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1 Introduction

A prominent feature of Maxwell’s vision of A Dynamical Theory of the Electromagnetic Field
[7] is that the electromagnetic field contains energy, whose volume density u is, in Gaussian
units,

u =
E · D
8π

+
B · H

8π
, (1)

for linear media where D = εE and B = μH, with ε and μ being the (relative) permittivity
and permeability of the medium, and c is the speed of light in vacuum.1,2,3

Subsequently, Poynting (1883) [14] promoted the vision that the flux of energy in the
electromagnetic field is described by the vector,

S =
c

4π
E × H (Poynting), where E · J = −∂u

∂t
−∇ · S, (2)

is the rate of work done by electromagnetic fields on electric current density J.
Perhaps because the implications of eqs. (1)-(2) are sometimes counterintuitive,4,5 there

has been ongoing doubt as to the physical interpretation of these relations.

1In Sec. 74 of [7], Maxwell stated: In speaking of the Energy of the field ... I wish to be understood
literally ... The only question is, Where does it reside? On the old theories it resides in the electrified bodies,
conducting circuits, and magnets, in the form of an unknown quality called potential energy, or the power
of producing certain effects at a distance. On our theory it resides in the electromagnetic field, in the space
surrounding the electrified and magnetic bodies, as well as in those bodies themselves.

In Art. 631 of his Treatise [10], Maxwell wrote: Hence, the electrostatic (potential) energy of the whole
field will be the same if we suppose that it resides in every part of the field where electrical force (E) and
electrical displacement (D) occur, instead of being confined to places where free electricity is found. In
(vector) language (and in Gaussian units) it is E · D/8π. And in Art. 636 he wrote: According to our
hypothesis, we assume the kinetic energy to exist wherever there is magnetic force, that is, in general, in
every part of the field. The amount of this energy per unit of volume is B ·H/8π, and this energy exists in
some form of motion in every portion of space.

2That the magnetic-field-energy density can be written as B · H/8π was first deduced by Maxwell
in (1856), p. 63 of [5], via a transformation of the magnetic potential energy. Yet, Maxwell called the
transformed energy “kinetic”.

3Maxwell’s comments about electromagnetic field energy contrast with his characterization of “mechani-
cal” potential energy in Art. 97 of [12], where he stated: Rankine [4] introduced the term Potential Energy—a
very felicitous expression, since it not only signifies the energy which the system has not in actual possession,
but only has the power to acquire.

4

One of the first examples of counterintuitive behavior was given by
Poynting in Fig. 3 of [14], that the flow of energy from a battery
to a resistive wire loop connected to it is not through the wire, but
across the “empty” space between the battery and segments of the
wire. See also, for example, [97, 127, 148].

5Another example was given by Heaviside on p. 94 of [39], where he considered a uniformly magnetized
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An early expression of such doubt was by Heaviside (1887) [21], despite his having inde-
pendently deduced (1884) that the vector S of eq. (2) can be considered to represent the flow
of energy in the electromagnetic field [16, 17, 18]. Heaviside’s comment, p. 93 of [39], was
based on an awareness that his and Poynting’s derivation of eq. (2) actually only determine
∇ · S:6 If S be the vector energy-current density, we may add to it another vector, say s,
provided s have no convergence anywhere (i.e., ∇ · s = 0). The existence of s is possible,
but there does not appear to be any present means of finding out whether it is real, and how
it is to be expressed.

Among later doubters, the most notable is Feynman.7,8

In the Sec. 3 below note we review the alternatives to the Poynting vector that have
been proposed, after some comments (in Sec. 2) about electromagnetic-field momentum and
angular momentum.

2 Electromagnetic Momentum and Angular

Momentum

2.1 Field Momentum

Maxwell enunciated a conception of electromagnetic momentum in Sec. 57 of [7] as,

P
(Maxwell)
EM =

∫
�A(C)

c
dVol, (3)

where � is the electric charge density and A(C) is the vector potential in the Coulomb gauge
(that Maxwell used prior to the explicit recognition of gauge conditions [119]). Maxwell

sphere with a uniform electric surface charge. Here, lines of the Poynting vector S (Heaviside’s W) flow in
circles outside the sphere, about its magnetic axis. As Heaviside remarked: What is the use of it? On the
other hand, what harm does it do? See Feynman’s answer in Sec. 3.12.7 below.

