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1 Problem

Deduce an approximate expression for the maximum power that can be received by a small
antenna with a load that includes a resistance R (as well as a possible reactance) when the
antenna is in a linearly polarized incident plane wave of wavelength λ and (time-average)
power Pin per unit area. Show that the maximum power received is approximately,

Pmax ≈ Pin
λ2

4π
, (1)

independent of the physical size of the small antenna.
Antennas used for reception of signals associated with a bandwidth Δ about a carrier

frequency ω0 should have a Q no larger than ω0/2Δ. Discuss the resulting limit on the power
received by the antenna compared to the maximum (1).

2 Solution

We first note that the (time-average) incident power per unit area, assuming that the medium
surrounding the antenna has unit relative permittivity and unit relative permeability, can
be written as,

Pin = 〈S〉 =
1

2
E0H0 =

E2
0

2Z0
, (2)

where c is the speed of light in vacuum, S = E×H is the Poynting vector, E0 and H0 are the
amplitudes of the incident electric and magnetic fields, and Z0 =

√
μ0/ε0 = 377 Ω (= 4π/c

in Gaussian units).1,2

We also note that the small antennas are generally well described by their electric and
magnetic dipole moments.3 So, we consider here the cases of a small linear dipole antenna,
for which only its electric dipole moment is significant, and a small loop antenna, for which
only its magnetic dipole moment is significant.

2.1 Effective Height and Effective Area

The present analysis builds on that presented in [2]. So far as the receiver circuit is concerned,
the antenna can be considered as a two-terminal device which can be characterized, according
to Thévenin, by a voltage source Voc and a series impedance ZA.

1Some people use E0, I0 and V0 to denote RMS field, current and voltage, in which case various expres-
sions involving the squares of these quantities differ by a factor of 2.

2The assumption in eq. (2) that H0 = E0/Z0 is only valid, in general, when the receiving antenna is in
the “far zone” of the source.

3An interesting exception is a small, counterwound, helical, toroidal antenna [1].
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The strength of the voltage source is the (open-circuit) voltage across the terminals of
the antenna when it is not connected to anything. We can write the open-circuit voltage in
terms of an effective height heff as,

Voc = E0heff , (3)

where E0 is the amplitude of the incident electric field.
The impedance ZA equals Voc/Isc where Isc is the current between the terminals of the

antenna when they are short-circuited. The short-circuit current is difficult to estimate
accurately by analytic techniques, but for a short antenna it is almost purely out of phase
with respect to the incident field. Then, the impedance ZA is almost purely imaginary,
corresponding to the large capacitive reactance of the gap between the antenna terminals.
The impedance ZA relevant to a receiving antenna is the same as the terminal impedance
of the antenna when used for transmission, according to an antenna reciprocity theorem.
For transmitting antennas the real part of the impedance can be written ROhmic + Rrad,
where ROhmic is the effective resistance of the antenna due to the finite conductivity of its
conductors, and Rrad is the so-called radiation resistance of the antenna.

If the load on the receiving antenna is described by an impedance ZL = RL + iXL, then
the (complex) current I through the load has amplitude,

I =
Voc

ZA + ZL
, (4)

and the power delivered into the load resistor RL is,

P =
1

2
|I |2 R =

V 2
oc

2

RL

|ZA + ZL|2
=

E2
0h

2
eff

2

R

|ZA + ZL|2

= Pin
RLZ0

|ZA + ZL|2
h2

eff ≡ PinAeff , (5)

where,

Aeff =
RLZ0

|ZA + ZL|2
h2

eff . (6)

Aeff is the effective area of the antenna system.
The process of maximizing the effective area of the receiving antenna is called matching.

