic fields,

E = −∇φ − 1

c

∂A

∂t
, B = ∇× A, (12)

and the revised potentials (11) still satisfy the Lorenz condition (5) provided that,

∂μ∂
μΩ = 0 =

1

c2

∂2Ω

∂t2
−∇2Ω. (13)

For example, we can choose,

Ω =
1

ik
eik(z−ct), ∂μΩ = −(1, 0, 0, 1) eik(z−ct). (14)

2For a survey of several gauge conditions, see [3, 4].
3The choice of a gauge condition is not sufficient for the potentials to be unique. For an example of two

rather different sets of potentials in the Lorenz gauge for waves inside a rectangular metallic cavity, see sec.
2.2.3 of [5].
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Then, for waves with ω = kc, the revised polarization state 3 vanishes,

ε(3)
μ = (1, 0, 0, 1) → ε(3)

μ + ∂μΩ = (0, 0, 0, 0). (15)

This confirms that familiar result that for electromagnetic waves which obey the free-space
relation that ω = kc there is no longitudinal polarization state. Loosely speaking, we can
gauge away the longitudinal polarization of waves in free space, but not for those in matter.
The transverse polarizations states (9)-(10) are altered by the gauge transformation (11),
but it is usual to redefine the transverse polarization states after the gauge transformation
to have their original forms again.

2.2 Gravitational Waves

In Einstein’s theory of gravitation one considers waves as weak perturbations of the metric
tensor,

gμν = ημν + φμν , (16)

where ημν is the (Euclidean) metric for empty space,

ημν =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

, (17)

as was tacitly assumed in sec. 2.1. For isotropic spacetime, we infer that the “potential”
tensor φμν is symmetric, with only 10 independent components. We can enforce a Lorenz-like
gauge condition on the derivatives of φμν that,

∂μη
μλφλν = ∂μφμν0. (18)

The four conditions (18) reduce the number of independent components of φμν to six.
We now wish to argue that further use of gauge transformations, within the Lorenz-like

gauge, reduce the number of independent components of φμν to two.
However, arguments based on consideration of waves φμν in otherwise empty space miss

a noteworthy issue: that weak gravitational waves inside low-density matter can have five
independent polarization states. This is clearer in a quantum view in which gravitational
waves are associated with spin-2 quanta, which have five independent spin components, in
general. Hence, we infer that there exists one more condition on the φμν which holds even
for waves inside low-density matter. Here, we simply state this condition to be that φμν is
traceless.

We now consider gravitational waves in free space that propagate in the z-direction,

φμν = εμν eik(z−ct), (19)
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where εμν is the (constant) polarization tensor. The Lorenz-like condition (18) tells us that,

kμεμν = 0, kμ = kc(1, 0, 0, 1), ⇒ ε0ν = ε3ν . (20)

The requirement of gauge invariance of the potentials φμν tells us that the transformation,

φμν → φ′
μν = φμν + ∂μΩν + ∂νΩμ (21)

does not change the physics provided the 4-vector Ωμ satisfies the free-space wave equation,

∂ν∂
νΩμ = 0 =

1

c2

∂2Ωμ

∂t2
−∇2Ωμ. (22)

Hence, we can consider,

Ωμ = χμ eik(z−ct), (23)

for any constant 4-vector χμ. Applying the gauge transformation (21) to the wave potentials
(20), the transformed polarization states are,

ε′μν = εμν + kμχν + kνχμ. (24)

We choose the four constants χμ to eliminate the ε′0ν:

ε′00 = ε00 + 2k0χ0 = ε00 + 2kcχ0, ⇒ χ0 = −ε00/2kc, (25)

ε′01 = ε01 + k0χ1 + k1χ0 = ε01 + kcχ1, ⇒ χ1 = −ε01/kc, (26)

ε′02 = ε02 + k0χ2 + k2χ0 = ε02 + kcχ2, ⇒ χ2 = −ε02/kc, (27)

ε′03 = ε03 + k0χ3 + k3χ0 = ε03 + kcχ3 − ε00/2, ⇒ χ3 = (ε00/2 − ε03)/kc. (28)

So far,

ε′00 = ε′01 = ε′02 = ε′03 = 0. (29)

The Lorenz-like condition (20), applied to ε′μν , tells us that,

ε′30 = ε′31 = ε′32 = ε′33 = 0. (30)

Since ε′μν is symmetric, we also have that,

ε′10 = ε′20 = ε′13 = ε′23 = 0. (31)

The remaining nonzero components are ε′11, ε′22 and ε′12 = ε′21. Since ε′μν is traceless, ε′22 =
−ε′11, and the polarization tensor ε′μν has only two independent (transverse) components, ε′11

and ε′12,

ε′μν =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

0 ε′11 ε′12 0

0 ε′12 −ε′11 0

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (32)

The fact that a massless particle with spin S can have only two spin (polarization) states
Sz = ±S when propagating in the z direction is discussed by Bargmann and Wigner [6] from
the perspective of relativistic invariance.
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2.2.1 Physical Significance of the Two Polarizations

The gravitational waves parameterized by ε11 and ε12 (dropping the ′s in eq. (32)) perturb the
weak-field metric tensor according to eq. (16), and so affect the invariant interval between
two events,

ds2 = gμνdxμdxν . (33)

If a gravitational plane wave of polarization ε11 is incident on a massive sphere, the x-
separation between pairs of points increases, while the y-separation decreases. As a result,
the sphere is (slightly) deformed into an ellipsoid, as sketched on the left below. Of course,
half a wave period later, the x-separation has decreased and the y-separation has increased.

In contrast, a wave of polarization ε12 increases the separation between points for which
dx = dy, and decreases the separation when dx = −dy, as shown on the right in the sketch
above.

These oscillatory deformations have a quadrupole character, with the two polarization
states rotated by 45◦ with respect to one another (compared to the 90◦ rotation between
x and y linear polarizations of electromagnetic waves). Likewise, the lowest multipole of
gravitational waves emitted by an oscillating mass is the quadrupole.

References

[1] J.D. Jackson and L.B. Okun, Historical roots of gauge invariance, Rev. Mod. Phys. 73,
663 (2001), http://kirkmcd.princeton.edu/examples/EM/jackson_rmp_73_663_01.pdf

[2] L. Lorenz, On the Identity of the Vibrations of Light with Electrical Currents, Phil.
Mag. 34, 287 (1867), http://kirkmcd.princeton.edu/examples/EM/lorenz_pm_34_287_67.pdf

[3] J.D. Jackson, From Lorenz to Coulomb and other explicit gauge transformations, Am.
J. Phys. 70, 917 (2002), http://kirkmcd.princeton.edu/examples/EM/jackson_ajp_70_917_02.pdf

[4] K.-H. Yang and K.T. McDonald, Formal Expressions for the Electromagnetic Potentials
in Any Gauge (Feb. 25, 2015), http://kirkmcd.princeton.edu/examples/gauge.pdf

[5] K.T. McDonald, Potentials for a Rectangular Electromagnetic Cavity (Mar. 4, 2011),
http://kirkmcd.princeton.edu/examples/cavity.pdf

5



[6] V. Bargmann and E.P. Wigner, Group Theoretical Discussion of Relativistic Wave
Equations, Proc. Nat. Acad. Sci. 34, 211 (1948).
http://kirkmcd.princeton.edu/examples/QED/bargmann_pnas_34_211_48.pdf

6