6Heaviside credited J.J. Thomson for pointing this out. See pp. 151-152 of [19], and also Sec. 280, p. 313
of [37].

7Feynman stated, Sec. 27-4 of [70]: All we did was to find a possible “u” and a possible “S”. How do we
know that by juggling the terms around some more we couldn’t find another formula for “u” and another
formula for “S”? The new S and the new u would be different, but they would still satisfy (the second of
eq. 2 of this paper). It’s possible. It can be done, but the forms that have been found always involve various
derivatives of the field (and always with second-order terms like a second derivative or the square of a first
derivative). There are, in fact, an infinite number of different possibilities for u and S, and so far no one
has thought of an experimental way to tell which one is right! People have guessed that the simplest one is
probably the correct one, but we must say that we do not know for certain what is the actual location in
space of the electromagnetic field energy. So we too will take the easy way out and say that the field energy
is given by eq. (1). Then the flow vector S must be given by eq. (2).

8This note concerns the notion of flow of field energy in classical electromagnetism. In quantum theory
one can also consider the flow of field energy, but here one is led to speak of the probability amplitude and
probability density of the flow. For example, in a classical analysis of Young’s double-slit experiment, lines
of the Poynting vector (2) go through one slit or the other, whereas in the quantum view a single photon
has a nonzero amplitude to go through both slits (unless it is observed at one of the slits).

Although the quantum Poynting vector is subject to “uncertainty” in its interpretation, this has not led
to suggestions of alternative forms for it.
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regarded the vector potential A at the location of an electric charge q as providing a measure,
qA/c, of electromagnetic momentum, as well as an interpretation of Faraday’s electrotonic
state (Arts. 60-61 of [2]). That Faraday associated with some kind of momentum with this
state is hinted in Art. 1077 of [3].

However, the form (3) seems to associate the momentum with charges rather than with
fields.

In 1888, Heaviside, p. 330 of [26], inferred from the Maxwell stress tensor that the volume
force density f could be written as,9

f =
d

dt

S

c2
=

d

dt

E × H

4πc
(Heaviside), (4)

without explicitly identifying S/c2 = E × H/4πc as the field-momentum density.10

In 1891, Thomson noted [27] that a sheet of electric displacement D (parallel to the
surface) which moves perpendicular to its surface with velocity v must be accompanied
by a sheet of magnetic field H = v/c × D according to the free-space Maxwell equation
∇ × H = (1/c) ∂D/∂t.11 Then, the motion of the energy density of these sheets implies
there is also a momentum density, eqs. (2) and (6) of [27],

p
(Thomson)
EM =

D × H

4πc
. (5)

Also in 1891, Heaviside identified the momentum of the free ether in Sec. 26 of [30] as,12

p
(Heaviside)
EM =

D × B

4πc
. (6)

This was a clarification of his discussion in 1886, eq. (7a) of [20], of a magnetoelectric force
D/4πc× ∂B/∂t.13

In 1893, Thomson transcribed much of his 1891 paper into the beginning of Recent
Researches [37], adding the remark (p. 9) that the momentum density (5) is closely related
to the Poynting vector [14, 17],14,15

S =
c

4π
E × H. (7)

9The result (4) was anticipated by Heaviside in eqs. (6a) and (7a) of [20] (1886).
10In the same paper [26], Heaviside gave the first correct derivation of the electromagnetic fields of a

uniformly moving charge with any velocity v < c.
11Variants of this argument were given by Heaviside in 1891, Sec. 45 of [28], and much later in Sec. 18-4 of

[70], where it is noted that Faraday’s law, ∇×E = −(1/c) ∂B/∂t, combined with the Maxwell equation for
H implies that v = c in vacuum, which point seems to have been initially overlooked by Thomson, although
noted by him in Sec. 265 of [34].