A first step is to make the reactance XL of the load equal and opposite to the reactance XA

of the antenna. When this is done, the effective area becomes,

Aeff =
RLZ0

(ROhmic + Rrad + RL)2
h2

eff (matching reactance). (7)

It is now clear (if it wasn’t before) that the antenna will perform better if the effective Ohmic
resistance of its conductors is negligible, which we will assume to be the case from now on.
Then,

Aeff =
RLZ0

(Rrad + RL)2
h2

eff (matching reactance, ROhmic � Rrad). (8)
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Finally, we maximize the effective area by choosing a load resistor RL equal in value to the
radiation resistance Rrad. This may not be practical, but in principle we obtain,

Aeff ,max =
Z0

4Rrad

h2
eff (matching reactance, ROhmic � RL = Rrad). (9)

2.2 Small Linear Dipole Antenna

As shown, for example, in sec. 2 of [2] the effective height of a small linear antenna is,

heff = h (small linear antenna), (10)

where the length of each of its two arms is h � λ. The radiation resistance of a small linear
dipole antenna is (see, for example, p. 192 of [3]),

Rrad =
2π

3
Z0

(
h

λ

)2

(small linear antenna). (11)

Hence, according to eq. (9) the maximum effective area of a small linear dipole antenna is,

Aeff ,max =
Z0

4Rrad
h2

eff =
3λ2

8π
(matching inductor, ROhmic � RL = Rrad), (12)

noting that the reactance of a small linear antenna is capacitive, so the matching element
must be an inductor.

The result (12) is often written to include a factor of D, the directivity of the antenna,
defined to be the maximum of the angular function f(θ, φ) such that the angular distribution
of the power radiated by the antenna (when used as a transmitter) is,

P (θ, φ) =
Ptotal

4π
f(θ, φ). (13)

For a small dipole antenna (either linear or loop), the function f is (3/2) sin2 θ for polar
angle θ to the relevant axis. Hence, D = 3/2 is the directivity for a small dipole antenna,
and we can write,

Aeff ,max = D
λ2

4π
= πλ2D (matching inductor, ROhmic � RL = Rrad), (14)

where λ = λ/2π is the reduced wavelength.

2.3 Small Dipole Loop Antenna

The radiation resistance of a small loop antenna of radius h is (see, for example, p. 192 of
[3]),

Rrad =
8π5

3
Z0

(
h

λ

)4

(small loop antenna). (15)

3



According to Faraday’s law, the open-circuit voltage for a small loop antenna equals the
time rate of change of the magnetic flux through the loop,4

Voc = πh2ωB0 =
2π2h2

λ
E0, (16)

so the effective height of a small loop antenna is,

heff =
2π2h2

λ
(small loop). (17)

Thus, the maximum effective area of the small loop antenna follows from eq. (14) as,

Aeff ,max =
3λ2

8π
=

Dλ2

4π
(matching capacitor, ROhmic � R = Rrad), (18)

recalling that the directivity of a small loop (dipole) antenna is 3/2, and that since the
reactance of a loop is inductive the matching element must be a capacitor.5 This result is
the same as (14) for a small linear dipole antenna.

3 An Effective-Area Theorem

The results (14) and (18) are examples of the fact that for any antenna,

Aeff ,max =
Dλ2

4π
(matching element, ROhmic � R = Rrad), (19)

such that the maximum power received by the load resistor is Pmax = Aeff ,maxPin.
If it is desired that the effective area be large compared to λ2, then the directivity D

must be large. This is consistent with the law of diffraction that if a beam is to have a
characteristic angular spread of θ (directivity D ≈ 1/θ2), then its narrowest cross section
has radius ≈ λ/θ, and hence area ≈ Dλ2.6,7 We show that eq. (19) describes the maximum
effective area for any antenna, arguing from an antenna reciprocity theorem (Appendix A.6).

Consider any two antennas, labeled i and j, that are separated by a distance r such that
each antenna is in the far zone of the other. Each antenna is oriented such that the other is

4The assumption in eq. (16) that B0 = E0/c holds, in general, only in the “far zone” of the source.
5The small loop might have N turns, and might be would around a ferrite rod of effective (relative)

permeability μ, which multiplies the magnetic moment of the system by Nμ (compared to that of a single-
turn loop) and the radiation resistance Rrad by N2μ2. In this case, the open circuit voltage Voc (16) and the
effective height heff (17) are multiplied by Nμ, but the maximum effective area Aeff,max of the small antenna
remains as given in eq. (18) [if the receiving circuit is “matched”, as confirmed by eq. (21)].

