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1 Problem

Discuss the radiation pressure of a monochromatic plane wave on a flat, perfectly conducting
mirror when the angle of incidence of the wave is θ. Consider the various perspectives of
the momentum density in the wave, the Maxwell stress tensor, the Lorentz force, and the
radiation reaction force on the oscillating charges on the surface of the mirror. Compare the
idealized case of a perfectly conducting mirror with that of a mirror with finite conductivity,
using a classical model for inelastic collisions of electrons with the lattice ions. Comment
on the kinetic energy of the conduction electrons, as well as the energy they lose to Joule
heating.

2 Solution for a Perfectly Conducting Mirror

The topic of radiation pressure seems to have been first considered by Balfour Stewart in
1871 [1] for the case of thermal radiation. Maxwell took up this theme in Arts. 792-793
of his Treatise in 1873 [2], arguing on the basis of his stress tensor. The first convincing
experimental evidence for the radiation pressure of light was given by Lebedev in 1901 [3].
(The famous Crookes radiometer does not demonstrate electromagnetic radiation pressure.)

We avoid the interesting topic of momentum in dielectric media [4, 5, 6] by supposing
that the space outside the mirror is vacuum.

The quickest solution is given in sec. 2.2.

2.1 Pressure via the Stress Tensor

According to Maxwell (chap. XI, part IV of his Treatise), the electromagnetic fields E and B
just outside a surface element dArea lead to mechanical stresses T· dArea on that surface,
where the stress tensor T in vacuum is given by,

Tmn = ε0

(
EmEn − δmn

2
E2

)
+

1

μ0

(
BmBn − δmn

2
B2

)

= ε0

(
EmEn − δmn

2
E2 + (cBm)(cBn) − δmn

2
(cB)2

)
. (1)

See, for example, sec. 8.2.2 of [7].
We consider the case that the mirror is in the plane z = 0 and the wave is incident from

z < 0 with its wave vector ki in the y-z plane, making angle θ to the z-axis as shown in the
figure on the next page.
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Then, unit area on the mirror has element dArea = −ẑ (with a minus sign since the
outward normal from the mirror is in the −z-direction), and the time-average radiation
pressure P is given by,

P = 〈Tzn〉 · dArean = −〈Tzz〉 =
ε0

2

(− 〈
E2

z

〉
+

〈
(cB‖)2

〉)
, (2)

noting that the electric field is normal to, and the magnetic field is tangential to, the surface
of a perfect conductor.

2.1.1 Polarization Perpendicular to the Plane of Incidence

If the incident electric field Ei is polarized in the x-direction (i.e., perpendicular to the plane
of incidence) and has angular frequency ω, the incident fields can be written,

Ei = E0 ei(ki·r−ωt) x̂ = E0 ei(k0 y sin θ+k0 z cos θ−ωt) x̂, (3)

cBi = k̂i × Ei = E0 ei(k0 y sin θ+k0 z cos θ−ωt)(cos θ ŷ − sin θ ẑ), (4)

where, ki = k0(0, sin θ, cos θ), k0 = ω/c and c is the speed of light in vacuum. The reflected
field also polarized in this direction, such that the total electric field is zero at the surface of
the mirror. That is,

Er = −E0 ei(kr·r−ωt) x̂ = −E0 ei(k0 y sin θ−k0 z cos θ−ωt) x̂, (5)

cBr = k̂r × Er = E0 ei(k0 y sin θ−k0 z cos θ−ωt)(cos θ ŷ + sin θ ẑ), (6)

where, kr = k(0, sin θ,− cos θ).
The magnitude B of the magnetic field at the surface of the mirror is twice that of the

tangential component of the incident wave,

cBy = cBiy(z = 0) + cBry(z = 0) = 2E0 cos θ cos(k0 y sin θ − ωt). (7)

The radiation pressure on the mirror follows from eq. (2) as,

P = ε0E
2
0 cos2 θ. (8)

2.1.2 Polarization Parallel to the Plane of Incidence

If the incident electric field is polarized in the y-z plane (i.e., parallel to the plane of inci-
dence), then the incident magnetic field is in the −x-direction,

cBi = −E0 ei(ki·r−ωt) x̂ = −E0 ei(k0 y sin θ+k0 z cos θ−ωt) x̂, (9)