12See also p. 557 of [33] and p. 495 of [29].
13Heaviside also mentioned this concept in 1889 on pp. 399-330 of [26].
14The idea that an energy-flux vector is the product of energy density and energy-flow velocity seems to

be due to Umov [11], based on Euler’s continuity equation [1] for mass flow, ∇ · (ρv) = −∂ρ/∂t.
15Thomson argued, in effect, that the field-momentum density (5) is related by pEM = S/c2 = uv/c2

[27, 37]. See also eq. (19), p. 79 of [32], and p. 6 of [50].
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The form (5) was also used by Poincaré in 1900 [43], following Lorentz’ convention [31]
that the force on electric charge q be written q(D + v/c×H), and that the Poynting vector
be (c/4π)D × H. In 1903 Abraham [45] argued for,

p
(Abraham)
EM =

E ×H

4πc
=

S

c2
, (8)

and in 1908 Minkowski [48] advocated the form,16,17

p
(Minkowski)
EM =

D × B

4πc
. (9)

The forms (5)-(9) all involve either D = E+4πP or H = B− 4πM, where P and M are
the densities of electric and magnetic dipoles due to electric charges and currents. As such,
they involve momentum of the “mechanical” dipoles as well as the of the electromagnetic
fields E and B, which has led to extensive debate as to the physical interpretation of these
various forms [143]. The author’s view that it is often best to avoid this debate, and restrict
discussion of “field” momentum to the “electromagnetic-field-only” momentum,

pEM =
E × B

4πc
. (10)

The integral of the electromagnetic-field-momentum density (10) can be written for static
fields in four equivalent forms,

PEM =

∫
�A

c
dVol =

∫
E × B

4πc
dVol =

∫
V J

c2
dVol =

∫
J · E
c2

r dVol (statics), (11)

where � is the (total) electric charge density, A =
∫

J dVol/cr is the magnetic vector potential
(where ∇ · A = 0 for static fields in both the Coulomb and Lorenz gauges), J is the
electric current density due to electric charges, E =

∫
� r̂ dVol/r2 is the electric field, B =∫

J × r̂ dVol/cr2 is the magnetic field, and V =
∫
� dVol/r is the electric scalar potential.18

The third form was introduced by Furry [79],19 and the fourth form is due to Aharonov et
al. [107].

2.2 Field Angular Momentum

In retrospect, one can recognize that electromagnetic field momentum was first considered
by Darboux (1878) [13] as a vector constant of the motion in the interaction of an electric
charge with a (hypothetical) magnetic pole. This constant vector was further considered by

16Minkowski, like Poynting [14], Heaviside [17] and Abraham [45], wrote the Poynting vector as E × H.
See eq. (75) of [48]. Heaviside wrote the momentum density in the Minkowski form (9) on p. 108 of [32].

17For some remarks on the “perpetual” Abraham-Minkowski debate see [136].
18For a review, see [125]. For discussion of alternative forms of electromagnetic energy, momentum and

angular momentum for fields with arbitrary time dependence, see, for example [132].
19The density V J/c2 is the static limit of an expression for the field-momentum density proposed by

Livens (Sec. 3.4 below), bottom of p. 263 of [54]. This density is also the static limit of S/c2 for several of
the alternative forms of the Poynting vector proposed by Slepian (1942, Sec. 3.6 below) [63].
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Poincaré in 1896 [42], but its relation to electromagnetic field momentum was only realized
much later. For a review, see [145].

The concept of electromagnetic field momentum was first explicitly mentioned in 1904
by J.J. Thomson [46], who considered an electric charge outside a small solenoid magnet,
and then an electric charge q plus a single magnetic pole p. For the latter case, he computed
the field angular momentum as,20

LEM =

∫
r × pEM dVol =

∫
r × E ×B

4πc
dVol =

pq

c
ẑ, (12)

independent of the distance between p and q, where ẑ points from the electric charge q to
the magnetic pole p.

The vector (12) is the constant vector considered by Darboux and Poincaré, but this
went unnoticed for many years.

In 1904 the notion of quantizing angular momentum was still years away, and the provoca-
tive result (12), that the angular momentum of a magnetic pole plus electric charge is in-
dependent of their separation, went unremarked until 1931 when Dirac [57] argued that
pq/c = �/2. See also Sec. 6.12 of [118].