6Receiving antennas do not necessarily have their conductors all in a plane perpendicular to the direction
of the incident wave, but if they do the effective area of the conductors must be ≈ Dλ2 if the antenna is to
have directivity D.

7In the quantum view the function of a receiving antenna is to absorb photons from the incident wave.
If the antenna is “matched” it can absorb essentially all photons that strike some part of it. A photon has
cross-sectional area ≈ λ2, so the effective area of an antenna that lies entirely in a plane perpendicular to
the direction of the incident wave is the larger of λ2 or the actual area of the antenna. This maximum equals
Dλ2, according to the previous footnote.
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at the maximum of the angular distributed of power radiated when the antenna is used as a
transmitter. Each antenna includes a matching network such that the terminal impedance
of the antenna plus network is Rrad, the (real) radiation resistance of the antenna.

If antenna j is used as a receiver, the open-circuit (no load) voltage Voc,j induced across
its terminals by the radiation from antenna i with drive current Ii is related to the open-
circuit voltage Voc,i induced across the terminals of antenna i (when used as a receiver) by
the radiation from antenna j (when used as a transmitter with drive current Ij) according
to the reciprocity relation (Appendix A),

Voc,j

Ii
=

Voc,i

Ij
. (20)

The maximum time-average power received by a load resistor Rj connected to antenna j
when it is used as a receiver occurs for Rj = Rrad,j (and the receiver includes a matching
network whose reactance cancels that of the antenna itself, so that Rj = ZA,j), follows from
eq. (5) as,

Pj,receive,max =
V 2

oc,j

8Rrad,j

. (21)

The time-average power per unit area incident on antenna j due to current Iie
−iωt delivered

to the terminals of antenna i is,

dPij

dA
=

Di

4πr2
Pi,transmit =

Di

8πr2
Rrad,iI

2
i , (22)

where Di is the directivity of antenna i. The (maximum) effective area of antenna j is the
ratio of the (maximum) power received to the incident power per unit area,

Aeff ,max,j =
Pj,receive,max

dPij/dA
=

V 2
oc,j

8Rrad,j

8πr2

DiRrad,iI2
i

(23)

Thus,

Aeff ,max,jDi =
V 2

oc,j

I2
i

πr2

Rrad,iRrad,j

=
V 2

oc,i

I2
j

πr2

Rrad,iRrad,j

= Aeff ,max,iDj , (24)

using the reciprocity relation (20). Hence, the ratio Aeff ,max/D is the same for any two
antennas. From secs. 2.1 and 2.2 we see that this ratio is λ2/4π, which confirms the general
validity of eq. (19).

This section follows sec. 2.14 of [4], which is the earliest discussion of the effective-area
theorem that I have found. However, the theorem is likely much older. Rayleigh discusses
the effective area of an acoustic “resonator” in [5] and reports a value close to λ2/4π.

4 Received Power for a Specified Signal Bandwidth

For an antenna (system) to receive maximum power (1) the total reactance X must be zero
and the resistance equal to the radiation resistance Rrad, which latter is very small for small
antennas. As a consequence, the antenna system has a very narrow bandwidth 2δ about the
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nominal (angular) frequency ω0 (such that the power received at frequencies ω0 ± δ is one
half that the maximum at ω0). This is not a desirable feature if the antenna is to receive
signals of bandwidth 2Δ > 2δ. Increasing the bandwidth of the receiving antenna results in
a reduction in the power received compared to the maximum possible (i.e., a reduction in
efficiency, and in the capture area), as discussed in this section.

