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1 Problem

Deduce a version of Poynting’s theorem [13] in macroscopic electrodynamics supposing that
magnetic charges (monopoles) exist in Nature. Discuss its relation to the Lorentz force law
for magnetic charges.1

2 Solution

2.1 Maxwell’s Equations

When Heaviside first presented Maxwell’s equations in vector notation [16] he assumed that
in addition to electric charge and current densities, ρe and Je, there existed magnetic charge
and current densities, ρm and Jm, although there remains no experimental evidence for the
latter.2,3 Maxwell’s equations for microscopic electrodynamics are then (in SI units),4

∇ · ε0E = ρe, ∇ · B

μ0

= ρm, −c2∇ × ε0E =
∂

∂t

B

μ0

+ Jm, ∇ × B

μ0

=
∂ε0E

∂t
+ Je, (1)

where c = 1/
√
ε0μ0 is the speed of light in vacuum. In macroscopic electrodynamics we

consider media that contain volume densities of electric- and Ampèrian magnetic-dipole mo-
ments, Pe and Me, respectively (often called the densities of polarization and magnetization).
Supposing that magnetic charges exists, the media could also contain volume densities of

1Only in three spatial dimensions do the electric and magnetic fields of electric and magnetic charges
have the same character, such that a single electric and a single magnetic field could describe the effects of
both types of charges [118].

2Heaviside seems to have regarded magnetic charges as “fictitious”, as indicated on p. 25 of [23].
3If the interaction of magnetic charges with magnetic moments due to electrical currents is to conserve

energy, the magnetic charges must be at the end of “strings” of magnetic flux, as first postulated by Dirac
[56, 120].

As reviewed in Appendix D.1.1 below, Coulomb noted that long, thin magnetic needles (rigid strings) can
the thought of as having equal and opposite magnetic poles (monopoles) at their two ends [2, 3]. But the
relative positions of these two poles remains fixed so long as the needle is unbroken. This was perhaps the
first “effective field theory”, notably championed by Poisson in 1824 [6, 7] after Ampère (1820), p. 210 of [4],
had claimed that all magnetic effects are due to electric currents.

In recent developments with so-called spin-ice systems, chains of spins (magnetic dipoles) can exist in
configurations with effective monopoles at their two ends, and the positions of these ends can be varied
with respect to one another with relative ease [113, 122]. This has led to claims in the popular press that
magnetic monopoles have been discovered, which some people have misinterpreted as evidence that classical
electrodynamics must be modified to include nonzero ρm as in our eq. (1).

4July 24, 2022. In eq. (1) we follow sec. 7.3.4 of [104]. However, there exists another convention in which
∇ · B = ρm and −∇ ×E = ∂B/∂t + Jm, as in sec. 6.11 of [105].
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(Gilbertian) electric- and magnetic-dipole moments, Pm and Mm, respectively. These den-
sities can be associated with bound charge and current densities, which together with the
“free” charge and current densities ρ̃e, J̃e, ρ̃m and J̃m comprise the total charge and current
densities, and are related by,

ρe = ρ̃e − ∇ · Pe, Je = J̃e +
∂Pe

∂t
+ ∇ × Me, (2)

ρm = ρ̃m − ∇ · Mm, Jm = J̃m +
∂Mm

∂t
− c2∇ × Pm. (3)

It is customary in macroscopic electrodynamics to use versions of Maxwell’s equations in
which only “free” charge and current densities appear. For this we introduce the fields,5

De = ε0E + Pe, He =
B

μ0

− Me, Dm =
E

μ0

− c2Pm, Hm =
B

μ0

+ Mm, (4)

such that De and Hm, and also He and Dm, have similar forms, and,

∇ · De = ρ̃e, ∇ · Hm = ρ̃m, −∇× Dm =
∂Hm

∂t
+ J̃m, ∇ × He =

∂De

∂t
+ J̃e, (5)

where in the absence of magnetic charges De and He are the familiar fields D and H.6,7

2.2 Force Laws

In static situations with no “free” currents J̃e or J̃m the curls of both Dm and He are zero
and these fields can be deduced from scalar potentials Ve and Vm,

∇ × Dm = 0 ⇔ Dm = −∇Ve, ∇ ×He = 0 ⇔ He = −∇Vm. (6)

5The forms (4) were suggested to the author by David Griffiths in a comment on an early draft of this
note. Such “double” D and H fields were anticipated by Heaviside [21], who wrote H for He and h0 for
Hm near his eq. (88). Our eq. (4) appears as eq. (5.9) of [95], in Gaussian units, where P → Pe, M → Me,
P� → Pm, M� → Mm, D → De, H → He, E� → Dm, B� → Hm. See also in sec. 4 of [108], with the
identifications that ē → E, b̄ → B, p → Pe, m → Me, m� → Pm, p� → Mm, D → De, H → He, E → Dm,
B → Hm. See Appendix D.2 below for a justification of eq. (4) via the concept of electromagnetic duality

6The relation B = μ0(H+M) (or B = H+4πM in Gaussian units) seems to have been first introduced
by W. Thomson in 1871, eq. (r), p. 401 of [14], and appears in Art. 399 of Maxwell’s Treatise [10].

7Neither Thomson nor Maxwell enunciated a concept of the polarization density P of electric dipoles,
and only regarded the relation between D and E as D = εE, where ε is now called the (relative) dielectric
constant and/or the (relative) permittivity. See Art. 111 of [9] for Maxwell’s use of the term polarization.

In 1885, Heaviside introduced the concept of an electret as the electrical analog of a permanent magnet
[17], and proposed that the electrical analog of magnetization (density) be called electrization. He did not
propose a symbol for this, nor did he write an equation such as D = E + 4πP.

The density of electric dipoles was called the polarization by Lorentz (1892) in sec. 102, p. 465 of [15], and
assigned the symbol M.

Larmor (1895), p. 738 of [25], introduced the vector (f ′, g′, h′) for what is now written as the polarization
density P, and related it to the electric field E = (P, Q, R) as (f ′, g′, h′) = (K − 1)(P, Q, R)/4π, i.e.,
P = (ε − 1)E/4π = (D −E)/4π. Larmor’s notation was mentioned briefly on p. 91 of [28] (1898).

The symbol M for dielectric polarization was changed to P by Lorentz on p. 263 of [33] (1902), and a
relation equivalent to D = E + 4πP was given in eq. (22), p. 265. See also p. 224, and eq. (147), p. 240 of
[37] (1903), which latter subsequently appeared as eq. (142), p. 155 of the textbook [38] (1904) by Abraham.
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We can associate potential energies,

Ue = μ0qeVe, Um = μ0qmVm, (7)

with electric and magnetic “test” charges qe and qm in scalar potentials due to other charges.
If those other charges are held fixed, the forces on the “test” charges can be written as,

Fe = −qe∇Ve = μ0qeDm, Fm = −qm∇Vm = μ0qmHe. (8)

The magnetic version of eq. (8) was introduced by Poisson [6, 7], and Maxwell [10] reflected
this tradition by calling He = H the magnetic force (per unit magnetic charge) and B
the magnetic induction. Note that eq. (8) holds in media with nonzero, static densities Pe,
Pm, Me and Mm; the forces on charges inside static electromagnetic media are not qeE or
qmB/μ0.

8,9 This contrasts with force calculations for the effective magnetic-charge density,
ρm,eff = −∇ · Me, which represent effects of Ampèrian currents, as discussed in Appendix
A.

As noted in [94] and on p. 429 of [99], if a magnetic charge qm could be made to move
around a loop some or all of which lies inside an Ampèrian magnetic material where B
does not equal μ0He (and hence ∇ × B is nonzero around the loop), then energy could
be extracted from the system each cycle if the force were qmB/μ0, and we would have a
perpetual-motion machine. Similarly, if an electric charge qe could be made to move around
a loop some or all of which lies inside a Gilbertian magnetic material where E does not equal
μ0Dm (and hence ∇ ×E is nonzero around the loop), then energy could be extracted from
the system each cycle if the force were qeE, and we would again have a perpetual-motion
machine.

The electromagnetic force on a moving electric charge qe and magnetic charge qm, each

8The notion of the force on a static “test” charge inside a macroscopic medium is somewhat contradictory,
in that the macroscopic fields are based on averages over volumes larger than atoms/molecules. People often
suppose the test charge to be inside a cavity whose volume is at least as large as an atom/molecule, but
then the magnitude of the force depends on the shape of the cavity. A more meaningful issue is the force on
a “test” charge that moves through the medium, thereby sampling the microscopic fields in a way that can
be well approximated in terms of the macroscopic fields. See also sec. 8 of [92].

