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1 Problem

Deduce the fields of a hollow shell (and also of a “solid” sphere) of radius a that supports a
uniform surface (or volume) polarization density, either electric or magnetic.

2 Solution

2.1 Newton

We recall the well-known geometric argument due to Newton, p. 218 of [1], that the grav-
itational force (electric field) is zero in the interior of a spherical shell that has a uniform
surface mass (charge) density.

In the following Proposition LXXI, Newton demonstrated that a point mass at distance
r > a from the center of a shell of mass M is attracted to that center with a force proportional
M/r2.
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2.2 W. Thomson (Lord Kelvin)

We next recall an argument due to W. Thomson on pp. 470-471 of [2] (see also p. 362 where
aspects of the argument were attributed to Poisson), which is reproduced below.

When applying this argument to electricity and magnetism, where like charge repel (in
contrast to the gravitational attraction between (like) masses), there is a reversal of sign
as to the force/field inside the sphere. Also, we note that Thomson’s (vector) symbol i
(for intensity) corresponds to the volume density of dipoles, assumed to be formed of equal
and opposite charges. We transcribe this symbol as Pe for the case of electric dipoles due
to electric charges, and Mm for the case of magnetic dipoles due to hypothetical magnetic
charges (i.e., monopoles, as was assumed by Thomson, who followed Poisson on this). Then,
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the field inside the sphere (of radius a) can be written (in Gaussian units) as1,2

E = −4πPe

3
, D = E + 4πP =

8πPe

3
, B = −4πMm

3
, H = B − 4πM = −16πMm

3
. (2)

A corollary to Thomson’s argument (not immediately stated by him) is that the fields
exterior to the sphere are as if the positive and negative charges of the dipoles were con-
centrated at the centers of their respective spheres. That is, the exterior fields are those
associated with dipoles pe = 4πa3Pe/3 or mm = 4πa3Mm/3, namely,

D = E =
3(pe · r̂) r̂ − pe

r3
, B = H =

3(mm · r̂) r̂ − mm

r3
(r > a). (3)

However, it can be that magnetic dipoles are due to electric currents, and electric dipoles
are due to (hypothetical) magnetic currents. The fields inside uniform spheres of such po-
larization are not described by the above argument of Thomson, so we seek other insights.

2.3 The Field inside a Uniformly Polarized Spherical Shell is Zero

In the spirit of Thomson’s argument, a uniformly polarized spherical shell can be thought of
as the sum of two shells of opposite, uniform charge density, slightly offset. Then, since the
field inside each of these uniformly charged shells is zero, it is also zero inside their common
interior volume, i.e., inside the uniformly polarized spherical shell.

Further, this result holds for polarization due to currents as well as to charges (as assumed
in the previous paragraph) in that the field inside the polarized shell is due entirely to the
fields external to the dipoles on the shell, and these external fields are the same for dipoles
based on pairs of charges and on current loops.

1The magnetic fields called B and H by Maxwell in Arts. 398-399 of [6] were first distinguished by
Thomson in 1871, p. 397 of [2]. Thomson considered that his argument sketched above applied to H rather
than to B. We now justify this view by considering the magnetic charges to be “fictitious” equivalent sources
of magnetic fields actually due to (Ampèrian) electric-current loops. Then, we could rewrite the third and
fourth relations of eq. (2) as,

H = −4πMe

3
, B = H + 4πM =

8πMe

3
, (1)

which we deduce by a different argument in sec. 2.5 below.
2Neither Thomson nor Maxwell enunciated a concept of the polarization density P of electric dipoles,

and only regarded the relation between D and E as D = εE, where ε is now called the (relative) dielectric
constant and/or the (relative) permittivity. See Art. 111 of [7] for Maxwell’s use of the term polarization.

In 1885, Heaviside introduced the concept of an electret as the electrical analog of a permanent magnet
[8], and proposed that the electrical analog of magnetization (density) be called electrization. He did not
propose a symbol for this, nor did he write an equation such as D = E + 4πP.

The density of electric dipoles was called the polarization by Lorentz (1892) in sec. 102, p. 465 of [9], and
assigned the symbol M.

Larmor (1895), p. 738 of [10], introduced the vector (f ′, g′, h′) for what is now written as the polarization
density P, and related it to the electric field E = (P, Q, R) as (f ′, g′, h′) = (K − 1)(P, Q, R)/4π, i.e.,
P = (ε − 1)E/4π = (D −E)/4π. Larmor’s notation was mentioned briefly on p. 91 of [11] (1898).