As shown, for example, in [6], regarding the antenna system as a series R-L-C circuit
permits us to characterize the system by its Q, related by,

Q ≡ ω0

bandwidth
=

ω0

2δ
≈ 2ω0 × stored energy at resonance

power delivered to the load at resonance

≈ reactance of L or of C at resonance

R
. (25)

The requirement of a bandwidth 2Δ implies that the load resistance R should be,

R ≈ Rrad
Qmax

Q
, where Qmax =

reactance of L or of C at resonance

Rrad

. (26)

The capture area of the receiving is reduced by the factor Rrad/R = Q/Qmax compared to
the maximum (18), and the intercepted power is reduced compared to the maximum (1) by
the same ratio.

The case of a small loop antenna is easier to analyze (and relevant to typical AM ra-
dios). We consider the loop to consist of N turns of radius r comprising a coil of length l
wound around a rod of effective relative permeability μeff . Then the inductance L is given
approximately by,

L =
N2μeffμ0πr2

l
, (27)

The radiation resistance Rrad of the coil is given by,8

Rrad =
πN2μ2

effμ0c

6

(2πr)4

λ4 =
πN2μ2

effZ0

6

(2πr)4

λ4 , (28)

noting as in footnote 3 that the presence of N turns and the effective permeability μeff inside
the coil multiplies the radiation resistance by N2μ2

eff . For maximum power reception, the
load resistance R equals Rrad and the maximum Q is given by (independent of N),

Qmax =
ω0L

Rrad
=

2πcL

λRrad
=

3λ3

8π3μeff lr2
. (29)

For example, at frequency f0 = ω0/2π = 1 MHz, λ = 300 m, so for l = r = 1 cm and, say,
μeff = 100, we find Qmax ≈ 3 × 109. However, for reception of audio signals modulated onto
this carrier frequency, we might desire the bandwidth to be 30 kHz, and the Q to be no more
than 30. Hence, we must lower the Q by a factor of 108, which is accomplished by increasing

8See, for example, eq. (26) of [7].
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the load resistance to R = 108Rrad. For a coil with N = 100 turns and the above l and r the
radiation resistance is Rrad ≈ 1.5 × 10−4 Ω, so the load resistance should be R ≈ 15 kΩ.9

If it were desired for the AM radio to extract the maximum possible power from the
wave, perhaps for a crystal radio set, while also Qmax = 30, then according to eq. (29),
μ2

eff lr2 ≈ λ3/80π3 ≈ 104 for λ = 300 m. Then, an air-core coil with l ≈ r ≈ 22 m would
be required. The length of the wire of the air-core coil exceeds λ/4, which would be the
appropriate length for a linear monopole antenna with similar performance. As such, large
linear antennas, rather than air-core loop antennas are typically used with crystal radio sets.

A high-performance ferrite rod could be used, with l = 100r so that μeff ≈ μ ≈ 104 [8]. In
this case, the radius of the rod/coil would need to be only 1 cm, with length l = 1 m, which is
not impractical. The radiation resistance is then Rrad ≈ 4×10−5N2 Ω, according to eq. (28),
so if it is desired that, say, Rrad = 100 Ω, then the number of turns should be N ≈ 1200.
The effective resistance of the ferrite rod would need to be less than 100 Ω at 1 MHz for this
scheme to work. Also, the inductance L would be about 10 H according to eq. (27), which
would require a tuning capacitor with C = 1/ω2

0L ≈ 1/400 pF at f0 = ω0/2π = 1 MHz,
which is problematic.

Finally, we note that is a very narrow bandwidth is acceptable, small superconducting
antennas can be operated with Rload = Rrad. See, for example, [9].

9In practice, there will be energy losses in the medium with effective permeability μeff , so that the load
resistance R should be considered as the sum of an Ohmic resistance ROhmic and an effective resistance Reff

of the permeable medium.
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A Appendix: Reciprocity Theorems

A.1 Green’s Reciprocation Theorem for Electrostatics

The first reciprocity theorem is due to Green (1828, p. 39 of [10]), which states that if a set
{i} of fixed conductors is at potentials Vi when carrying charges Qi, and at potentials V ′

i

when carrying charges Q′
i, then ∑

i

ViQ
′
i =

∑
i

V ′
i Qi. (30)

To see this, we label the 3-dimensional potential distribution associated with charges Qi by
Φ(r), and that associated with charges Q′

i by Φ′. The space outside the conductors is charge
free and with relative dielectric constant ε = 1.