9In Art. 400 of [10], Maxwell noted that (in Gaussian units) the H field inside a disk-shaped cavity with
axis parallel to B and H inside a magnetic medium has Hcavity = Bcavity = Bmedium = Hmedium + 4πM, so
that in this case one could say that the force on a magnetic charge qm in the cavity is Fm = qmHcavity =
qmBmedium. The led Maxwell to the characterization of B as the “actual magnetic force”, which this author
finds misleading.

3



with velocity v, is, in microscopic electrodynamics,10,11,12,13

Fe = qe(E + v ×B) = μ0qe (Dm + v × Hm) , (9)

Fm = qm

(
B − v

c2
× E

)
= μ0qm(He − v × De). (10)

Consistency of the Lorentz force law with special relativity requires that either E and B
or De and He or Dm and Hm appear in Fe and in Fm (see Appendix B). In macroscopic
electrodynamics the Lorentz force law for the force density f on “free” charge and current
densities takes the forms,14,15

fe = ρ̃eE + J̃e × B, or μ0(ρ̃eDm + J̃e × Hm), (11)

fm = ρ̃mB − J̃m

c2
×E, or μ0(ρ̃mHe − J̃m × De). (12)

It has been verified that B not He deflects high-energy electrically charged particles as they
pass through magnetized iron (with no magnetic charges) [62], which confirms either form
of fe in eq. (11).16 See also [63, 79, 80]. The above argument about perpetual motion then
favors the second forms of eqs. (11)-(12).

Further confirmation of this comes via consideration of energy flow in the electromagnetic
fields.

2.3 Poynting’s Theorem

Poynting’s argument [13] relates the rate of work done by electromagnetic fields on “free”
electric and magnetic currents to both flow of energy and to rate of change of stored energy.
This argument has delicacies of interpretation, discussed, for example, in sec. 2.19 of [60].

10Lorentz advocated the form Fe = μ0qe(De +v×He) in eq. (V), p. 21, of [26], although he seems mainly
to have considered its use in vacuum. See also eq. (23), p. 14, of [45]. That is, Lorentz considered De and
He, rather than E and B, to be the microscopic electromagnetic fields.

11It is generally considered that Heaviside first gave the Lorentz force law (9) for electric charges in [19],
but the key insight is already visible for the electric case in [16] and for the magnetic case in [18]. The form
of Fm in terms of B and E is implicit in eq. (7) of [64] and explicit in sec. 28B of [66]. See also [98, 109].

12For the macroscopic equations to appear as in eq. (5), as given, for examples, in sec. 7.3.4 and prob. 7.60
of [104], the Lorentz force law must have the form (10) for magnetic charges. One could also redefine the
strength of magnetic charges, ρm → ρm/μ0, Jm → Jm/μ0, which leads to the forms given, for example, in
sec. 6.11 of [105]. These alternative definitions echo a debate initiated by Clausius in 1882 [11].

13The electromagnetic interactions between electric and magnetic charges violate space inversion (parity).
See also Appendix D.1.19 below.

14A subtlety is that the field B in the first form of eq. (11) is not the total field, but rather the field at
the location of the free current that would exist in its absence. See, for example, [110], especially sec. 4.

15In 1908-10, Einstein argued that the Lorentz force law should take the form fe = μ0(ρ̃eDe + J̃e × He)
inside materials [43, 49], perhaps based on a misunderstanding discussed in [116], or that discussed in
sec. 2.3.1 of [119]. This misunderstanding underlies the recent “paradox” of Mansuripur [115].

16The magnetization of materials such as iron depends on the character of the magnetic moment of
electrons. An argument due to Fermi [55] that the hyperfine interaction depends on the magnetic field at
the origin, and so can distinguish between Ampèrian and Gilbertian moments of “nuclei”. For the case of
positronium (e+e−) the data imply that the moment of the electron is Ampèrian, as discussed in [93].
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The density of the time rate of change of work on (“free”) electric currents is, from eq. (11),

dw̃e

dt
= fe · ve = J̃e · E, or μ0J̃e · Dm. (13)

Thus, either,

dw̃e

dt
= J̃e ·E = E ·

(
∇ × He − ∂De

∂t

)

= −∇ · (E× He) + He · ∇ ×E − E · ∂De

∂t

= −∇ · (E× He) −E · ∂De

∂t
− He · ∂B

∂t
− μ0Jm ·He, (14)

where the total current Jm rather than the “free” current J̃m appears in the last line, or,

dw̃e

dt
= μ0J̃e · Dm = μ0Dm ·

(
∇× He − ∂De

∂t

)

= −μ0∇ · (Dm × He) + μ0He · ∇× Dm − μ0Dm · ∂De

∂t
.

= −μ0∇ · (Dm × He) − μ0Dm · ∂De

∂t
− μ0He · ∂Hm

∂t
− μ0J̃m · He. (15)

Similarly, for “free” magnetic currents in macroscopic electrodynamics we have, from eq. (12),

dw̃m

dt
= fm · vm = J̃m · B or μ0J̃m · He. (16)

A requirement of simplicity of Poynting’s theorem when magnetic charges are included favors
that the time rate of change of the work done on “free” electric and magnetic currents be the
second forms in eqs. (13) and (16), and that the Lorentz force law on macroscopic electric
and magnetic charge and current densities be,

fe = μ0(ρ̃eDm + J̃e × Hm) → μ0ρ̃e(Dm + ve × Hm), (17)

fm = μ0(ρ̃mHe − J̃m × De) → μ0ρ̃m(He − vm × De), (18)

(as also required not to have magnetic perpetual-motion machines).17,18

17The form (18) is also affirmed in [108] via considerations of a magnetic current in a “wire” surrounded by
a dielectric medium. The issues here are somewhat different from those for the force on individual moving
charges, but are similar to those considered in [111] for an electrical current in a wire inside a magnetic
medium.

18It is argued in [95] that a slowly moving magnetic charge perturbs electric polarization of a dielectric
medium in such a way that the velocity-dependent force is −qmv× ε0E, where E = D/ε is the electric field
in the absence of the moving magnetic charge. The argument of [95] seems to this author to be a variant of
Art. 400 of [10] in which it is supposed that the charge resides in a “cavity” whose surface details affect the
fields experienced by the charge. Such arguments assume that the charge occupies a volume at least equal
to one atom/molecule of the medium, which might have seemed reasonable to Maxwell but is not consistent
with our present understanding of the size of elementary charges. The results of [62] show that a moving
electric charges does not create a “cavity” inside a magnetic medium wherein the average B field differs from
the macroscopic average B field in the absence of the charge. We infer that a moving magnetic charge would
experience an average D inside a dielectric medium equal to the macroscopic average D field in the absence
of the charge.
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Then,

dw̃

dt
=
dw̃e

dt
+
dw̃m

dt
= −μ0∇ · (Dm ×He) − μ0Dm · ∂De

∂t
− μ0He · ∂Hm

∂t
≡ −

(
∇ · S +

∂u

∂t

)
,(19)

which is the same form as if only electric charges exist, and hence the usual version of
Poynting’s theorem still applies if magnetic charges exist. That is, the Poynting vector,19

S = μ0Dm × He (all media), (20)

is interpreted as describing the flow of energy in the electromagnetic field, and for isotropic,
linear media in which De and Dm are both proportional to E, and He and Hm are both
proportional to B,20 the density u of stored energy associated with the electromagnetic
fields is,

u = μ0

De · Dm + He · Hm

2
(isotropic, linear media). (21)

Following a general argument of Poincaré [30] and Abraham [35], we could suppose that
the density of momentum is related to the Poynting vector by S/c2, in which case we would
consider the density of field momentum to be,

p
(A)
field =

S

c2
=

Dm × He

ε0
(Abraham). (22)

That Poynting’s theorem retains its usual form when magnetic charges are present is
discussed by Heaviside in sec. 19 of [21]. That the form of the Lorentz force law for magnetic
charge and current densities is given by eqs. (17)-(18) is consistent with Heaviside’s argument;
for example, his eq. (88), but is not explicitly stated. See also sec. 50, p. 49 of [23].

A peculiar argument that the “ordinary” form of Poynting’s theorem implies the existence
of magnetic charges is given in sec. 7.10 of [74]; thus misunderstanding is clarified in [76].