Ei = −k̂i × cBi = E0 ei(k0 y sin θ+k0 z cos θ−ωt)(cos θ ŷ − sin θ ẑ). (10)
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The reflected magnetic field is also in the x-direction, with sign such that the y-component
of the electric field at z = 0 is opposite to that of the incident electric field there. That is,

cBr = −E0 ei(kr·r−ωt) x̂ = −E0 ei(k0 y sin θ−k0 z cos θ−ωt) x̂, (11)

Er = −k̂r × cBr = −E0 ei(k0 y sin θ−k0 z cos θ−ωt)(cos θ ŷ + sin θ ẑ). (12)

The total electric and magnetic fields at the surface of the mirror have only the nonzero
components,

Ez = −2E0 sin θ cos(k0 y sin θ − ωt), cBx = −2E0 cos(k0 y sin θ − ωt), (13)

The radiation pressure on the mirror follows from eq. (2) as,

P = ε0E
2
0 cos2 θ, (14)

so that the radiation pressure on the mirror is independent of the polarization of the incident
wave.1

2.2 Pressure Calculated from Momentum Density/Flow

A shorter argument can be given by noting that a plane electromagnetic wave has a (time-
average) momentum density,

〈p〉 =
〈S〉
c2

=
〈u〉
c

k̂ =
ε0E

2
0

2c
k̂ (15)

where S = E × B/μ0 = c ε0E × cB is the Poynting vector, and u = ε0E
2/2 + B2/2μ0 =

ε0[E
2 + (cB)2]/2 is the volume density of electromagnetic field energy.

For a wave with angle of incidence θ, the z-component of the momentum impinging on
unit area in the plane z = 0 per unit time is cpz cos θ = ε0(E

2
0/2) cos2 θ.2 The reflected

wave carries away an equal z-component of the momentum per unit time. Hence, there is a
reaction force per unit area (a pressure) given by,

P = ε0E
2
0 cos2 θ, (16)

as found previously. It is clear from this argument that the radiation pressure should not
depend on the polarization of the incident wave.

This argument is delightfully brief, but it is not entirely Maxwellian.3 Rather, it is more
in the Newtonian tradition that light consists of particles, and that the pressure due to light

1A subtle effect of polarization dependence in the emissivity of a black body is discussed in [8].
2This argument requires knowledge of the flow of momentum, which equals c times the density of mo-

mentum for a plane wave in vacuum. In general, the stress tensor is the entity that describes the flow of
electromagnetic momentum, so the argument of sec. 2.2 is, strictly, a short-cut version of the argument of
sec. 2.1.

3A more complete argument would note that the total momentum density is p = S/c2 = ε0E × B =
ε0(Ei+Er)×(Bi+Br) = pi+pr+pint, where the interaction momentum density pint = ε0(Ei×Br+Er×Bi)
happens to be parallel to the surface of the mirror and does not contribute to the radiation pressure. Because
of this, the näıve argument that neglects the interaction momentum succeeds without an awareness of its
somewhat fortuitous success. See [9] for further discussion of the interaction momentum density/energy flow.
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can be calculated similarly to the pressure of atoms bouncing off a wall. As such, Maxwell
(a founder of the kinetic theory of gases) did not give this argument, preferring a more
completely field-based discussion using the stress tensor.

Example: The intensity of sunlight at the Earth’s surface is approximately
〈S〉 = c ε0E

2
0 ≈ 1 W/m2, where 〈S〉 is the magnitude of the Poynting vector.

A flat mirror oriented normal to the sun’s rays experiences a radiation pressure
of P = ε0E

2
0 = 〈S〉 /c ≈ 3 × 10−9 Pa. Since atmospheric pressure is 105 Pa,

the radiation pressure of the sunlight is about 3 × 10−14 atmospheres. For
comparison, the pressure Pwind on a flat mirror due to a wind normal to its
surface is about ρairv

2 ≈ v2 Pa for air speed v in m/s. A gentle breeze of
v ≈ 1 m/s results in a pressure on the mirror about 109 times larger than the
radiation pressure due to sunlight.