We invoke Green’s theorem (p. 23 of [10])∫
(Φ∇2Φ′ −Φ′∇2Φ) dVol =

∮
(Φ∇Φ′ − Φ′∇Φ) · dS, (31)

where we take the bounding surface S to be that of the set of conductors. In the charge-free
space outside the conductors we have ∇2Φ = 0 = ∇2Φ′, and the conductors are equipotentials
with Φ = Vi and Φ′ = V ′

i on conductor i, so that

0 =
∑

i

Vi

∮
∇Φ′

i · dSi − V ′
i

∑∮
∇Φi · dSi = −4π

(∑
i

ViQ
′
i −
∑

i

V ′
i Qi

)
, (32)

using Gauss’ Law (in Gaussian units) that

4πQi =

∮
Ei · dSi = −

∮
∇Φi · dSi. (33)

A.2 Helmholtz Reciprocity

The next step in enlarging the scope of reciprocity relations appears to have been taken by
Helmholtz (1859), p. 29 of [11], who stated that Wenn in einem mit Luft gefüllten Raume, der
teils von endlich ausgedehnten festen Körpern begrenzt, teils unbegrenzt ist, im Punkte A
Schallwellen erregt werden, so ist das Geschwindigkeitspotential derselben in einem zweiten
Punkte B ebenso groß, als es in A sein würde, wenn nicht in A, sondern in B Wellen von
derselben Intensität erregt würden. Auch ist der Unterschied der Phasen des erregenden und
erregten Punktes in beiden Fällen gleich.10

Apparently Helmholtz considered this theorem to be “obvious,” as he offered no proof.
Helmholtz’ theorem is for scalar waves generated by point sources, and detected by point
observers. In this case we readily write that for a wave of angular frequency ω that is
generated at point A with strength SA, the wave observed at point B a distance r from A is,

OB = SA
ei(kr−ωt)

r
. (34)

10If in a space filled with air which is partly bounded by finitely extended fixed bodies and is partly
unbounded, sound waves be excited at any point A, the resulting velocity potential at a second point B is
the same both in magnitude and phase, as it would have been at A, had B been the source of the sound.
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Likewise a source of strength S ′
B at point B leads to a wave that is observed at point A to

be,

O′
A = S ′

B

ei(kr−ωt)

r
. (35)

Thus, we obtain the reciprocity relation,

O′
ASA = OBS ′

B = SAS ′
B

e2i(kr−ωt)

r
. (36)

While Helmholtz reciprocity may be “obvious” for point sources and point observers it
does not always hold for sources and observers of finite extent [12].

In 1886 Helmholtz returned to the theme of reciprocity, and gave a general argument
based on Hamiltonian dynamics [13]. For a commentary in English, see [14].

A.3 Maxwell and Reciprocity

Variants of reciprocity theorems for static mechanical systems were considered by several
authors in the 1860’s [15], including a version by Maxwell [16].

Maxwell later discussed Green’s reciprocation theorem in sec. 86 of his Treatise [17]. In
secs. 280-281 he noted that in a linear circuit that contains only resistors, but which may
contain linkages of arbitrary complexity, if a (constant) voltage Vij applied between points
i and j leads to a (steady) current Ikl between points k and l, then (constant) voltage V ′

kl

applied between point k and l leads to (steady) current I ′
ij between points i and j (which

now has no applied voltage) that obeys the reciprocity relation,

VijI
′
ij = V ′

klIkl. (37)

Maxwell’s reciprocity relation (37) is perhaps “obvious” for a circuit that contains only
a single loop, and seems to be little referenced (whereas his name is commonly attached to
a reciprocity theorem in mechanics).