The extension of Poynting’s theorem to momentum flow, with the implication that p
(M)
field =

μ0De ×Hm is the density of stored momentum, as argued by Minkowski [44], remains valid
if the Lorentz force law for magnetic charges is given by eqs. (17)-(18), but not for other
forms, as discussed in sec. V of [95]. See also Appendix C.

In a search for an isolated magnetic charge qm in media that otherwise contain only
electric charges and currents, De → D, Dm → E/μ0, He → H, Hm → B/μ0, the Lorentz
force law reduces to,

Fe = qe(E + ve × B), Fm = μ0qm(H − vm × E). (23)

A Appendix: Effective Magnetic Charge Density

ρm,eff = −∇ ·M
So far as is presently known, magnetic charges do not exist, and all magnetic effects can be
associated with electrical currents, as first advocated by Ampère [5].21 For materials with

19Alternative forms for the Poynting vector (in the absence of magnetic charges) are reviewed in [124].
20See eqs. (99)-(102) for discussion of the linear relations E = De/εe = Dm/εm and B = μeHe = μmHm.
21For discussion of the experimental evidence that “permanent” magnetization is Ampèrian, see [119].

6



magnetization density Me = M the associated (macroscopic) electrical current density is,

Je = ∇ × M, (24)

and on the surface of such materials there is the surface-current density,

Ke = n̂× M, (25)

where n̂ is the outward unit vector normal to the surface.
Alternatively, we can suppose the magnetization is associated with densities of effective

magnetic charges. Some care is required to use this approach, since a true (Gilbertian)
magnetic charge density ρm would obey ∇·B = μ0ρm as in eq. (1), and the static force density
on these charges would be Fm = μ0ρmHe. However, in Nature ∇ ·B = 0 = ∇ · μ0(H + M),
so we can write,

∇ · H = −∇ · M = ρm,eff , (26)

and identify,
ρm,eff = −∇ · M, (27)

as the volume density of effective (Ampèrian) magnetic charges.
Inside isotropic, linear magnetic media, where B = μH, the Maxwell equation ∇ ·B = 0

then implies that ρm,eff = 0. However, a surface density σm,eff of effective magnetic charges
can exist on an interface between two media, and we see that Gauss’ law for the field H
implies that,

σm,eff = (H2 − H1) · n̂, (28)

where unit normal n̂ points across the interface from medium 1 to medium 2. The magnetic
surface charge density can also be written in terms of the magnetization M = B/μ0 −H as,

σm,eff = (M1 − M2) · n̂, (29)

since ∇ · B = 0 insures that the normal component of B is continuous at the interface.
The force on the surface density of effective magnetic charges is,

F = σm,effB, (30)

since the effective magnetic charges, which are a representation of effects of electrical currents,
couple to the magnetic field B, as in eq. (9).22

The total force on a linear medium is, in this view, the sum of the force on the conduction
current plus the force on the effective magnetic surface charges. Care is required to implement
such a computation of the force, as discussed in [111], where eq. (30) is affirmed by example.

The key result of this Appendix is that while “true” (Gilbertian, and nonexistent in
Nature) magnetic charges qm obey the force law Fm,true = μ0qmH, the effective (Ampèrian)
magnetic charges (which are a representation of effects of electrical currents) obey Fm,eff =
qm,effB.

22Equation (30) is in agreement with prob. 5.20 of [105], recalling the different convention for factors of μ0

used there. However, the Coulomb Committee in their eq. (1.3-4) [65], and Jefimenko in his eq. (14-9.9a,b)
[97], recommends that the field H/μ0 be used rather than B when using the method of effective magnetic
charges, which would imply a force μ0/μ times that of eq. (30) for isotropic, linear media.
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For “effective” Ampèrian magnetic charges the magnetic fields obey ∇ · B/μ0 = 0 and
∇ · He = ρm,eff inside magnetic materials, while for “true” Gilbertian magnetic charges the
fields obey ∇ ·B/μ0 = ρm,true and ∇ ·Hm = 0 inside magnetic materials where there are no
“free”, “true” magnetic charges. Hence, the roles of B/μ0 and H are reversed in magnetic
materials that contain “true” or “effective” magnetic charges. We illustrate this below for
the fields of a uniformly magnetized sphere.

A.1 Fields of a Uniformly Magnetized Sphere

In this subappendix we deduce the static magnetic fields associated with uniform spheres
of radius a with either uniform Gilbertian magnetization density Mm or uniform Ampèrian
(effective) magnetization density Me.

A.1.1 Uniform Ampèrian Magnetization Density Me

The total magnetic moment of the sphere is,

me =
4πMea

3

3
. (31)

We speed up the derivation by noting that the fields inside the sphere are uniform, and the
fields outside the sphere are the same at those of a point magnetic dipole of strength me,

B(r > a)

μ0

= He(r > a) = Hm(r > a) =
3(me · r̂)r̂ − me

4πr3
=
Mea

3(2 cos θ r̂ − sin θ θ̂)

3r3
, (32)

in a spherical coordinate system with origin at the center of the sphere and z-axis parallel
to Me.

To characterize the fields inside the sphere, we note use the method of effective magnetic
charges (Appendix A). Since Me is constant inside the sphere, there is no net effective
magnetic charge density there, ρe,eff(r < a) = −∇ · Me(r < a) = 0, while there is a nonzero
surface density of effective magnetic charge,

σe,eff(r = a) = Me · r̂ = Me cos θ. (33)

The boundary condition on the magnetic field He at the surface of the sphere is that,

He,r(r = a+) −He,r(r = a−) = σe,eff(r = a), (34)

and hence,

He,r(r = a−) = He,r(r < a) = He(r < a) cos θ = He,r(r = a+) − σe,eff(r = a)

=
2Me cos θ

3
−Me cos θ = −Me cos θ

3
, (35)

He(r < a) = −Me

3
, Hm(r < a) =

B(r < a)

μ0

= He(r < a) + Me(r < a) =
2Me

3
. (36)

The result (36) for B/μ0 implies that the magnetic field for the idealization of a “point”,
“effective” (Ampèrian) magnetic dipole me would be,

B

μ0

=
3(me · r̂)r̂ − me

4πr3
+

2me

3
δ3(r). (37)
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A.1.2 Uniform Gilbertian Magnetization Density Mm

The total magnetic moment of the sphere for this case is,

mm =
4πMma

3

3
. (38)

As in sec. A.1.1, we speed up the derivation by noting that the fields inside the sphere are
uniform, and the fields outside the sphere are the same at those of a point magnetic dipole
of strength mm,

B(r > a)

μ0

= He(r > a) = Hm(r > a) =
3(mm · r̂)r̂ − me

4πr3
=
Mma

3(2 cos θ r̂ − sin θ θ̂)

3r3
. (39)

To characterize the fields inside the sphere, we note use the method of effective magnetic
charges (Appendix A). Since Mm is constant inside the sphere, there is no net true magnetic
charge density there, ρm(r < a) = −∇ · Mm(r < a) = 0, while there is a nonzero surface
density of true magnetic charge,

σm(r = a) = Mm · r̂ = Mm cos θ. (40)

The boundary condition on the magnetic field B at the surface of the sphere is that,

Br(r = a+) − Br(r = a−) = μ0σm(r = a), (41)

and hence,

Br(r = a−)

μ0

=
Br(r < a)

μ0

=
B(r < a) cos θ

μ0

=
Br(r = a+)

μ0

− σr(r = a)

=
2Mm cos θ

3
−Mm cos θ = −Mm cos θ

3
, (42)

B(r < a)

μ0

= He(r < a) = −Mm

3
, Hm(r < a) =

B(r < a)

μ0

+ Me(r < a) =
2Me

3
. (43)

Comparing with eqs. (35)-(36) we see that the roles of B and H are reversed in the case of
uniform true and effective magnetization. In particular, the sign of B inside the magnetized
sphere is opposite for the cases of Ampèrian and Gilbertian magnetization, although B is
the same outside the sphere in the two cases.23

The result (43) for B/μ0 implies that the magnetic field for the idealization of a “point”,
“true” (Gilbertian) magnetic dipole mm would be,

B

μ0

=
3(mm · r̂)r̂ − mm

4πr3
− mm

3
δ3(r). (44)

23For the case of a cylinder with uniform transverse magnetization, see [106], where the interior B field
is equal and opposite for Ampèrian and Gilbertian magnetization.
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B Appendix: Lorentz Transformations of the Fields