2.3 The Radiation-Reaction Force

A more microscopic argument in the Maxwellian tradition might be to consider the radiation-
reaction force on the oscillating charges on the surface of the perfect conductor.

Following Lorentz [10, 11, 12], the radiation-reaction force on an oscillating electric charge
e can be written as,4

Frad =
μ0e

2

6πc
ȧ = −2ω2re

3c
mv = −ω2τ0mv, (17)

where re = e2/4πε0mc2 ≈ 3 × 10−15 m is the classical electron radius, and τ0 = 2re/3c ≈
7×10−24 s. However, the time average of this force is zero for charges in the present example,
so it does not lead to an explanation of the radiation pressure. The reason for this is that
while there are charges on the surface of the mirror that are oscillating/accelerating, these
charges do not emit any net energy in the form of radiation. Rather, they absorb as much
energy as they emit, and no additional mechanical force is required to keep the charges in
motion.

In brief, there is no radiation reaction (17) because there is no (net) radiation.5

Although the discussion in sec. 2.2 is that the radiation pressure is a reaction to the
change of momentum in the fields caused by the mirror, which change can be attributed to
the “radiation” by the mirror of the reflected wave, the radiation pressure (8) is unrelated
to the “radiation reaction force” described by eq. (17).

4For comments on the history of the radiation reaction, see [13].
5It was noted as early as 1904 [14] that the oscillating charges in perfect conductors do not emit any

net energy, since the flow of electromagnetic energy, described by the Poynting vector S = E × B/μ0, is
perpendicular to E, and hence parallel to (and outside of) the surface of a perfect conductor. In particular,
this result holds for the (good/perfect) conductors of antennas, which has been described as the “radiation
paradox” [15] that while the currents in these conductors determine the radiation pattern, the energy in that
pattern does not flow out from these conductors. The concept of radiation pressure offers some insight into
this “paradox”. Namely, since the electromagnetic fields exert a pressure on the conductors, those conductors
exert an equal and opposite pressure on the electromagnetic fields, which affects the structure of the fields
close to the conductors, and ultimately far from them as well. Thus, while no net energy flows from the
conductors, momentum does flow out from them and is the means by which the conductors influence the
fields in the Maxwellian view.
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2.4 Lorentz Force on the Surface Charges and Currents

For an additional understanding of how the electromagnetic fields next to the mirror result
in a force/pressure on the mirror, we consider a different insight of Lorentz, namely his force
law, which in the present example can be written as,

f =
σE + K × B

2
, (18)

where f is the normal force per unit area on the surface, σ is the surface charge density, K is
the surface current density, E and B are the fields just outside the surface (with E normal
to and B parallel to the surface), and the factor of 1/2 indicates that the average fields on
the charge and current densities are 1/2 of their outside values, since the fields drop to zero
as they cross the thin surface layer in which the densities exist.

The surface charge density σ can be deduced from the first Maxwell equation, leading to,

σ = ε0E · n̂, (19)

where n̂ (= −ẑ) is the outward unit vector normal to the surface. Similarly, the surface
current density K can be deduced from the fourth Maxwell equation, leading to,

K =
n̂× B

μ0

. (20)

Thus,

f =
ε0(E · n̂)E

2
+

(n̂× B) ×B

2μ0

=
ε0

2

(
E2

z − (cB‖)
2
)

n̂ , (21)

and time-average pressure on the surface is,

P = 〈fz〉 =
ε0

2

(− 〈
E2

z

〉
+

〈
(cB‖)2

〉)
, (22)

as found previously via the stress tensor.6

While today we might prefer using the Lorentz force law rather than the stress tensor to
deduce eq. (22), the Lorentz force law is based on an understanding of electric charge not
available in Maxwell’s time. Hence, it is all the more impressive that the concept of radiation
pressure was understood before the Lorentz force law was developed.