3 Some History of Poynting-Vector Alternatives

3.1 Thomson

In 1885, J.J. Thomson, p. 151 of [19], noted that one could satisfy Poynting’s theorem via,

S =
c

4π
E × H + s, with s = ∇ × f (Thomson), (13)

since ∇ · s = ∇ · (∇ × f) = 0 for any differentiable vector field f. Thomson did not give an
argument favoring any particular form of f, but just considered that the energy-flow vector
is “indeterminate”.

Heaviside’s subsequent comments about this issue were discussed on p. 2 above.

3.2 Birkeland

In 1894, Birkeland [40] argued (in German) that if the Poynting vector is to be a function
only of the electromagnetic fields, and not of their derivatives, then the only possible form
is the original version of Poynting, our eq. (2).21

Birkeland assumed that magnetic monopoles do not exist. If they do, the Poynting
vector becomes S = Dm × He/4πc = (E − 4πPm) × (B − 4πMe)/4πc where Pm is the
density of electric-dipole moments due to magnetic-monopole currents and Me is the density
of magnetic-dipole moments due to electric currents, as reviewed in Sec. 2.3 of [139].

20See also Sec. 2.2 of [141].
21Birkeland’s argument was mentioned by Feynman, footnote 7 above. For another discussion of Birke-

land’s argument, see the end of [91].
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3.3 Macdonald

Another early proposal for an alternative to the Poynting vector is be that by Macdonald
(1902), p. 72 of [44],

S =
c

4π
E × H + s, with s =

1

8π

∂

∂t
(A× H) (Macdonald). (14)

Here, ∇ · s �= 0, but Macdonald also proposed an alternative form for the energy density u
such that the second of eq. (2) is still satisfied.

Macdonald’s expressions for S and u are not gauge invariant,22 so this author considers
them not to be valid for a physical description of Nature.23,24

3.3.1 Schott

Macdonald’s alternatives were noted by Schott (1912) on pp. 5-6 of [49], who thereafter used
Poynting’s standard form.

3.3.2 Tralli

Macdonald’s vector (14) was presented without attribution in Sec. 9-13 of [71] (1963).

3.4 Livens

In 1917, Livens discussed Poynting’s derivation of eq. (2) in Sec. 2 of [51], and then in Sec. 3
he reviewed Macdonald’s derivation of eq. (14). In Sec. 4, he proposed a different alternative
to the Poynting vector,

S = V Jtotal (Livens), (15)

22Maxwell was aware of the arbitrariness of the electromagnetic potentials Ψ and A, Sec. 98, pp. 499-
500 of [7]. He understood that his preference for ∇ · A = 0 (Coulomb gauge) is a choice, not a physical
requirement, and that one can always enforce this condition by what is now called a gauge transformation,
eqs. (74) and (77) of [7] on rewriting ϕ as Ψ′.

23Of course, with a particular choice of gauge, valid computations can be made using the electromagnetic
potentials.

24One of the first to question the physical significance of the electromagnetic potentials was Heaviside
(1888) in the Postscript to [23], pp. 47-50, titled On the Metaphysical Nature of the Propagation of the
Potentials. On p. 47, he wrote: We make acquaintance, experimentally, not with potentials, but with forces,
and we formulate observed facts with the least amount of hypothesis, in terms of the electric force E and
magnetic force H. In Maxwell’s development of Faraday’s views, E and H actually represent the state of the
medium anywhere.

Such doubt was a topic of debate at the 1888 Bath Meeting of the British Association, where FitzGerald
spoke of the “murder of Ψ”, p. 624 of [22]. See also [24] and chap. 7 of [110].

Heaviside indicated an awareness as to the arbitrariness of the electromagnetic potentials Ψ and A on p. 48
of [23], where he stated: Thus we have Ψ, A, and Ȧ required, involving seven scalar specifications to find
the six in E and H. However, he seems to have followed Maxwell in taking the electromagnetic potentials to
be in the Coulomb gauge. At the top of p. 49 of [23], Heaviside noted what Maxwell had missed regarding
the Coulomb gauge: Thus we have instantaneous propagation of Ψ to infinity. Then he added: I prefer,
however, to say that this is only a mathematical fiction.
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where V is the electrical scalar potential, and Jtotal = J + (1/4π)∂D/∂t is the total current
density as first considered by Maxwell in eq. (112), p. 19, of [6]. Like Maxwell, Livens tacitly
used the Coulomb gauge.