The various electromagnetic fields can be embedded in antisymmetric 4-tensors (six vectors)
that obey Lorentz transformations. The microscopic fields E and B can be written as
components of the tensor F, and of its dual F� obtained by the transformation E → cB,
cB → −E,24

F =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −Ex −Ey −Ez

Ex 0 −cBz cBy

Ey cBz 0 −cBx

Ez −cBy cBx 0

⎞
⎟⎟⎟⎟⎟⎟⎠
, F� =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −cBx −cBy −cBz

cBx 0 Ez −Ey

cBy −Ez 0 Ex

cBz Ey −Ex 0

⎞
⎟⎟⎟⎟⎟⎟⎠
, (45)

such that the fields in the ′ frame where the frame of eq. (45) has velocity v are,

E′ = γ
(
E − v

c
× cB

)
− (γ − 1)(v̂ · E)v̂, (46)

cB′ = γ
(
cB +

v

c
× E

)
− (γ − 1)(v̂ · cB)v̂. (47)

The densities of Ampèrian electric and magnetic dipole moments Pe and Me comprise
the tensor Pe, as first noted by Lorentz [50],

Pe =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −Pe,x −Pe,y −Pe,z

Pe,x 0 Me,z/c −Me,y/c

Pe,y −Me,z/c 0 Me,x/c

Pe,z Me,y/c −Me,x/c 0

⎞
⎟⎟⎟⎟⎟⎟⎠
, (48)

such that the fields in the ′ frame where the frame of eq. (48) has velocity v are,

P′
e = γ

(
Pe +

v

c
× Me

c

)
− (γ − 1)(v̂ · Pe)v̂, (49)

M′
e

c
= γ

(
Me

c
− v

c
× Pe

)
− (γ − 1)

(
v̂ · Me

c

)
v̂, (50)

The macroscopic fields De = ε0E+Pe and He = B/μ0−Me can be written as components
of the tensor Ge,

Ge = ε0F + Pe =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −De,x −De,y −De,z

De,x 0 −He,z/c He,y/c

De,y He,z/c 0 −He,x/c

De,z −He,y/c He,x/c 0

⎞
⎟⎟⎟⎟⎟⎟⎠
, (51)

24The terminology that the electromagnetic field tensor F� is the dual of the field tensor F was introduced
by Minkowski, eq. (35) of [44].
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such that the fields in the ′ frame where the frame of eq. (51) has velocity v are,

D′
e = γ

(
De − v

c
× He

c

)
− (γ − 1)(v̂ · De)v̂, (52)

H′
e

c
= γ

(
He

c
+

v

c
×De

)
− (γ − 1)

(
v̂ · He

c

)
v̂. (53)

The densities of Gilbertian electric and magnetic dipole moments Pm and Mm comprise
the tensor Pm,

Pm =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 Pm,x Pm,y Pm,z

−Pm,x 0 Mm,z/c −Mm,y/c

−Pm,y −Mm,z/c 0 Mm,x/c

−Pm,z Mm,y/c −Mm,x/c 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(54)

such that the fields in the ′ frame where the frame of eq. (54) has velocity v are,

P′
m = γ

(
Pm +

v

c
× Mm

c

)
− (γ − 1)(v̂ · Pm)v̂, (55)

M′
m

c
= γ

(
Mm

c
− v

c
× Pm

)
− (γ − 1)

(
v̂ · Mm

c

)
v̂, (56)

Finally, the macroscopic fields Dm = E/μ0−c2Pm and Hm = B/μ0 +Mm can be written
as components of the tensor Gm,

Gm =
F

μ0

− c2Pm =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 Dm,x Dm,y Dm,z

−Dm,x 0 −cHm,z cHm,y

−Dm,y cHm,z 0 −cHm,x

−Dm,z −cHm,y cHm,x 0

⎞
⎟⎟⎟⎟⎟⎟⎠
, (57)

such that the fields in the ′ frame where the frame of eq. (57) has velocity v are,

D′
m = γ

(
Dm − v

c
× cHm

)
− (γ − 1)(v̂ · Dm)v̂, (58)

cH′
m = γ

(
cHm +

v

c
× Dm

)
− (γ − 1) (v̂ · cHm) v̂. (59)

If we accept that the forces on electric and magnetic charges qe and qm in their rest frame
are,

Fe = μ0qeDm, Fm = μ0qmHe, (60)

as in eq. (8), then we see by inverting eqs. (53) and (58) that the Lorentz forces in a frame
where the charges have velocity v are as in eqs. (17)-(18).
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C Appendix: Momentum Density and Stress Tensor

We can extend an argument of Minkowski [44] as to field momentum by considering the total
force density on electromagnetic media, following eqs. (17)-(18),

f = fe + fm = μ0(ρ̃eDm + J̃e × Hm) + μ0(ρ̃mHe − J̃m × De) =
dpmech

dt
, (61)

where pmech is the density of mechanical momentum in the media. Using the Maxwell
equations (5) for the macroscopic fields,

dpmech

dt
= μ0

[
Dm(∇ · De) − Hm × (∇× He) + Hm × ∂De

∂t

]

+μ0

[
He(∇ · Hm) − De × (∇× Dm) − De × ∂Hm

∂t

]

= − ∂

∂t
(μ0De × Hm) + μ0 [Dm(∇ · De) + He(∇ · Hm)

−De × (∇ × Dm) − Hm × (∇× He)]

≡ −∂pEM

∂t
+ ∇ · TEM, (62)

where,

pEM = μ0De × Hm (63)

is the density of momentum associated with the electromagnetic field, and for isotropic,
linear media,25

TEM,ij = μ0

[
Dm,iDe,j +He,iHm,j − δij

De · Dm + He · Hm

2

]
(64)

is the symmetric Maxwell stress 3-tensor associated with the electromagnetic fields. To arrive
at eq. (64) we note that for isotropic, linear media,

[Dm(∇ · De) − De × (∇ × Dm)]i = Dm,i
∂De,j

∂xj
−De,j

∂Dm,j

∂xi
+De,j

∂Dm,i

∂xj

=
∂

∂xj

[
Dm,iDe,j − δij

De · Dm

2

]
. (65)

D Appendix: Electromagnetic Duality

D.1 Digression on the History of Duality

In philosophy, the concept of dualism refers to the view that mind and matter are very differ-
ent entities. The last philosopher-physicist to champion this view may have been Descartes.

In physics, duality has come to be a description of phenomena that appear to be different,
but have essential properties in common.

25See eqs. (99)-(102) for discussion of the linear relations E = De/εe = Dm/εm and B = μeHe = μmHm.

12



D.1.1 Coulomb

In 1785, Coulomb confirmed (and made widely known) that the static force between pairs of
electric charges q1 and q2 varies as q1q2/r

2 [2], and that the force between idealized magnetic
poles p1 and p2 at the ends of long, thin magnets varies as p1p2/r

2 [3]. The electric and
magnetic forces were considered to be unrelated, except that they obeyed the same functional
form. Nonetheless, the fact that both electric and magnetic forces are repulsive between like
charges/poles, and vary as 1/r2, can be regarded as an early hint of electromagnetic duality.

D.1.2 Maxwell

Another early hint of electromagnetic duality is in Arts. 630 and 632 of [10], where Maxwell
noted that the densities of energy in the electric and magnetic fields have similar forms,
E · D/8π and B · H/8π.26

D.1.3 Clausius

An aspect of electromagnetic duality is that the units used to describe electromagnetism
should respect this concept. Historically, the different systems of units developed to describe
electric and magnetic phenomena did not do so, as perhaps first notably emphasized by
Clausius (1882) [11]. The ensuing debate was influential in the development of our present
SI system of units.

D.1.4 Heaviside

Heaviside (1885) used the term duplex to describe his version of Maxwell’s equations that
included magnetic charges and currents as well as electric charges and currents [16], and, in
the footnote on p. 444 of [21] (1892), he wrote of the Duplex method that its characteristics
are the exhibition of the electric, magnetic, and electromagnetic relations in a duplex form,
symmetrical with respect to the electric and magnetic sides.