6The form (18) gives the initial impression that the Lorentz force is linear in the fields E and B, and hence
amenable to the decomposition E = Ei + Er , B = Bi + Br, but we see in eq. (21) that the force is actually
quadratic in the fields. Therefore, the decomposition of the fields in eq. (22) into incident and reflected terms
leads to an expression for the radiation pressure of the form Pi + Pr + Pint, where Pi = Pr = P/4 = Pint/2.
We could formally write P = P̃i + P̃r where P̃i = Pi + Pint/2 and P̃r = Pr + Pint/2, but the stress tensor
and the Lorentz force law provide no physical basis for this identification. We have seen in footnote 2 how
a fortuitous aspect of the momentum density vector p associated with plane waves incident on a flat mirror
permits a justification for this procedure.
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2.5 Flow of Energy

The time-average flow of electromagnetic energy outside the mirror is described by the
Poynting vector,

〈S(z < 0)〉 =
c ε0

2
Re(E × cB�) = 2c ε0E

2
0 sin θ sin2(kz cos θ) ŷ, (23)

for both polarizations of the electric field. This corresponds to a (steady) flow of energy in
the y-direction, parallel to the mirror for any nonzero value of the angle of incidence θ. This
flow is modulated in z according to sin2(kz cos θ).

We could also decompose the total Poynting vector as,

〈S〉 =
c ε0

2
Re(E × cB�) =

c ε0

2
Re[(Ei + Er) × (cB�

i + cB�
r)]

=
c ε0

2
Re(Ei × cB�

i ) +
c ε0

2
Re(Er × cB�

r) +
c ε0

2
Re[(Ei × cB�

r) + (Er × cB�
i )]

= 〈Si〉 + 〈Sr〉 + 〈Sint〉 , (24)

where,

〈Si〉 =
c ε0

2
E2

0 k̂i , 〈Sr〉 =
c ε0

2
E2

0 k̂r , 〈Si〉 + 〈Sr〉 =
c ε0

2
E2

0 sin θ ŷ, (25)

and the interaction Poynting vector is,

〈Sint(z < 0)〉 = −c ε0E
2
0 sin θ cos(2kz cos θ) ŷ = c ε0E

2
0 sin θ[2 sin2(kz cos θ) − 1] ŷ, (26)

so the total energy flow is again given by eq. (23).
The existence of a nontrivial interaction term (26) in this simple example illustrates

that some aspects of the description of energy flow via the Poynting vector are not very
intuitive. For example, while the flow of energy in the incident or reflected beams, considered
by themselves, has only a positive y-component, the direction of the interaction flow (26)
oscillates in z with period λ/(2 cos θ). That is, the interaction energy flows in loops that are
infinite in y and about λ thick in z. See [9] for a discussion of these flow loops for the more
realistic case of an incident beam of finite transverse extent.

2.6 The Mirror as an Antenna

It may be instructive to consider reflection from a mirror a kind of radiation from the mirror
induced by the incident wave. In this view, the mirror is an antenna, with known drive fields.

In principle, if the currents in the mirror/antenna can be determined from the drive fields,
then the electromagnetic fields due those currents can be calculated, and combined with the
drive fields to obtain the total fields. However, the usual issue with this approach is that the
currents in the mirror/antenna are not simply due to the drive fields, but are also affected
by the fields due to the currents. This effect of the currents on themselves can be expressed
mathematically as an integral equation (due to Pocklington [16]) for the currents which takes
into account the good-conductor boundary condition at the surface of the mirror/antenna.
For an introduction to this integral equation, and its solution, see [17].
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As remarked in footnote 3, this approach leads to a good understanding of the fields, and
the flow of energy, associated with the mirror/antenna, but the good-conductor boundary
condition implies that the flow of energy from the drive fields, as described by the Poynting
vector, has flow streamlines that never touch the mirror/antenna. Further, since energy is
quadratic in the fields, the separation of the fields into incident and reflected components
does not lead to a similar separation of energy flow in incident and reflected components;
an interaction flow term is always present that in general does not have a simple physical
interpretation.

2.6.1 Polarization Parallel to the Plane of Incidence

We will not illustrate the analysis of a mirror as an antenna by use of an integral equation.
Rather, we start from knowledge of the surface currents according to eq. (20), based on a
complete solution for the reflected fields via the boundary-value problem in sec. 2.1. Then,
we pretend not to have the complete solution already, and deduce the fields of the reflected
wave from the currents.