The form (15) has the appeal that in case of a steady conduction current the flow of energy
follows the flow of electric current, in contrast to Poynting’s vision (footnote 4 above).

Livens also made this argument in secs. 627-628, pp. 555-556 of his textbook [52], and
in Sec. 229, pp. 242-244 of the 2nd edition [54].

Livens briefly mentioned electromagnetic field momentum in the Abraham form (8) on
p. 598 of [52], and gave greater discussion in secs. 239-242, pp. 258-264 of [54]. In particular,
he proposed an alternative to electromagnetic-field-momentum density on p. 263 of [54] as,

pEM =
V Jtotal

c2
+

(
−1

c

∂A

∂t

)
× B

4πc
(Livens). (16)

Livens’ forms are subject to the general objection that physical quantities must be gauge
invariant. For example, in the Gibbs gauge [144], V = 0 everywhere.

It is, however, noteworthy that in case of static fields (where Jtotal = J), Livens’ form
(16) for the field-momentum density reduces to the form of eq. (11), as later advocated by
Furry [79].

3.4.1 Carpenter

Livens’ vector (15) was advocated by Carpenter [111, 112] in 1989.

3.4.2 Haus and Melcher (July 29, 2022)

On pp. 469-470 of [113] (1989) it was argued that if the magnetic field is independent of time,
then we can take E = −∇V ,25 and

∫
E × H · dArea =

∫
V [(4π/c)J + (1/c)∂D/∂t] dArea.

In this case we could identify a Poynting vector as S = V (J + (1/4π)∂D/∂t), which reduces
to S = V J if both B and D are independent of time.

An issue (besides the lack of gauge invariance of the electric potential V ) is then whether
one wants to consider that the Poynting vector has one form for static examples and a very
different form for dynamic cases. The present author prefers that there be a single form of
the Poynting vector, S = (c/4π)E × H, in all examples.

3.5 Bateman

In 1922, Bateman [53] proposed a variant of the Poynting vector as part of an effort to
explain the quantum behavior of atoms via classical electromagnetism,

S =
c

4π
E × H− ψ

2π

∂

∂t
∇ψ, where ψ(r, t) =

1

4π

∫
ρ(r′, t′)
γ′ |r − r′| dVol′ (Bateman), (17)

t′ = t− |r − r′| /c is the retarded time, and γ′ = 1/
√

1 − v2(r′, t′)/c2 is the Lorentz factor of
the moving source charges at the retarded time.

This peculiar suggestion depends on a potential ψ, and is not gauge invariant.

25This is an implicit choice of gauge, which excludes use of the Gibbs gauge, i.e., V = 0 everywhere.
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3.6 Slepian

In 1942, Slepian (who had a delightful sense of humor26) discussed Poynting’s theorem [62]
and offered 8 alternatives to standard Poynting vector [63]. One of these, eq. (13) of [63],
involves the magnetization density M which is not typically considered explicitly in the
context of the Poynting vector, and the other seven involve the electromagnetic potentials
as well as the fields.27

Slepian’s third form, eq. (19) of [63] is,28

S3 = V Jtotal +
c

4π

(
−1

c

∂A

∂t

)
×H (Slepian), (19)

where the electric current density Jtotal includes the displacement current (density) ∂D/∂t.29

Slepian remarked after his eq. (19): The first term V Jtotal is the formula for energy flow
used extensively by electrical engineers of power systems, and where displacement currents
are only a small part of the total current, |V J| = V I/Area may be determined directly by
wattmeters.30,31

The seven alternatives of Slepian which involve the electromagnetic potentials are un-
physical, in that they are not gauge invariant.

3.6.1 Carter

Slepian’s third form, eq. (19) of [63], was called the “Slepian vector” on p. 321 of [76] (and
was later reinvented by Lai [87], Sec. 3.11 below).