The term perfect magnetic conductor was introduced by Heaviside (1893), p. 536 of
[22]: Although a perfect magnetic conductor is, in the absence of knowledge even of a finite
degree of magnetic conductivity, a very far-fetched idea, yet it is useful in electromagnetic
theory to contrast with the perfect electric conductor. A perfect magnetic conductor behaves
towards displacement just as a perfect electric conductor does towards induction; that is,
the displacement goes round it tangentially. It also behaves towards induction as a perfect
electric conductor does towards displacement; that is, the induction meets it perpendicularly,
as if it possessed exceedingly great inductivity, without magnetic conductivity. This magnetic
conductor is also perfectly obstructive internally, and is a perfect reflector, though not quite
in the same way as electric conductors. The tangential magnetic force and the normal
electric force are zero. Thus, Heaviside considered that the boundary conditions for a perfect
magnetic conductor were for D and B, in contrast to those for E and H (p. 535 of [22]) in
case of a perfect electric conductor.27

26That the electric and magnetic parts of Maxwell’s stress tensor have similar forms was noted by Larmor
(1897), sec. 39, p. 253, of [27].

27As noted in sec. 2.4.1 of [121], it seems to the present author that if a perfect electric conductor had a
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D.1.5 Tesla

In 1891, p. 34 of [20], Tesla made what may be the first use of the term dual in electro-
magnetism: electricity and magnetism, with their singular relationship, with their seemingly
dual character, unique among the forces in nature, with their phenomena of attractions,
repulsions and rotations, strange manifestations of mysterious agents, stimulate and excite
the mind to thought and research.

D.1.6 Poincaré

In 1893, Poincaré began his studies of algebraic topology, which are now considered to include
the concept of Poincaré duality [114], although Poincaré himself did not use the term duality.
Once century later, Poincaré duality is considered by some to be related to electromagnetic
duality [107].

D.1.7 Love

In 1901, Love initiated studies of vector diffraction theory (building on the scalar theory of
Huygens [1] and Kirchhoff [12]), in which the electromagnetic fields within some source-free
volume could be computed from surface integrals of fields, or of both electric and magnetic
charge and current densities. In sec. 14, p. 12 of [31], titled The Reciprocal Theorem,
Love spoke of magnetic displacements as well as electric displacements, which is interpreted
by some people as the first important application of electromagnetic duality to a physics
problem, although Love did not use this term.

Love’s lead was followed by Macdonald (1902), sec. 14 of [34] and p. 95 of [51].

D.1.8 Sire de Vilar

In 1901, Sire de Vilar [32] wrote on La Dualité en Électrotechnique, i.e., duality in electrical
circuits, which described various relations between “electric” and “magnetic” aspects of
circuits, but which did not discuss electromagnetic fields.28

D.1.9 Larmor

Larmor (1903), p. 10 of [36], mentioned a magnetic current-sheet, which may be considered
to arise from a varying sheet of tangential magnetization, after the analogy of the electric
current-sheet of the previous case. Here, Larmor added some clarity to Love’s usage [31] of
magnetic displacements, that what matters in particular for the surface integrals which they
considered is the possibility of magnetic currents. This can be interpreted as an expression
of electromagnetic duality, although Larmor only spoke of an analogy.

Larmor (1900) used the term duality in the interesting comment, p. 27 of [29]: The
duality arising from the assumption of two kinds of electrons, only differing chirally so that

magnetic current on its surface, the usual boundary condition for it would no longer hold (and likewise, if a
perfect magnetic conductor supported an electric surface current, then the proposed boundary condition for
that novel type of conductor would not hold).

28The paper of Vilar was transcribed into English as Chap. 21 of [40].
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one is the reflexion of the other in a plane mirror, will present nothing strange to those
physicists who regard with equanimity even the hypothesis of the possible existence of both
positive and negative matter. Here, Larmor anticipates that electrons have spin, and that
there exist negative electrons = positrons.

D.1.10 Silberstein

In 1907, Silberstein [42] discussed electromagnetism in terms of the bivector E1 + iE2 =
E + iB, as well as its complex conjugate, noting that Maxwell’s equations have the same
form for either bivector. This was an early recognition of electromagnetic duality, without
using that term.

D.1.11 Minkowski

The earliest use of the term dual in the manner of the present conception of electromagnetic
duality was by Minkowski (1908), pp. 81 and 93 of [44], where he wrote of the dual matrix
F� = F �

μν of a 4-tensor F = Fμν such as that of the electromagnetic field, eq. (45) above.

D.1.12 Sommerfeld

Sommerfeld (1910) [46, 48] (see also pp. 754-755 of [66]) recast the 6 independent, nonzero
component of the electromagnetic field tensor F as a 6 vector (E,H) with an electric and
a magnetic side.29 Sommerfeld, eqs. (18) and (18*) of [48], was the first to write Maxwell’s
equations in the form, in Gaussian units,

∂μFμν =
4π

c
Jμ , ∂μF

�
μν = 0, where ∂μ =

(
∂

∂t
,−∇

)
. (66)

A survey in 1910 [47] of methods of solution of Maxwell’s equation via transformations
of other solutions did not include use of duality transformations (which had not yet been
recognized explicitly). See also [57].

D.1.13 Rainich

In 1925, Rainich [53] discussed symmetries of antisymmetric 4-tensors, such as the stress-
energy-momentum tensor of electrodynamics. On p. 113 he noted that if such a tensor is
represented in a certain manner by two pairs of 3-vectors, {i, j} and {k, l},the physics is
invariant under the transformations i′ = i cosχ− j sinχ, j′ = i sinχ + j cosχ, and
k′ = k cosψ− l sinψ, l′ = k sinψ+ l cosψ; Rainich left it to the reader to imagine a relation
between his four 3-vectors and the electromagnetic fields E and B.

29A 6-vector is closely related to the bivector of Hamilton, p. 665 of [8], first applied to electromagnetism
by Silberstein (1907) [42].
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D.1.14 Schelkunoff

Schelkunoff (1936) continued the theme of vector diffraction theory, with the comment on
p. 93 of [58]: We shall find it convenient, at least for analytical purposes, to employ the
concept of magnetic current on a par with the concept of electric current.

And on p. 69 of [61] he wrote; On some occasions, considerable mathematical simpli-
fications may be secured if we write Maxwell’s equations in a more symmetrical form by
including hypothetical magnetic charges and corresponding currents.

However, Schelkunoff (and subsequent electrical engineers) seem to regard the symmetry
of Maxwell’s equations slightly differently than do most physicists. On p. 70 of [61] he
wrote: Maxwell’s equations in the form in which we have expressed them possess considerable
symmetry; E and H correspond to each other, the first being measure in volts per meter
and the second in amperes per meter; D and B correspond to each other, the first being
measured in ampere-seconds per square meter and the second in volt-seconds per square
meter; electric and magnetic currents correspond to each other, the first being measured
in amperes and the second in volts. In literature one finds arguments to the effect that
“physically” E and B (and D and H) are similar30 and that B is more “basic” than H.31 All
such arguments seem sterile since electric and magnetic quantities are physically different;
whatever similarity there is comes from the equations.32

30In 1904, Lorentz [39] gave the Lorentz transformation for electromagnetic fields in which D and H
transform into one another for observers in different inertial frames of reference. This transformation was
confirmed and greatly elucidated by Einstein in 1905 [41]. Such considerations had dramatic impact on the
physics community, but apparently had little effect on electrical engineers.

31For example, see the final pages, pp. 327-328, of the 1929 physics text [54]: There remains, finally, one
relatively trivial matter which should be mentioned. Except for the linkage with more ordinary notations
which occurs in the problems, use has been made of only two field vectors, E and B. When in free space,
the use of one electric and one magnetic vector, rather than of the four vectors E, D, B and H, is an
obviously desirable simplification; and within matter, it is useful to have in explicit evidence the electrical
properties ε and μ of the matter. The choice of B as the fundamental magnetic vector, rather than H,
rests on the occurrence of E and B in the equation of force for a charge. The subject of magnetostatics has
been developed in as close analogy as possible with electrostatics; and the fundamental magnetic vector—the
counterpart of E—must clearly be the vector which, in the basic law for magnetostatic action, plays the
same rôle as does E in electrostatics. The choice of B rather than H is also clearly indicated by the fact
that the divergence of E gives the total charge, while the curl of B (not of H) give the total current. The
confusion which results from the choice of H as the fundamental magnetic vector is, perhaps, most clearly
illustrated by the equations which arise when one considers the relation between the so-called microscopic
and macroscopic field equations. Lorentz, for example, take as microscopic equations, valid everywhere,

div e = ρ, curl e = −1
c

∂ h
∂t

, divh = 0, curl h =
1
c
(ρv + ė), (67)

and finds that the average values of e and h are given by,

e = E h = B, (68)

where E and B are the ordinary macroscopic field vectors used in this volume. The last equation indicates
that B is the fundamental macroscopic vector, and the that fundamental microscopic vector should be
designated as b rather than h.