If the incident electric field is polarized in the y-z plane (i.e., parallel to the plane of
incidence), then the incident and reflected magnetic fields are in the −x-direction. The
magnetic field at the surface of the mirror follows from eqs. (9) and (11) as,

B(z = 0) = −2E0

c
ei(ky sin θ−ωt) x̂, (27)

and the corresponding surface currents are given by,

K = − ẑ × B(z = 0)

μ0

= −2E0

μ0c
ei(ky sin θ−ωt) ŷ, (28)

We calculate the retarded vector potential due to the surface currents,7

A(x, y, z, t) =
μ0

4π

∫
K(x′, y′, t′ = t − R/c)

R
dx′dy′

= − E0

2πc
e−iωt ŷ

∫
ei(ky′ sin θ+kR)

R
dx′dy′

=
E0

ck cos θ
ei(ky sin θ+|k|z cos θ−ωt) ŷ, (29)

where R =
√

(x− x′)2 + (y − y′)2 + z2. From this we can calculate the reflected field that
is “radiated” by the currents,

Br = ∇ × A =
∂Ay

∂z
x̂ =

⎧⎨
⎩ −E0

c
ei(ky sin θ−kz cos θ−ωt) x̂ (z < 0),

E0

c
ei(ky sin θ+kz cos θ−ωt) x̂ = −Bi (z > 0).

(30)

The reflected electric field is then,

Er =

⎧⎨
⎩ −k̂r × cBr = −E0 ei(ky sin θ−kz cos θ−ωt)(cos θ ŷ + sin θ ẑ) (z < 0),

−k̂i × cBr = −k̂i ×−cBi = −Ei (z > 0),
(31)

7I don’t actually know how to do the integral in eq. (29), so I worked backwards from eq. (30).
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noting that for z > 0 the reflected wave vector is actually ki.
Thus, the reflected wave “radiated” into the region z > 0 cancels the incident wave there,

and the total fields are zero inside the mirror. And, of course, the reflected wave “radiated”
into the region z < 0 is the same as the reflected wave found by the boundary-value technique.

3 Mirror with Large but Finite Conductivity

To comment on the surface charge and current densities σ and K in terms of electrons, we
need a model for metals that includes an awareness of their charge −e and mass m. Maxwell’s
equations, by themselves do not include such an awareness, and they were formulated by
Maxwell prior to our present understanding of electrical currents as due to the motion of
electrons.

3.1 Drude’s Model of Electrical Conductivity

We follow Drude [18] in making a simple model of the conductivity σ of a metal as due
to inelastic collisions at frequency f = 1/τ of the conduction electrons with the lattice of
metallic ions. If the effect of a collision is to reset electron’s momentum mẋ to zero, then
for frequencies such that ωτ < 1 this discrete momentum change can be represented by
a velocity-dependent friction that acts continually between collisions, and the equation of
motion of an electron in an electric field E = E0 e−iωt is approximately,8

mẍ = −eE− mẋ

τ
, (32)

whose solution is,

x = − ieτE

mω(1 − iωτ)
, ẋ = − eτE

m(1 − iωτ)
, (33)

Then, the current density J is given by,

J = −Neẋ =
Ne2τ

m(1 − iωτ )
E = σE (34)

where N (≈ 9×1028/m3 for copper) is the (volume) number density of conduction electrons.9

The frequency-dependent metallic conductivity σ has the form,

σ =
Ne2τ

m(1 − iωτ )
=

σ0

1 − iωτ
=

ε0ω
2
pτ

1 − iωτ
, (35)

8We do not include Lorentz’ radiation reaction force (17) in the equation of motion (32) because the
conduction electrons do not emit any net radiation. However, if we did include the radiation reaction force
−ω2τ0mẋ, the effective damping constant 1/τ + ω2τ0 would differ from 1/τ by only a part per million at
optical frequencies (and much less than this at rf frequencies). This result tells us that radiation of energy by
the conduction electrons is negligible (and, of course, is zero in the limit of a perfect conductor, as discussed
in sec. 2.6).