We sketch Maxwell’s argument, noting that it is readily extended to include capacitors
and inductors, and to include time-harmonic voltage sources, so long as radiation is neglected,
and with the important restriction that there is no mutual capacitance or inductance between
circuit elements.

The system consists of a set {i} of nodes, i = 1, ..., n, connected by “wires”.
Any or all of the n(n−1)/2 pairs of nodes, ij, can be directly connected by a “wires” along

which there exists one or more circuit elements (resistor, capacitor, inductor, or external
voltage source).

The impedance11 and the external voltage (if any, but which will then contribute to the
impedance) along the “wire” that directly connects nodes i and j are written Zij and Vij,
respectively, where Vij is positive when the external voltage is lower near node i.

A key feature of Maxwell’s analysis is the assumption that the current Iij that flows from
node i to node j can be written as,

Iij =
Vi − Vj + Vij

Zij
= −Iji, (38)

11The term impedance in circuit analysis was introduced by Heaviside in 1886 [18]. See also Lodge (1888)
[19].
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where Vi is the voltage at node i. This assumption excludes the possibility of mutual capac-
itance or inductance between “wire” ij and any other “wires” in the circuit.

The sum of the currents at each node is zero,

0 =
∑
j �=i

Iij =
∑
j �=i

Vi − Vj + Vij

Zij
= Vi

∑
j �=i

1

Zij
−
∑
j �=i

Vj

Zij
+
∑
j �=i

Vij

Zij
. (39)

A clever trick of Maxwell was to define,,

Vii = 0, and
1

Zii
= −

∑
j �=i

1

Zij
, (40)

which permits us to rewrite eq. (39) as the set of n equations,

∑
j

Vj

Zij
=
∑

j

Vij

Zij
. (41)

Since Vji = −Vij while Zji = Zij, we have that
∑

i

∑
j Vj/Zij =

∑
i

∑
j Vij/Zij = 0, and

only n − 1 of these equations are independent. This is to be expected since the voltages are
defined only up to an overall constant. Suppose, for example, that we define Vn = 0. Then
we consider eqs. (41) only for i = 1, ..., n − 1, and it suffices to sum over index j only for
j = 1, ..., n− 1. Thus, we obtain,

Vi =

∑
k Δik

∑
l Vkl/Zkl

Δ
, (42)

where Δ is the determinant of the admittance matrix Aij = 1/Zij , and Δij is the minor
determinant associated with element Aij. Since impedance is symmetric, Zji = Zij , matrix
Aij is symmetric, and it follows that Δji = Δij.

Now suppose that all external voltages are zero except for Vkl = −Vlk. Then, the current
in the “wire” from node i to node j is,

Iij =
Vi − Vj

Zij

= Vkl
Δik − Δil − Δjk + Δjl

ZijZklΔ
. (43)

Similarly, if all external voltages are zero except for V ′
ij = −V ′

ji, then the current in the
“wire” from node k to node l is,

I ′
kl =

V ′
k − V ′

l

Zkl
= V ′

ij
Δki −Δkj −Δli + Δlj

ZijZklΔ
= V ′

ij
Δik − Δil − Δjk + Δjl

ZijZklΔ
. (44)

Comparing eqs. (43) and (44) we arrive at the reciprocity relation (37).

A.4 Rayleigh Reciprocity

In 1873 Rayleigh extended the static reciprocity theorems of Green, Maxwell and others to
include that case that the “force” (derivable from a scalar potential) was periodic rather than
static [20]. Although he acknowledged Helmholtz’ earlier theorem for waves [11], Rayleigh’s
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discussion did not explicitly include the possibility of energy in the form of radiation. His
subsequent exposition in secs. 106-111 of The Theory of Sound [21] included various examples
to show the generality of reciprocity in quasistatic systems, with the effect that his name is
now often associated with reciprocity theorems. The statement of his theorem for electrical
circuits is the same as eq. (37), but Rayleigh’s argument holds even when there is mutual
capacitance and inductance between circuit elements.

