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1 Problem

Maxwell formulated his dynamical theory of the electromagnetic field [1] without a crisp
vision of the nature of electric charge. The notion that electric charge resides on (rather
than, say, in the space/æther outside) “point” particles became widely accepted only after
the great 1892 monograph of Lorentz [2]. Nonetheless, Maxwell’s equations are consistent
with the view that “free” charges and currents do not exist, and that all charges and cur-
rents are related to “bound” electric and magnetic polarization densities P and M in the
æther/vacuum according to,

ρtotal = −∇ · P, Jtotal =
∂P

∂t
+ c∇ × M, (1)

in Gaussian units, where ρtotal and Jtotal are the densities of (bound = total) electric charge
and current, respectively.

Discuss the bound polarizations associated with a “point” electric charge q, and “point”
electric and magnetic dipoles p and m, which may be in motion.

2 Solution

In the convention of eq. (1), Maxwell’s equations can be written as,

∇ · E = 4πρtotal = −4π∇ · P, (2)

∇ · B = 0, (3)

∇ × E = −1

c

∂B

∂t
, (4)

∇ × B =
4πJtotal

c
+

1

c

∂E

∂t
= 4π∇ × M +

1

c

∂(E + 4πP)

∂t
, (5)

If we make the usual definitions of the auxiliary fields,

D = E + 4πP, H = B − 4πM, (6)

then,

∇ · D = 0, ∇× H =
1

c

∂D

∂t
, (7)

as expected since there are no “free” charges or currents by definition.
If ρtotal and Jtotal are known then the equations (2)-(5) have formal solutions for E and

B, since both the curl and divergences of these fields are specified. However, eq. (1) is not

1



sufficient to determine P and M uniquely, as the curl of P and the divergence of M are not
known. In general, the polarization densities are not well defined, and only become so upon
imposition of some auxiliary condition(s).

In this note we show that an assumption of spherical symmetry is sufficient to determine
the electric-polarization density associated with a point charge at rest, and that “simple”
additional assumptions permit determination of the polarization densities for electric and
magnetic dipoles.

2.1 Point Charge q

We first consider a point charge q at rest, in vacuum, at the origin. The electric field in this
rest frame is,

E0 =
q r̂0

r2
0

. (8)

This case is spherically symmetric, so we expect the electric polarization P0 to be spherically
symmetric also, such that the integral form of eq. (2) yields,

P0 = − q r̂0

4πr2
0

= −E0

4π
. (9)

Thus, D0 = E0 + 4πP0 = 0 here (except at the origin where the fields are not defined). Of
course, there is zero magnetic polarization in this case,

M0 = 0. (10)

The relativistic transformations of densities P and M were first discussed by Lorentz [4],
who noted that they follow the same transformations as do the magnetic and electric fields
B = H + 4πM and E = D − 4πP, respectively,

P = γ
(
P0 +

v

c
× M0

)
− (γ − 1)(v̂ · P0)v̂, M = γ

(
M0 − v

c
× P0

)
− (γ − 1)(v̂ · M0)v̂,(11)

where the inertial lab frame moves with velocity v with respect to the (inertial) rest frame
of the polarization densities, and γ = 1/

√
1 − v2/c2.

Thus, in a lab frame where charge q moves with constant, low, velocity v its associated
polarization densities are, at the instant the charge is at the origin,

P ≈ P0 +
v

c
×M0 = − q r̂

4πr2
, M ≈ M0 − v

c
× P0 =

v

c
× q r̂

4πr2
. (12)

The polarization densities (9) and (12) are nonzero everywhere in the “empty” space
around the charge. We might then characterize them as Maxwellian vacuum polarization.

The now-standard view, following Lorentz [2], that the polarization densities are zero
in the “empty” space outside the charge, corresponds to the quantum view that photons
carry no electric charge. This contrasts with the strong interaction, in which the mass-
less quanta (gluons) carry strong charge (color), making the theory nonlinear. Quantum
electrodynamics includes effects of vacuum polarization associated with “virtual” pairs of
particle/antiparticles with opposite electric charges, which induces tiny nonlinearities that
can be ignored in classical electrodynamics.

2



2.2 “Point” Dipoles

We consider now the case of a “point” particle that has electric and magnetic dipole moments
p0 and m0 in its rest frame.