32Such views are at odds with the theme of this note, that if magnetic charges and currents existed as
well as electric charges and currents, then there would be two D-fields, De and Dm, as well as two H-fields,
He and Hm, but only one E-field and only one B-field, as discussed in sec. 2.1 above.
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On p. 107 of [58], Schelkunoff revived Heaviside’s concept [22] of a perfect magnetic con-
ductor: Perfect magnetic conductors are defined by analogy with perfect electric conductors-
the tangential component of the magnetic intensity vanishes at the surface of the former just
as the tangential component of the electric intensity vanishes at the surface of the latter.
Magnetic conductors support magnetic current sheets just as electric conductors support
electric current sheets. The densities of the sheets are given by the discontinuities of the
tangential components of E in the former case and H in the latter.

D.1.15 Stratton and Chu

In 1939, Stratton and Chu [59] continued the theme of vector diffraction theory, and also
wrote of ficticious magnetic sources. Such considerations were reviewed by Stratton in
sec. 8.14, p. 464, of his text (1941) [60].

On p. 72 of [60], and again on p. 82, Stratton wrote of the dual field tensors in the manner
of Minkowski, but without references, and he did not consider a duality transformation.

D.1.16 Shanmugadhasan (June 15, 2020)

In 1952, Shanmugadhasan [67] noted that if magnetic charges existed, one could consider
dual field tensors (in the sense of Minkowski [44]),

Fe =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −Ee,1

c
−Ee,2

c
−Ee,3

c

Ee,1

c
0 −Be,3 Be,2

Ee,2

c
Be,3 0 −Be,1

Ee,3

c
−Be,2 Be,1 0

⎞
⎟⎟⎟⎟⎟⎟⎠
, F�

e =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −Be,1 −Be,2 −Be,3

Be,1 0
Ee,3

c
−Ee,2

c

Be,2 −Ee,3

c
0

Ee,1

c

Be,3
Ee,2

c
−Ee,1

c
0

⎞
⎟⎟⎟⎟⎟⎟⎠
, (69)

Fm =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −Bm,1 −Bm,2 −Bm,3

Bm,1 0
Em,3

c
−Em,2

c

Bm,2 −Em,3

c
0 Em,1

c

Bm,3
Em,2

c
−Em,1

c
0

⎞
⎟⎟⎟⎟⎟⎟⎠
. F�

m =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −Em,1

c
−Em,2

c
−Em,3

c

Em,1

c
0 −Bm,3 Bm,2

Em,2

c
Bm,3 0 −Bm,1

Em,3

c
−Bm,2 Bm,1 0

⎞
⎟⎟⎟⎟⎟⎟⎠
,(70)

where E = Ee + Em and B = Be + Bm, such that the total field tensors are,

F = Fe + F�
m, F� = F�

e + Fm. (71)

In terms of the field tensors, Maxwell’s equations (1) are,33,34

∂νFe,νμ = μ0Je,μ, ∂νFm,νμ = −μ0Jm,μ, ∂νF
�
e,νμ = 0 = ∂νF

�
m,νμ, (72)

33We avoid distinguishing between covariant and contravariant vectors and tensors by use of the conven-
tions that ∂μ = (∂/∂ct,−∇) and AμBμ = A0B0 − A1B1 − A2B2 − A3B3.

34The Lorentz force laws for charge and currents densities that correspond to eq. (8) can be written as
fμ = FνμJν where Jν = Je,μ + Jm,ν .
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where Jμ = (cρ,J) is the charge-current 4-vector; in terms of the partial fields,

∇ · Ee =
ρe

ε0
, ∇ · Be = 0, ∇ × Ee = −∂Be

∂t
, ∇× Be =

1

c2
∂Ee

∂t
+ μ0Je, (73)

∇ · Em = 0, ∇ · Bm = μ0ρm, ∇ × Em = −∂Bm

∂t
− μ0Jm, ∇× Bm =

1

c2
∂Em

∂t
. (74)

As usual, since ∇ · Be = 0 we can relate Be to a vector potential Ae such that Be =
∇×Ae. Then, ∇×Ee = −∇× ∂Ae/∂t, such that there exists a scalar potential Ve where
Ee + ∂Ae/∂t = −∇Ve. Similarly, since ∇ · Em = 0 we can relate Em to a vector potential
Am such that Em = −∇× Am. Then, ∇ × Bm = −∇ × ∂Am/∂t, such that there exists a
scalar potential Vm where Bm + ∂Am/∂t = −∇Vm.

That is, there exist (dual) 4-potentials Ae,μ = (Ve/c,Ae) and Am,μ = (Vm/c,Am) such
that,

Ee = −∇Ve − ∂Ae

∂t
, Be = ∇ × Ae, Em = −∇ ×Am, Bm = −∇Vm − ∂Am

∂t
. (75)

The field tensors Fe and Fm are related to the 4-potentials by,

Fe,μν = ∂μAe,ν − ∂νAe,μ, Fm,μν = ∂νAm,μ − ∂μAm,ν . (76)

These dual fields and potentials have also been discussed in [77, 86, 87, 96, 109, 123].35

D.1.17 Rose

In 1955, sec. 5, p. 9, of his book [68], Rose wrote: We again consider the free-space Maxwell
equations. It is evident that if E and H are solutions, then E′ and H′ are also solutions if,

E′ = ±H, H′ = ∓E, (1.31)

where either the upper or lower signs are to be used. The field E′, H′ is dual to the field E,
H. Clearly, apart from an irrelevant overall sign, E, H is dual to E′, H′.

This may be the first explicit statement of an electromagnetic duality transformation.
Note that Rose did not consider magnetic charges or currents to exist, and restricted his

duality transformation to source-free (free-space) regions. That is, the duality described by
Rose holds in the absence of magnetic charges and currents, and holds in regions that can be
described by permittivities ε and permeabilities μ different from ε0 and μ0 but which regions
cannot contain permanent electric moments, or permanent magnetic moments, of any order.

The pseudoduality described by Rose (and many followers) contrasts with what I will
call full duality that would hold if magnetic charges and currents existed (and which would
hold throughout all space). These two types of electromagnetic duality are almost never
distinguished in the literature, which is therefore somewhat confusing.

D.1.18 Ohmura

In 1956, Ohmura, in a very brief note [69], discussed electrodynamics with both electric and
magnetic charges, and with dual potentials.

35Potentials Vm and Am were discussed for static fields in eq. (24) of [101], supposing that Ee = ∇×Am.
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D.1.19 Ramsey

In 1957, shortly after the discovery of parity violation in the weak interaction [70], Ramsey
[72] noted that the electromagnetic interactions of electric and magnetic charges would vi-
olate parity symmetry (P ). He speculated that these interaction would obey the combined
symmetries CP and MP , where C and M are the operations of electric and magnetic charge
conjugation.36

See also sec. 5 of [77].

D.1.20 Harrington

In 1958, Harrington, sec. 7.6, p. 177 of [75], discussed a concept of duality in which magnetic
charges and currents existed, but he was not aware that in this case there would be two D
fields and two H fields. As such, his identifications in Table 7-2, p. 178, that E is the dual
of H, and that D is the dual of B, are not viable.

In 1961, Harrington produced another book [75], in which magnetic charges and currents
have (p. 34) no physical significance, but are sometimes considered as fictitious sources in
problems as a means of discussing the electromagnetic fields that hold when only electric
charges and currents are present. The duality discussed by Harrington in sec. 3.2, p. 98, of
[75], is thus very close to the pseudoduality of Rose [68].37

The Rose/Harrington version of duality continues to have considerable influence on the
electrical-engineering literature, in contrast to the literature in physics which tends to follow
the versions of Katz, Calkin, Schwinger and Jackson (although the latter two versions have
issues that will be noted below).

D.1.21 Cabibbo and Ferrari

In 1962, Cabibbo and Ferrari [77] independently introduced the dual potentials discussed in
sec. D.1.16 above.

D.1.22 Katz

The work of Rainich (sec. D.1.13 above) went largely unnoticed until 1964, when Katz,
sec. IV of [84], stated that Rainich had shown (or implied) that Maxwell’s equations are
invariant under the transformations,

E′ = E cos θ + B sin θ, B′ = −E sin θ + B cos θ, (77)

ρ′e = ρe cos θ + ρm sin θ, ρ′m = −ρe sin θ + ρm cos θ, (78)

J′
e = Je cos θ + Jm sin θ, J′

m = −Je sin θ + Jm cos θ, (79)

where θ is an arbitrary constant.
Katz did not use the term duality. He did consider the possible physical significance of

the parameter θ, but concluded that no experiment could determine its value.