The symbol M for dielectric polarization was changed to P by Lorentz on p. 263 of [12] (1902), and a
relation equivalent to D = E + 4πP was given in eq. (22), p. 265. See also p. 224, and eq. (147), p. 240 of
[13] (1903), which latter subsequently appeared as eq. (142), p. 155 of the textbook [14] (1904) by Abraham.
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2.4 The Field at the Center of a Uniformly Polarized Sphere

In the continuum approximation, a uniformly polarized sphere is equivalent to a set of nested
spherical shells, plus a tiny polarized sphere about the center of the larger sphere. The field
at the center of the larger sphere due to each of the nested spherical shells is zero, according
to the argument of sec. 2.3 above. Hence, the field at the center of the larger sphere is the
same as the field at the center of the tiny polarized sphere about the center.

We recall that the fields at the center of a “point” dipole pe or mm due to equal and
opposite charges, and that of me or pm due to current loops, are given by,3

E = −4πpe

3
δ3r), B = −4πmm

3
δ3r), E =

8πpm

3
δ3r), B =

8πme

3
δ3r). (4)

The moments in the tiny sphere of volume dVol about the center of the larger sphere are
Pe dVol, etc., so we infer that the fields at the center of the larger, uniformly polarized
spheres are,

E = −4πPe

3
, B = −4πMm

3
, E =

8πPm

3
, B =

8πMe

3
. (5)

2.5 The Field inside a Uniformly Polarized Sphere due to

Current Loops

The first and second relations of eq. (5) agree with the analysis of sec. 2.2 for a sphere of
uniform polarization due to charges, where the field was found to be uniform throughout the
sphere. Hence, we extrapolate that fields inside uniformly polarized spheres due to dipoles
based on current loops are also uniform throughout the sphere, but with values given by the
third and fourth relations of eq. (5).4

E =
8πPm

3
, D = E + 4πP =

16πPm

3
, B =

8πMe

3
, H = B − 4πM = −4πMe

3
. (6)

Now, the field at an arbitrary point r with a uniformly polarized sphere can be regarded
as the sum of the fields due to a tiny sphere about that point plus the field due to the rest
of the sphere. Since the fields at the center of a tiny sphere about r are given by eq. (5),
which are also the total fields inside the larger sphere, we infer that the fields at r due to
the rest of the sphere are zero.5

3See, for example, eq. (5.64) of [4] or sec. III of [5].
4This agrees with analyses as in sec. 5.10 of [4], based on a scalar potential for the fields E or H.
5This discussion also relates to the issue of the field inside a small spherical cavity within a polarized

medium, where if the cavity were filled the field would be E or B. The field inside the cavity would then be
E−Esmall sphere or B−Bsmall sphere, where the field inside the small sphere is given by the appropriate form
of eq. (5).

Such a result was mentioned by W. Thomson on p. 258 of [3] (p. 362 of [2]), who attributed it to Poisson,
but a demonstration by Thomson of a key step, eq. (2) above, was only given in 1871, as discussed in
sec. 2.2 above. The result was mentioned in the footnote by J.J. Thomson to Art. 400 of the 1892 edition of
Maxwell’s Treatise [6], where the polarization was assumed to be due to charges. See also sec. 4.5 of [4].

In case the medium is a sphere of uniform polarization, the field inside a small cavity would be zero.
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2.6 Fields due to Polarization on a Cubic Lattice

The preceeding arguments have all assumed that the polarization densities (like charge and
current densities in Maxwellian electrodynamics) are continuous.

A more contemporary view is that the polarization is due to small entities, electrons
and/or nuclei, and the Maxwellian description is a macroscopic average over the microscopic
fields of these entities.

For example, the polarization might be due to a cubic lattice of two types of entities, like
Na and Cl in salt, in which only one type of the entities is polarized, either due to charges
or to current loops. The field at the center of one of these polarized entities is described by
the appropriate relation in eq. (5), while the field at the center of any of the unpolarized
entities would seem to be zero.6

In the macroscopic approximation, we can define a (macroscopic) uniform polarization
density P = p/d3 or M = m/d3, where d is the edge length of a unit cell of the lattice of
dipoles p or m, such that the macroscopic fields E = D − 4πP and B = H + 4πM, which
are continuous by definition, obey the appropriate form of eq. (5),

The microscopic field in between lattice sites, i.e., between centers of the various entities,
varies between zero and the very large value at the centers of the dipoles p or m.
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