9At very high frequencies all atomic electrons participate in the current, and N is total number density
of electrons (≈ 1.2 × 1030/m3 for copper).
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with,

σ0 =
Ne2τ

m
, and ωp =

√
Ne2

ε0m
, (36)

where σ0 (≈ 6 × 107 mho/m for copper) is the DC conductivity, and ωp (≈ 1016 s−1 for
copper) is the plasma frequency. There are three frequency regimes of interest in Drude’s
model, ω � 1/τ , 1/τ <∼ ω < ωp, and ω > ωp. For copper, the characteristic collision
time is τ = σ0m/Ne2 ≈ 2 × 10−14 s. Thus, for radio frequencies (ω ≈ 109 s−1, say, for
which the wavelength is λ = 2πc/ω ≈ 2 m), ωτ � 1 and the Drude-model conductivity
is well approximated by its real, DC value. For optical frequencies (ω ≈ 4 × 1015 s−1),
ωτ > 1 and Drude’s model predicts that the conductivity is essentially pure imaginary,
σoptical ≈ −iε0ω

2
p/ω. Drude’s classical electron model of electrical conductivity is less accurate

at optical than rf frequencies, and we must turn to a quantum model for better understanding
of metallic conductivity in the optical regime. See, for example, secs. 86-87 of [19]. Drude’s
model is again rather accurate when ω � ωp, but as we shall see in sec. 3.2, conductors are
essentially transparent in this limit.

One significance of the small imaginary part of the conductivity (35) is that it accounts
for the power associated with changes in the time-varying kinetic energy of the conduction
electrons.10 The imaginary part of the conductivity leads to a term in the current density
J = σE that is out of phase with the electric field, and hence part of the power J · E that
is delivered to the current J causes no time-averaged change in the energy of the system, as
expected for the oscillatory kinetic energy of the conduction electrons.

In greater detail, if we write the electric field at some point inside the conductor as
Ec e−iωt, then the physical electric field is,

E = Re(Ec e−iωt) = Re(Ec) cos ωt + Im(Ec) sin ωt, (37)

and the physical current density is,

J = Re(σE) = Re

[
σ0

1 + iωτ

1 + ω2τ 2
Ec e−iωt

]
(38)

=
Ne2τ

m(1 + ω2τ2)
{[Re(Ec) cos ωt + Im(Ec) sinωt] − ωτ [Re(Ec) sinωt− Im(Ec) cos ωt]}.

Then, the physical density of power delivered to the current density is,

J · E =
σ0

1 + ω2τ 2
{[Re(Ec) cos ωt + Im(Ec) sinωt]2 (39)

− Ne2ωτ 2

m(1 + ω2τ 2)
[Re(Ec) sin ωt − Im(Ec) cos ωt] · [Re(Ec) cos ωt + Im(Ec) sinωt].

The first term of eq. (39) is, of course, the power dissipated by Joule heating. We relate the
second term to the time rate of change of the kinetic energy of the conduction electrons,

d

dt
uKE =

d

dt

(
Nmv2

2

)
= Nmv · a, (40)

10The velocity of a conduction electron has the form vrandom + vdrift where vrandom � vdrift. The total
kinetic energy of these electron is

∑
m(vrandom + vdrift)2/2 =

∑
mv2

random/2 +
∑

mv2
drift/2. The oscillatory

part of the kinetic energy is
∑

mv2
drift/2, the density of which we call uKE.
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by noting that the velocity of the conduction electrons is v = −J/Ne, so that their acceler-
ation a = dv/dt is,

a =
eωτ

m(1 + ω2τ 2)
{[Re(Ec) sin ωt− Im(Ec) cos ωt] + ωτ [Re(Ec) cos ωt + Im(Ec) sin ωt]}.(41)

Thus, for ωτ � 1, eqs. (38) and (40)-(41) show that the second term of eq. (39) is the time
rate of change of the (drift) kinetic energy of the conduction electrons (plus terms of order
ω2τ 2).11

Although Drude’s model gives only an approximate understanding of conductors at op-
tical frequencies, it does predict that in this regime the power dissipated by Joule heating
is small compared to the power that changes the kinetic energy of the conduction electrons,
and so provides some insight as to a microscopic view of very good conductors in which
quasi-free electrons are the charge carriers.