36It is now known that CP symmetry is also violated in the weak interaction [83].
37Another vision of electric/magnetic “analogies” from this time is [78].
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D.1.23 Calkin

In 1965, Calkin [85] argued that the free-space Maxwell equations are invariant under the
transformation,

E′ = E cos θ + B sin θ, B′ = −E sin θ + B cos θ, (80)

where θ is an arbitrary constant. He further noted, in the spirit of Noether’s theorem [52],
that this invariance principle is associated with the “conservation law” that the difference
between the number of left and right circularly polarized photons in the electromagnetic field
is a constant.38,39

Calkin did not mention the term duality, nor did he cite Rainich [53]. Calkin’s paper
was submitted a few days before the publication of Katz’ paper [84] (in the same journal),
but this went unacknowledged.

D.1.24 Rohrlich

In 1966, Rorhlich [87] discussed duality invariance that would hold if magnetic charges exists,
as well a dual potentials, citing [77] on the latter.

D.1.25 Misner and Wheeler

In 1967, Misner and Wheeler, p. 529 of [71], followed a hint of Rainich [53] to consider the
transformation involving fields E and H and an arbitrary angle α. This was not quite the
duality transformation of secs. D.1.22 and D.1.23 below.

D.1.26 Schwinger

In 1969, Schwinger [90] gave a statement of a continuous duality symmetry of Maxwell’s
equations (without using the term duality) including both electric and magnetic charge
and current densities, but was somewhat careless in not distinguishing between “free” and
“total” (= “free” + “bound”) charge and current densities. His equations would be correct
if the densities were the “total” densities, and his H were replaced by B. Then, his field
transformations would agree with our eq. (80), due to Calkin [85].40

Schwinger also gave the (duality) transformation between electric and magnetic charge
densities.41

38This observation suggests that while the duality symmetry of electromagnetism is elegant, its physical
significance is relatively minor. Furthermore, it is unclear that Calkin’s conservation law holds for interacting
electromagnetic fields.

39Calkin was partly inspired by the discovery, reported in [81], of other conserved quantities for free
electromagnetic fields. See also [82].

40The discrete duality transformation (81) is given on p. 18 of Schwinger’s posthumous text [103].
41Schwinger’s main theme was a possible extension of electromagnetic duality to include the weak interac-

tion, in which case there might be vector bosons with magnetic charge, in addition to the (since discovered)
electrically charged gauge-bosons W±. Schwinger did not cite the then-recent electroweak model of Weinberg
[88] and Salam [89]. There has been surprisingly little followup to Schwinger’s suggestion, but one example
is [112].

In the meantime, the most cited paper in elementary-particles physics is the so-called gauge-gravity duality
of Maldacena [102] (with Weinberg’s paper having the secondmost citations).
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D.1.27 Jackson

In the 1975 edition of his text, sec. 6.12 of [91], Jackson gave a version of Schwinger’s
argument, but with the field E replaced by D in some places, and also without being clear
as to whether the charge and current densities were “free” or “total”.

Again, a more correct treatment would be to use the “total” charge and current densities,
and only the fields E and B. If it is desired to consider the fields D and H, then one must
use all four of De, Dm, He and Hm as in sec. D.3 below.

D.2 Microscopic Electrodynamics

As noted at the beginning of Appendix B, Minkowski [44] implicitly introduced the duality
transformation,

E → cB, cB → −E, (81)

as a useful construct when discussing Maxwell’s equation in 4-tensor notation. The micro-
scopic form of Maxwell’s equation, eq. (1), is symmetric (invariant) under this transformation
if in addition all electric charges are replaced by magnetic charges, and vice versa.

We now consider the appropriate duality transformation for other quantities than the
fields E and B. An important constraint is that such a transformation should relate quantities
that have the same dimensions. Now, in SI units electric and magnetic charges do not have
the same dimensions, so their duality transformation is not simply qe ↔ qm.

First, we note that in SI units the microscopic density u of electromagnetic field energy
is,

u =
ε0E

2

2
+
B2

2μ0

. (82)

That is,
√
ε0 E and B/

√
μ0 have the same dimension, such that E and B/

√
ε0μ0 = cB have

the same dimensions. Hence, Minkowski’s duality transformation (81) is indeed between
quantities with the same dimensions.42

We then rewrite the first two Maxwell equations (1) as,

∇ · √ε0 E =
ρe√
ε0
, ∇ · B√

μ0

=
√
μ0 ρm, (83)

which indicates that in SI units ρe/
√
ε0 has the same dimensions as

√
μ0 ρm, i.e., that qe and

qm/c have the same dimensions. Thus, the duality transformations for charges, and charge
and current densities, are,43

qe → qm

c
,

qm

c
→ −qe, ρe →

ρm

c
,

ρm

c
→ −ρe, Je → Jm

c
,

Jm

c
→ −Je.(84)

42This contrasts with Schelkunoff’s view, sec. D.1.14 above, that the duality transformation should be
between E and H because these have “analogous” dimensions, volts/m and amperes/m.

43If only electric charges exist in Nature (as is the case so far as we know), the duality transformations
(81) and (84) have the somewhat trivial application that we could redefine electric fields to be magnetic
fields, and vice versa, call all charges magnetic, and say that electric charges do not exist.
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These relations are consistent with the microscopic force laws (9)-(10),

Fe = qe

(
E +

v

c
× cB

)
, Fm =

qm

c

(
cB − v

c
×E

)
, (85)

whose duality transformation is,

Fe ↔ Fm. (86)

For completeness, we note that the third and fourth Maxwell equations (1) can be written
as,

−∇ × E =
∂

∂ct
(cB) + μ0c

Jm

c
, ∇× cB =

∂E

∂ct
+ μ0cJe, (87)

which are consistent with the duality transformations (81) and (84).
One should not (in this author’s view) say that the constants ε0 and μ0 (which have

different dimensions) are duals of one another. Indeed, since ε0μ0 = 1/c2, they are not
independent quantities, and electrodynamics could be formulated using only one of them
(along with the universal constant c). For example, the static force between two like electric
charges separated by distance r is Fe = q2

e/4πε0r
2, while the force between two magnetic

charges is Fm = μ0q
2
m/4πr

2 = μ0c
2(qm/c)

2/4πr2 = (qm/c)
2/4πε0r

2, such that the duality
relation (84) leads to the relation (86) without any “duality relation” between ε0 and μ0.

D.2.1 Dual Potentials (June 15, 2020)

As perhaps first noted in [67], if magnetic charges existed one could consider (dual) 4-
potentials Ae,μ = (Ve/c,Ae) and Am,μ = (Vm/c,Am) such that (in our notation) E = Ee+Em

and B = Be + Bm where,

Ee = −∇Ve − ∂Ae

∂t
, Em = −∇× Am, Be = ∇ × Ae, Bm = −∇Vm − 1

c2
∂Am

∂t
. (88)

The duality transformations for the potentials, and for the partial fields, are,

Ve → cVm, cVm → −Ve, cAe → Am, Am → −cAe, (89)

Ee → cBm, Em → cBe, cBe → −Em, cBm → −Ee. (90)

D.3 Macroscopic Electrodynamics

In macroscopic electrodynamics we consider media with densities Pe of electric dipoles and
Me of (Ampèrian) magnetic moments due to electrical currents. As the dual of electric charge
qe is magnetic charge divided by c, qm/c, the dual of Pe is a density Mm/c of (Gilbertian)
magnetic dipoles due to pairs of opposite magnetic charges, divided by c. Similarly, the
dual of Me is proportional to a density Pm of (Gilbertian) electric dipoles due to currents
of magnetic charges.