Rayleigh’s original argument, like Maxwell’s, involved minors of a relevant determinant.
A shorter derivation was given in 1952 by Tellegen [22], as discussed in sec. A.7.

A.5 Lorentz Reciprocity

The generalization of reciprocity theorems to the vector fields of electromagnetism, including
waves, is due to Lorentz (1896 [23]).

Lorentz showed that if a (time-dependent) current distribution J1 leads to electric and
magnetic fields E1 and B1 in a linear medium, and that current distribution J2 leads to
electric and magnetic fields E2 and B2, then,∫

J1 · E2 dVol =

∫
J2 · E1 dVol. (45)

A demonstration of eq. (45) invokes the vector calculus identity that,

∇ · (F× G) = G · (∇× F) − F · (∇ × G). (46)

Thus, for fields with time dependence e−iωt,

∇ · (E1 × B2) = B2 · (∇ × E1) − E1 · (∇ × B2)

= −1

c
B2 · ∂B1

∂t
− E1 ·

(
4π

c
J2 +

1

c

∂E2

∂t

)

= −4π

c
E1 · J2 +

iω

c
(B2 · B1 + E1 · E2). (47)

Similarly,

∇ · (B1 ×E2) = E2 · (∇ × B1) −B1 · (∇× E2)

= E2 ·
(

4π

c
J1 +

1

c

∂E1

∂t

)
− 1

c
B1 · ∂B2

∂t

= −4π

c
E2 · J1 +

iω

c
(E2 · E1 + B1 · B2). (48)

Hence,

∇ · (E1 × B2 − B1 ×E2) =
4π

c
(J1 · E2 − J2 · E1), (49)

and so, ∫
(J1 · E2 − J2 · E1) dVol =

c

4π

∮
(E1 × B2 −E1 × B2) · dArea. (50)
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A small delicacy in the argument is that for sources J1 and J2 contained in a bounded
region, the asymptotic radiation fields vary as 1/r and have the form B1(2) = r̂ × E1(2), so
the surface integral vanishes, and we obtain the reciprocity relation (45), independent of the
angular frequency ω.

The assumption of linear media seems necessary only to insure that sources at frequency
ω lead to fields only at this frequency. See [24] for a review of Lorentz reciprocity in the time
domain.

A.6 An Antenna Reciprocity Theorem

The earliest application of Lorentz’ reciprocity relation (45) to antennas that I have found is
in the papers of Carson [25, 26, 27], but he appears not to have explicitly deduced eq. (54).
A result close to this was given by Ballantine (1929, [28]). I first find CEQ. (54) in sec. 11.10
of [29].

Consider two antennas, A and B, which contain the only currents in our system. Then
CEQ. (45) can be written as,∫

A

J1A · E2A dVol +

∫
B

J1B · E2B dVol =

∫
A

J2A · E1A dVol +

∫
B

J2B · E1B dVol. (51)

In situation 1, antenna A is the transmitter, and antenna B is the receiver, operated with
no load (open circuit), while their roles are reversed in situation 2. Then the currents J1B

and J2A exist only in the conductors of the receiving antennas, and not in the gap between
the terminals of these antennas. Of course, these currents flow along the conductors. In
the approximation of perfect conductors, the electric fields in/on these conductors have no
component parallel to the conductors. Hence,

J1B · E2B = 0 = J2A · E1A, (52)

while the remaining integrals in CEQ. (51) have contributions only from the gap between
the terminals (where the idealized power sources for the transmitting antennas are located),∫

A,gap

J1A · E2A dVol =

∫
B,gap

J2B · E1B dVol. (53)

We can write the currents in the gap as J = I dl/dVol, so that CEQ. (53) becomes,

I1A

∫
A,gap

E2A · dl = I1AV oc
2A = I2BV oc

1B = I2B

∫
B,gap

E1B · dl, (54)

where V oc is measured between the terminals of the receiving antennas. This is the form
of the reciprocity theorem used in sec. 2.3 above, which holds for both “linear” and “loop”
antennas.