26For examples of Slepian’s wry humor regarding the Poynting vector, see [64, 65, 129].
27The variant involving the magnetization M is a precursor to considerations by the author [140] that

the standard Poynting vector can be rewritten in 729 different ways using different combinations of auxiliary
fields. These variants ultimately contain the same physics as the standard Poynting vector, but the notation
used makes them appear to be very different.

28

S =
c

4π
E× H =

(
−∇V − 1

c

∂A
∂t

)
× cH

4π
= V ∇ × cH

4π
− ∇ × V

cH
4π

− 1
c

∂A
∂t

× cH
4π

= V Jtotal +
c

4π

(
−1

c

∂A
∂t

)
×H − ∇ × V

cH
4π

= S3 − ∇ × cV H
4π

, (18)

such that S and S3 differ only by the vector s = ∇ × cV H/4π, whose divergence is zero.
29Although this differs from Livens’ form (15), note that S3/c2 is the same as Livens’ expression (16) for

the field-momentum density pEM, if Livens’ B were changed to H.
30For more extended comments by Slepian on the use of V Jtotal, see [62].
31In the electric-power industry there is interest in scalar measures of electric power, such as the product

V I of voltage and current. The merits of a vector measure of energy flow, such as the standard Poynting
vector S, or even the alternative V Jtotal, are not always obvious. Some of the ongoing debate on this theme
is at [124, 128, 130, 142]. The Feynman cylinder paradox [98] (Sec. 2.6) illustrates the advantage of the
standard form of the Poynting vector over the form V J in a static example.
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3.7 Hines

In 1951, Hines [66] reviewed the alternatives of Macdonald, eq. (14) and Livens, eq. (15),
and then proposed the hybrid variant,

S =
1

8π

(
A× ∂H

∂t
− ∂A

∂t
× H

)
+ V Jtotal (Hines), (20)

which differs slightly from Slepian’s sixth form, eq. (26) of [63].
In 1979, Wallace and McConnell [84] argued that use of Hines’ form (20) does not lead to

the correct rate of radiation by an accelerated, nonrelativistic charge. But, see also [94, 101].

3.8 Ohmura

In 1956, Ohmura [67] made a brief discussion (in biquaternion notation) of a possible theory
of electromagnetism that included magnetic monopoles, as well as an additional scalar field
e and a pseudoscalar field p.

This theory was later revived by van Vlaenderen [123], who only considered the new
scalar field (which he unfortunately called S). In Ohmura’s notation,

e = −1

c

∂V

∂t
− ∇ · A, (21)

such that the scalar field e is not gauge invariant, and is zero in the Lorenz gauge [8]. For
nonzero e, two of the four Maxwell equations are modified,

∇ · E = 4πρ+
1

c

∂e

∂t
, ∇ × B =

4π

c
J +

1

c

∂E

∂t
− ∇e, (22)

and the (non gauge invariant) Poynting vector is now,

S =
c

4π
(E × B + eE). (23)

These equations admit “free space” wave solutions for E and B with longitudinal polarization
in the far zone,32 and as such are popular with fans of Tesla (whose studies of wave phenomena
with longitudinal polarization in the near zone have been interpreted by some as evidence
of such waves in the far zone as well).

While most variants of Ohmura’s theory remain obscure [114, 120, 121, 131, 133, 137],
one has recently appeared in a book [149] from a major scientific publisher (where the scalar
field e is called β).

3.9 Wolf

The electromagnetic fields E and B can be deduced from other potentials than the usual
scalar and vector potentials V and A. This was first done by Hertz (1888) [25], who intro-
duced the so-called polarization (vector) potential. In 1904, Whittaker [47] noted that Hertz’
polarization-vector potential could be replaced by two scalar potentials, and in 1959 Wolf,
Sec. 3 of [69], advocated expressing the Poynting vector in terms of these scalar potentials.
This form is, of course, not gauge invariant.

32Guided waves include longitudinal components, but such waves are always in the near zone of associated
conductors. Waves with only a longitudinal electric field, and no magnetic field, can exist in plasmas [122].
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3.10 Butler

In 1969, Butler [80] argued that the momentum density p = S/c2 should be part of an
energy-momentum-density 4-vector, which (he claimed) could be arranged with the form,

S =
E2 − B2

8π
γ2v, (Butler), (24)

where v is the velocity of the electric charge in a Universe that contains only a single charge,
and γ = 1/

√
1 − v2/c2. He did not explain what happens in a Universe with more than one

charge.