The electric dipole can be thought of as due to a pair of equal and opposite charges with
small separation, and the electric field is the sum of that of the two charges,1

E0 =
3(p0 · r̂0)r̂0 − p0

r3
0

− 4πp0 δ3(r0)

3
. (13)

If we suppose that the total electric-polarization density associated with the two charges is
the sum of their polarization densities, then away from the origin,

P0(r > 0) = −E0(r > 0)

4π
= −3(p0 · r̂0)r̂0 − p0

4πr3
0

. (14)

To determine the polarization density at the origin we require that the dipole moment p0

be equal to the integral of the electric polarization density P0,

p0 =

∫
P0 dVol. (15)

Noting that,2 ∫
3(p · r̂)r̂ − p

4πr3
dVol = −p

3
, (16)

we find,

P0 = −3(p0 · r̂0)r̂0 − p0

4πr3
0

+
2p0 δ3(r0)

3
. (17)

This is very different from the usual form P0,free = p0 δ3(r0) obtained by supposing that the
electric polarization density of a point dipole is just the delta-function density of its dipole
moment p0.

We suppose here that the magnetic moment m0 is due to a circulating electric current. If
we take the view that electrodynamics in vacuum outside of the moment is the same whether
the moment is due to magnetic charges or electric currents, then the magnetic polarization
density has the form of eq. (17) for r0 > 0, but with a sign change corresponding to the sign
change in eq. (6) for the relation of the electric and magnetic polarization densities and the
electromagnetic fields. If we also require that the dipole moment m0 be equal to the integral
of the magnetic polarization density M0, then the latter has the form,

M0 =
3(m0 · r̂0)r̂0 −m0

4πr3
0

+
4m0 δ3(r0)

3
. (18)

1See, for example, eq. (4.20) of [3].
2See, for example, eq. (4.18) of [3].
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According to eqs. (17)-(18) the fields D0 and H0 are zero except at the origin,3 noting that
for a current-loop magnetic dipole,4

B0 =
3(m0 · r̂0)r̂0 − m0

r3
0

+
8πm0 δ3(r0)

3
. (19)

For low velocities of the lab frame relative the to rest frame, the lab-frame polarization
densities (at the instant when the particle is at the origin) follow from eqs. (17)-(18) as,

P ≈ P0 +
v

c
× M0

≈ −3(p0 · r̂)r̂ − p0

4πr3
+

2p0 δ3(r)

3
+

v

c
×

(
3(m0 · r̂)r̂− m0

4πr3
+

4m0 δ3(r)

3

)
, (20)

M ≈ M0 − v

c
× P0

≈ 3(m0 · r̂)r̂ −m0

4πr3
+

4m0 δ3(r)

3
+

v

c
×

(
3(p0 · r̂)r̂ − p0

4πr3
− 2p0 δ3(r)

3

)
. (21)

The meaning of moving dipole moments is ambiguous,5 so in the lab frame we define the
electric and magnetic dipole moments as integrals of the lab-frame polarization densities,

p ≡
∫

P dVol, m ≡
∫

M dVol. (22)

Then, the dipole moments in the lab frame are related to those in the rest frame by,

p ≈ p0 +
v

c
× m0, m ≈ m0 − v

c
× p0. (23)

However, the fields associated with an electric and/or magnetic dipole moving at low
velocity are not simply the instantaneous fields of the moments p and m, which leads to
ambiguities in interpretations of the physical significance of the dipole moments p and m in
the lab frame [6, 7].

In sum, the classical electrodynamics of Maxwell permits vacuum polarization to be
prominent. While it often stated that the Lorentz force law is the needed addition to
Maxwell’s equation to complete the theoretical structure of classical electrodynamics, it
can be underappreciated that this law includes the insight that all electric charge resides
on “particles” that also have mass, such that (classical) vacuum polarization can/should be
neglected. In effect, the Lorentz force law of 1892 [2] eliminated the classical æther.6

3In case of an electret with uniform electric polarization in its interior, one can complete the solution by
assuming that the polarization is zero outside the electret (as in prob. 4.11 of [5]) or one can permit vacuum
polarization outside such that D0 = 0 everywhere.

4See, for example, eq. (5.64) of [3].
5See, for example, sec. 2.2 of [6].
6Nov. 16, 2024. Lorentz, however, took the view, following Wien [8], that the mass of the electron was

entirely electromagnetic [9], residing in its surrounding electric field, which was an aspect of the æther.
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