A.7 Tellegen’s Theorem

Tellegen [22] has given a network theorem that then leads to a kind of reciprocity theorem.
See also [30].
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Consider a network with nodes, and links between some or all pairs of nodes. The network
can consist of parts with no links between different parts.

“Currents” flow along links between pairs with nodes, with the same scalar value for the
“current” at both nodes. A “current Ijk is defined to be positive if it flows from node j to
node k. Then, Iji = −Iij. The only “physical” assumption underlying Tellegen’s theorem is
that, ∑

nodes k directly linked to node j

Ijk = 0 (55)

for all nodes j.
We also suppose that every node can be assigned a scalar “voltage” Vj . However, there

is not necessarily any “physical” relation between “current” and “voltage.”
It follows immediately from eq. (55 that,∑

j

Vj

∑
nodes k directly linked to node j

Ijk = 0. (56)

The “current” in a link appears exactly twice in the sum (56), in the form,

VjIjk = VkIkj = (Vj − Vk)Ijk ≡ VjkIjk. (57)

Summing over all links, we obtain Tellegen’s theorem,∑
links

VjkIjk = 0. (58)

Another consequence of the definition of the “voltage drop” Vjk = Vj−Vk is that the directed
sum of ”voltage drops” around any closed loop of links is zero.

We can obtain a kind of reciprocity theorem from eq. (58) by considering a second set
of “voltages” V ′

j and the corresponding “voltage drops” V ′
jk. Since eq. (58) does not require

there to be any “physical” relation between “current” and “voltage”, we also have that∑
links V ′

jkIjk = 0. Likewise, we can consider another set of “currents” I ′
jk that are not

necessarily related to either the Vjk or the V ′
jk (other than applying to the same network

topology), for which we can write
∑

links VjkI
′
jk = 0. Hence, we obtain Tellegen’s reciprocity

relation, ∑
links

V ′
jkIjk =

∑
links

VjkI
′
jk = 0. (59)

However, we cannot deduce from this that V ′
jkIjk = VmnI ′

mn for a pair of links jk and mn.
The “nonphysical” character of Tellegen’s theorem clarifies how the reciprocity theorems

are somewhat abstract “bookkeeping” constructs, rather than a manifestation of “cause and
effect”.

We can, however, obtain the antenna reciprocity theorem of Appendix 6 from Tellegen’s
Theorem, but only for “linear” antennas. For this, we consider a network of two disconnected
parts, antennas A and B, with three links, A1, A2, A3, etc. in each part in the case of a
“linear” antenna. Link 2 is the gap between the physical conductors of the antenna (between
its terminals).
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In the unprimed situation 1, antenna A is the transmitter, and antenna B is the receiver,
operated with no load (open circuit), while their roles are reversed in the primed situation.
Then the “currents” in this example are the physical electrical currents, so that IB2 and I ′

A2

are zero, since the receiving antennas are operated “open circuit.”12 We define the “voltage
difference” between the ends of a link to be

∫
E ·dl. Hence, VA1 = VA3 = VB1 = VB1 = V ′

A1 =
V ′

A3 = V ′
B1 = V ′

B1 = 0, in the approximation that the conductors of the antenna are perfect.
The voltages VjA at the four nodes of antenna A are then V1A = V2A and V3A = V4A.

Thus, of the 12 terms in eq. (59) for the pair of “linear” antennas only two are nonzero,
and we have,

V ′
A2IA2 = VB2I

′
B2, (60)

as in eq. (20), where again the “voltages” V ′
A2 and VB2 are “open circuit.”

However, a similar argument for a “loop” antenna, representing it by two links connected
to two nodes, fails. If link 2 again represent the gap between the terminals, then the “voltage”
V1A =

∫
link 1A

E · dl = 0, but V2A =
∫

link 2A
E · dl is nonzero in general, so a unique scalar

“voltage” cannot be assigned to the two nodes of antenna A.
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