3.11 Lai

In 1980, Lai [87] proposed a variant on the form (20) of Hines,

S = − 1

4π

∂A

∂t
× H + V Jtotal (Lai). (25)

3.11.1 Kobe

In 1981, Kobe [92] pointed out that Lai’s form (25) is the same as Slepian’s third form,
eq. (19) of [63], our eq. (19), as well as objecting to all forms that are not gauge invariant.

3.11.2 Peters

In 1981, Peters [90] also objected to Lai’s form (25) on the grounds that it is not gauge
invariant, and added a second objection that, with this form, S/c2 is not a reasonable
expression for the field-momentum density.

3.11.3 Romer

In 1981, Romer [91] seconded the objections by Kobe and Peters to Lai’s form (25), and
added a comment about Birkeland’s analysis (mentioned in Sec. 3.2 above).

3.11.4 Puthoff

Lai’s form (25) was advocated by Puthoff (2010) [134].

3.12 Other Commentaries

3.12.1 Jeans

In the 5th edition of his text, p. 519 of [55], Jeans (1927) added cautionary remarks about
the Poynting vector similar to those of Heaviside (p. 93 of [39]): The integral of the Poynting
Flux over a closed surface gives the total flow of energy into or out of a surface, but it has
not been proved, and we are not entitled to assume, that there is an actual flow of energy at
every point equal to the Poynting Flux. For instance if an electrified sphere is placed near to
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a bar magnet, this latter assumption would require a perpetual flow of energy at every point
in the field except the special points at which the electric and magnetic lines of force are
tangential to one another. It is difficult to believe that this predicted circulation of energy
can have any physical reality. On the other hand it is to be noticed that such a circulation
of energy is almost meaningless. The circulation of a fluid is a definite conception because it
is possible to identify the different particles of a fluid; we can say for instance whether or not
the particles entering a small element of volume are identical or not with an equal number
of particles coming out, but the same is not true of energy.

3.12.2 Mason and Weaver

Mason and Weaver (1929), Sec. 54 of [56], reviewed Poynting’s theorem, and on p. 268
remarked that its integral form suggests the interpretation given, rather than demands it.
This is, of course, recognized by every careful reader of electrodynamics.

3.12.3 Sumpner

In 1934, Sumpner, an enthusiast of Heaviside [58], published an article [59] which cast doubt
on all the work of Poynting because an argument in Poynting’s paper [15] supposedly implied
that the speed of the flow of electromagnetic energy is ≈ 108 times the speed of light.

See also Sec. 3.3 of [68].

3.12.4 O’Rahilly

Although he offered no alternatives to the Poynting vector, O’Rahilly (1938) gave, on pp. 275-
323 of [60], a very extensive criticism of perceived inconsistencies in the use and interpretation
of the Poynting vector, and of the electromagnetic-field energy and momentum densities.

3.12.5 Stratton

In Sec. 2.19 of [61], Stratton (1941) noted: The classical interpretation of Poynting’s theorem
appears to rest to a considerable degree on hypothesis. Various alternative forms of the
theorem have been offered from time to time, but none of these has the advantage of greater
plausibility or greater simplicity to recommend it, and it is significant that thus far no other
interpretation has contributed anything of value to the theory. The hypothesis of an energy
density in the electromagnetic field and a flow of intensity S = E × H has, on the other
hand, proved extraordinarily fruitful. A theory is not an absolute truth but a self-consistent
analytical formulation of the relations governing a group of natural phenomena. By this
standard there is every reason to retain the Poynting-Heaviside viewpoint until a clash with
new experimental evidence shall call for its revision.
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3.12.6 Hammond

In 1958, Hammond [68] reviewed the physics of the Poynting vector and commented on
several proposed alternatives.33

3.12.7 Feynman

In addition to the comments on the Poynting vector mentioned in Sec. 1 above, Feynman
posed the now-famous disk paradox related to field angular momentum in Sec. 17-4 of [70].
This paradox was perhaps inspired by a comment of J.J. Thomson, p. 348 of [46], and has
led to extensive additional commentary, including [73, 74, 75, 85, 89, 93, 96, 98, 99, 100, 102,
103, 104, 105, 106, 108, 109, 115, 117, 135, 147, 150, 151, 152].