3.2 Plane Electromagnetic Waves inside a Conductor

The fourth Maxwell equation inside a conductor is, in Drude’s model,

∇ × B = μ0J +
1

c2

∂E

∂t
= μ0σE +

1

c2

∂E

∂t
. (42)

Taking the time derivative, using the third Maxwell equation to replace B by E and noting
that inside a conductor the charge density is negligible, we obtain the wave equation for the
electric field,

∇2E = μ0σ
∂E

∂t
+

1

c2

∂2E

∂t2
. (43)

For a plane wave of the form E0 ei(k·r−ωt), eqs. (35) and (43) lead to the dispersion relation
in a metal,

k2 =
iωμ0σ0

1 − iωτ
+

ω2

c2
=

ω2

c2

(
1 − ω2

p

ω2(1 + i/ωτ )

)
. (44)

At very high frequencies, ω � ωp, we have that k ≈ ω/c and the conductor is effectively
transparent. We will not consider this regime further.

At (radio) frequencies where ωτ � 1, and for “good” conductors, defined as those for
which |σ| � ε0ω, we have that k2 ≈ iμ0σ0ω and,

krf ≈ 1 + i

δ
, where δ =

√
2

μ0σ0ω
, (45)

is the skin depth. For ω ≈ 109 s−1, δ ≈ 5×10−6 m, which is small compared to the wavelength
λ ≈ 2 m. Radio-frequency waves inside conductors are damped traveling waves.

11An implication is that the (drift) kinetic energy of conduction electrons is part of the “electromagnetic
field” energy. In AC circuits with negligible capacitance, this field energy is largely “magnetic”.

While Maxwell did call the “magnetic” field energy a “kinetic” energy, he did not consider that electric
currents involve moving electric charges. See, for example, [20].
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At (optical) frequencies where 1/τ < ω < ωp, we have that k2 ≈ −(ω2
p/c

2)(1 − i/ωτ),
and,

koptical ≈ i
ωp

c

(
1 − i

2ωτ

)
=

1

2ωτδ′
+

i

δ′
, (46)

where δ′ = c/ωp (≈ 3 × 10−8 m for copper) is the effective skin depth (independent of
frequency), which is still small compared to a wavelength.

Thus, for ω < ωp the wave number k inside a good conductor always has an imaginary
part, and the waves are attenuated as they propagate. In particular, if the waves inside the
conductor are excited externally, there can be no propagation of waves inside the conductor
towards its surface.

A consequence of the small skin depth is that when a wave propagates into the conductor,
which occupies the region z > 0, it dies away rapidly with z while its variation in x or y still
has periodicity of order the wavelength λ. The gradient operator then becomes ∇ ≈ ẑ ∂

∂z
, so

that Faraday’s law (at angular frequency ω) can be written as,

Bcond ≈ −i
ẑ

ω
× ∂Econd

∂z
, (47)

which implies that the magnetic field has no significant z-component (no normal component)
inside the conductor. Since the plane waves are still transverse inside the conductor (∇ ·B =
0), the propagation vector can only be in the z direction. That is, the magnetic field inside
a conductor must have the form,12

Bcond ≈ B‖ ei(kz−ωt) =

⎧⎨
⎩ B‖ e−z/δei(z/δ−ωt) (rf),

B‖ e−z/δ′ei(z/2ωτδ′−ωt) (optical).
(48)

Since the tangential component of the magnetic field is continuous across the surface of the
conductor, B‖ equals the tangential component of the magnetic field just outside the surface.

Similarly, the fourth Maxwell equation inside the conductor becomes,

μ0(σ − iε0ω)Econd ≈ μ0σEcond ≈ ẑ × ∂Bcond

∂z
, i .e., Econd ≈ ik

μ0σ
ẑ ×Bcond, (49)

using the form (47) for Bcond. In particular,

Econd ≈
⎧⎨
⎩

1+i
μ0σ0δ

ẑ × B‖ e−z/δei(z/δ−ωt) = (1 + i)πδ
λ

ẑ × cB‖ e−z/δei(z/δ−ωt) (rf),

iωτ
μ0σ0δ′ ẑ × B‖ e−z/δ′ei(z/2ωτδ′−ωt) = iω

ωp
ẑ × cB‖ e−z/δ′ei(z/2ωτδ′−ωt) (optical).