Historically, the electric densities Pe and Me were incorporated in the macroscopic fields
D = ε0E+Pe and H = B/μ0−Me such that H/c = ε0 cB−Me/c. While we say that cB is
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the dual of E, it is not the case that
√
μ0/ε0H is the dual of E (nor is B the dual of

√
μ0/ε0D,

as claimed in sec. 6.11 of [105]). Rather, we see that duality requires the introduction of a
second D and a second H field according to eq. (4),

De = ε0E + Pe, He =
B

μ0

− Me, Dm =
E

μ0

− c2 Pm, Hm =
B

μ0

+ Mm, (91)

with the duality transformations,

c Pe → Mm, Me → −cPm, cPm → Me, Mm → −cPe, (92)

cDe → Hm, cHe → −Dm, Dm → cHe, Hm → −cDe. (93)

A consequence of the minus signs in eq. (92) is that while the Ampèrian magnetic dipole
moment me associated with electric current density Je is,

me =

∫
r× Je

2
dVol → Ie Area, (94)

the Gilbertian electric dipole moment pm associated with magnetic current density Jm is,

pm = −
∫

r × Jm

2
dVol → −Im Area. (95)

The macroscopic force densities and their duality relation are,

fe = μ0(ρ̃eDm + J̃e × Hm), fm = μ0(ρ̃mHe − J̃m × De), fe ↔ fm. (96)

The Poynting vector is,

S = μ0Dm × He (all media), (97)

and for isotropic, linear media in which De and Dm are both proportional to E, and He

and Hm are both proportional to B, the density u of stored energy associated with the
electromagnetic fields is,

u = μ0

De · Dm + He · Hm

2
(isotropic, linear media). (98)

Both S and u are self-dual.

For isotropic, linear media with polarization densities Pe and Me based on electric charges
and currents, we can write,

Pe = ε0χDe
E, De = εeE, εe = ε0(1 + χHe

), (99)

Me = χDe
He, B = μeHe, μe = μ0(1 + χHe

), (100)

such that εe and μe revert to the familiar permittivity ε and permeability μ in the absence of
magnetic charges and currents. To have the corresponding relations for polarization densities
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Pm and Mm based on magnetic charges and currents obey forms similar to eqs. (99)-(100)
for isotropic, linear media, we use,

Pm = ε0μ0χDm
Dm, Dm = εmE, εm =

ε0c
2

1 + χDm

=
1

μ0(1 + χDm
)
, (101)

Mm = χHm

B

μ0

, B = μmHm, μm =
μ0

1 + χHm

. (102)

However, the permittivities ε, the permeabilities μ and the susceptibilities χ do not obey
simple duality relations.

D.3.1 Why Does pm = −
∫

r × Jm dVol/2c2 ?

As noted in eqs. (94)-(95), the duality transformation (92) contains the prescription that the
dual of a magnetic-dipole moment due to electric currents is the negative of an electric-dipole
moment due to magnetic currents,

me → −cpm, (103)

which minus sign is perhaps counterintuitive. Now,

me =

∫
r × Je

2
dVol →

∫
r × Jm

2
dVol, (104)

so eqs. (103)-(104) imply that,

pm = −
∫

r × Jm

2c2
dVol, (105)

which also is perhaps surprising.
We recall that for a magnetic dipole me associated with an electric-current density Je

that flows in a loop, say in a static situation, the Maxwell equation ∇ ×B = μ0Jec implies
that,

μ0

∮
loop

Je · dl =

∮
loop

∇ × B · dl =

∫
loop

B · dArea. (106)

That is, the direction of the magnetic field B at the center of the loop is related to the
direction of Je by the righthand rule, as sketched in the left figure below.

This is consistent with the usual relation,

me =

∫
r × Je

2
dVol. (107)
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In the case of a loop of magnetic current density Jm, again in a static situation, the
Maxwell equation (24), ∇ × E = −μ0Jm, implies that,

μ0

∮
loop

Jm · dl = −
∮

loop

∇ × E · dl =

∫
loop

E · dArea. (108)

That is, the direction of the magnetic field E at the center of the loop is related to the
direction of Jm by the lefthand rule, as sketched in the right figure above. This is consistent
with the relation (105), which is in turn consistent with the duality relation (61),
me → −cpm.

Thus, the difference in sign between the relations (105) and (107) is due to the difference
in signs of the terms in the current densities in the Maxwell equations,

c2∇ × ε0E = −
(
∂

∂t

B

μ0

+ Jm

)
, ∇ × B

μ0

=
∂ε0E

∂t
+ Je. (109)

The equation for ∇×E with magnetic currents was first discussed by Heaviside in 1885
[16]. He argued (p. 448 of [16]) that just as in the equation for ∇ × B where the current
density Je and the “displacement-current density” ∂ε0E/∂t have the same sign, the current
density Jm and the “magnetic displacement-current density” ∂(B/μ0)/∂t should have the
same sign in the equation for ∇ × E.44

D.4 Gaussian Units

We have already remarked (footnote 11, p. 3 above) that some people write the second
Maxwell equation as ∇ · B = ρm in SI units. The macroscopic fields Dm and Hm could
also be defined differently than here. In particular, the definition Dm = ε0E − Pm (which
is our Dm divided by c2) could be considered, although then the third and fourth Maxwell
equations of eq. (5) differ more in their forms.

Gaussian units were developed to have greater symmetry between electric and magnetic
quantities, which will carry over into the duality relations in these units. Here, we summarize
the main electrodynamic relations in Gaussian units.

The microscopic Maxwell equations in Gaussian units are,

∇ · E = 4πρe, ∇ · B = 4πρm, −c∇ ×E =
∂B

∂t
+ 4πJm, c∇ ×B =

∂E

∂t
+ 4πJe,(110)

for which the duality relations are,

qe → qm, qm → −qe, E → B, B → −E. (111)

In Gaussian units, electric and magnetic charges have the same dimensions, and electric and
magnetic fields have the same dimensions.

The macroscopic fields are,

De = E + 4πPe, He = B − 4πMe, Dm = E − 4πPm, Hm = B + 4πMm,(112)

44See also [100].
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with the duality transformations,

Pe → Mm, Me → −Pm, Pm → Me, Mm → −Pe, (113)

De → Hm, He → −Dm, Dm → He, Hm → −De. (114)

The macroscopic Maxwell equations are,

∇ · De = 4πρ̃e, ∇ · Hm = 4πρ̃m,

−c∇× Dm =
∂Hm

∂t
+ 4πJ̃m, c∇ × He =

∂De

∂t
+ 4πJ̃e. (115)

The microscopic force law on charges is,

Fe = qe

(
E +

v

c
× B

)
, Fm = qm

(
B − v

c
× E

)
, Fe ↔ Fm, (116)

while the macroscopic force densities and their duality relations are,

fe = ρ̃eDm +
J̃e

c
× Hm, fm = ρ̃mHe − J̃m

c
× De, fe ↔ fm. (117)

The Poynting vector is,

S =
c

4π
Dm × He (all media), (118)

and for linear media in which De and Dm are both proportional to E, and He and Hm are
both proportional to B, the density u of stored energy associated with the electromagnetic
fields is,

u =
De · Dm + He · Hm

8π
(linear media). (119)

Both S and u are self-dual.

For isotropic, linear media with polarization densities Pe and Me based on electric charges
and currents, we can write,45

Pe = χDe
E, De = εeE, εe = 1 + 4πχDe

, (120)

Me = χHe
He, B = μeHe, μe = 1 + 4πχHe

. (121)

such that εe and μe revert to the usual ε and μ in the absence of magnetic charges and
currents. To have the corresponding relations for polarization densities Pm and Mm based
on magnetic charges and currents obey forms similar to eqs. (120)-(121) for linear media, we
might define,46

Pm = χDm
Dm, Dm = εmE, εm =

1

1 + 4πχDm

, (122)

Mm = χHm
B, B = μmHm, μm =

1

1 + 4πχHm

. (123)

45For discussion of the effect of the factors of 4π in the conversion of D and H between SI and Gaussian
units, see [117].

46If we defined Pm = χDm
E and Mm = χHm

Hm, we might readily have negative values of εm and μm.
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The fields E = Ee + Em and B = Be + Bm are related to potentials Ae,μ = (Ve,Ae) and
Am,μ = (Vm,Am) as,

Ee = −∇Ve − 1

c

∂Ae

∂t
, Em = −∇ × Am, Be = ∇ ×Ae, Bm = −∇Vm − 1

c

∂Am

∂t
.(124)

The duality transformations for the potentials are,

Ve → Vm, Vm → −Ve, Ae → Am, Am → −Ae. (125)
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(1900), http://kirkmcd.princeton.edu/examples/EM/poincare_an_5_252_00.pdf
Translation: The Theory of Lorentz and the Principle of Reaction,
http://kirkmcd.princeton.edu/examples/EM/poincare_an_5_252_00_english.pdf

[31] A.E.H. Love, The Integration of the Equations of Propagation of Electric Waves, Phil.
Trans. Roy. Soc. London 197, 1 (1901),
http://kirkmcd.princeton.edu/examples/EM/love_ptrsl_197_1_01.pdf
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