At the end of Sec. 27-6, Feynman gave a verbal resolution of the paradox: Do you
remember the paradox we described in Section 17-4 about a solenoid and some charges
mounted on a disc? It seemed that when the current turned off, the whole disc should start
to turn. The puzzle was: Where did the angular momentum come from? The answer is that
if you have a magnetic field and some charges, there will be some angular momentum in the
field. It must have been put there when the field was built up. When the field is turned off,
the angular momentum is given back. So the disc in the paradox would start rotating. This
mystic circulating flow of energy, which at first seemed so ridiculous, is absolutely necessary.
There is really a momentum flow. It is needed to maintain the conservation of angular
momentum in the whole world.

3.12.8 Romer

In 1966, Romer [73, 75] commented on field angular momentum in another paradox [72, 126].

3.12.9 Shockley

In 1968, Shockley [78] argued that certain thought experiments involving pulsed electric
currents “prove” that the standard form (2) of the Poynting vector is the only valid one.34

3.12.10 Lahoz and Graham (added May 19, 2021)

Starting in 1978, Lahoz and Graham [82, 83, 86, 95] published several papers on the mo-
mentum density when a permanent magnet is inside an electric field, arguing that their
experiments favored our eq. (10), pEM = E × B/4πc, rather than the Abraham form (8),

p
(Abraham)
EM = E × H/4πc (which latter tacitly assumes linear media).

33Hammond seems to have been misled by Slepian’s subtle humor into supposing, Sec. 3.5 of [68], that
the latter favored an alternative form involving the electromagnetic potentials.

34Shockley is also notable for popularizing the term “hidden momentum” [77], inspired by examples
(first given in [46]) in which the static electromagnetic fields of a system “at rest” have nonzero net field
momentum. As alternative forms of the Poynting vector have played little role in discussions of “hidden
momentum,” we do not consider it further here (but see [151]). A review by the author on this topic is at
[138].
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3.12.11 Lorrain

In 1982, Lorrain [88] made a brief comment, in reference to [87], that the forms (19) and
(20) could not be correct because they fail to predict the existence of density of field angular
momentum,

lEM = r × pEM = r × S

c2
, (26)

in certain static examples. However, this complaint is not actually valid, in that any example
with nonzero field angular momentum must include a nonzero electric current density J,
contrary to a claim of Lorrain.

3.12.12 Backhaus and Schäfer

In 1984, Backhaus and Schäfer [101] noted that some arguments against alternatives to the
Poynting vector are not as decisive as claimed, without commenting on the key issue of gauge
invariance.

3.12.13 Nelson

In 1995, Nelson [116] made an extension of the Poynting vector to include certain quantum
phenomena in a semiclassical model.

3.12.14 Bossavit

A recent (2018) paper by Bossavit [146] argued that with use of differential forms one can
“prove” the uniqueness of the standard version of the Poynting vector.
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[40] K. Birkeland, Über die Strahlung electromagnetischer energie in Raume, Ann. d. Phys.
52, 537 (1894), kirkmcd.princeton.edu/examples/EM/birkeland_ap_52_357_94.pdf

[41] J.W. Gibbs, Velocity of Propagation of Electrostatic Forces, Nature 53, 509 (1896),
kirkmcd.princeton.edu/examples/EM/gibbs_nature_53_509_96.pdf
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[151] L. Jiménez, I. Campos and J.A.E. Roa-Neri, The Feynman paradox and hidden mo-
mentum, Eur. J. Phys. 43, 055202 (2022),
http://kirkmcd.princeton.edu/examples/EM/jimenez_ejp_43_055202_22.pdf

[152] O.D. Johns, A spherical version of Feynman’s static field momentum example, Eur. J.
Phys. 45, 015201 (2024), http://kirkmcd.princeton.edu/examples/EM/johns_ejp_45_015201_24.pdf

24