(50)
Thus, Econd is small in magnitude compared to cBcond (and out of phase with it by 45◦ at
radio frequencies and by ≈ 90◦ at optical frequencies).

We can now rewrite eqs. (47) and (49) as,

Bcond ≈ k

ω
ẑ ×Econd ≈ iμ0σ

k
ẑ ×Econd. (51)

12Propagation of waves in the −z-direction inside the conductor is possible in principle, but this requires
a large energy source at large z, which we exclude as unphysical in the present problem. Mirrors involving
thin metallic films will have waves propagating in both directions inside the films. See, for example, [21].
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3.3 Energetics

Since the electric field is small compared to the magnetic field inside a conductor, the stored
electromagnetic energy is largely magnetic. The time-average density 〈uEM〉 of electromag-
netic energy is,

〈uEM〉 ≈ 〈B2
cond〉

2μ0

≈ B2
‖(z = 0)e−2z/Δ

4μ0

, (52)

where Δ = δ at radio frequencies, and = δ′ at optical frequencies.
The electrical currents J = σE carry kinetic energy density Nmv2/2, where v is the

average speed of the conduction electrons, which is related by J = Nev. Hence, the density
of mechanical energy in the conductor is,13

〈umech〉 ≈ m |σ|2 〈E2
cond〉

2Ne2
≈ m |kz|2 〈B2

cond〉
2μ2

0Ne2
≈ ε0mc2

Ne2Δ2
〈uEM〉 =

1

4πNreΔ2
〈uEM〉 , (53)

where re = e2/4πε0mc2 ≈ 3 × 10−15 m is the classical electron radius. At radio frequencies,
4πNreδ

2 = (4π/μ0)(2Nre/σ0ω) ≈ 107 · 2 × 1029 · 3 × 10−15/(6 × 107 · 109) ≈ 105, so that
〈umech〉 � 〈uEM〉, but at optical frequencies the two energy densities are comparable in

Drude’s model, since 4πNreδ
′2 ≈ 10 · 1029 · 3 × 10−15 · 10−15 ≈ 3.14

The conduction currents transfer energy to the lattice ions at the time-average rate per
unit volume,

Re(J · E�
cond)

2
=

Re(σEcond · E�
cond)

2
= Re(σ)

|Econd(z)|2
2

. (54)

According to Drude’s model, the conductivity (35) is almost purely imaginary at optical
frequencies, but we should not neglect the small real part if we wish to model the partial
absorption of the wave by the metal.

Since |Econd(z)|2 ∝ e−2 Im(k)z, the total rate of energy absorbed, per unit area, at larger
z is,

Re(σ) |Econd(z)|2
4 Im(k)

. (55)

The flow S of electromagnetic energy inside conductor is described by the Poynting vector,
whose time average is, recalling eqs. (49) and (51),

〈S〉cond =
Re(Econd × B�

cond)

2μ0

= Re

(−iσ�

k�

) |Econd|2
2

ẑ

= Re

(−2ik

μ0σ

) |Bcond|2
4μ0

ẑ = Re

(−2ik

μ0σ

)
〈uEM〉 ẑ. (56)

At radio frequencies, k = (1 + i)/δ, while σ = σ0 is real, so Re(−iσ�/k�) = Re(σ)/2 Im(k),
and energy transported to unit area at coordinate z equals the rate (55) of absorption

13An argument which avoids detailed discussion of the currents and fields inside the conductor is that
surface currents of magnitude K = JΔ = NevΔ = B0c/μ0 exist in a layer of thickness Δ. The
density of mechanical energy of the electrons of mass m is umech = Nmv2/2 = mB2

0c/2μ2
0Ne2Δ2 =

(B2
0c/2μ0)(1/NΔ2)(ε0mc2/e2) = uEM/4πNreΔ2.
14See [20] for a discussion of the ratio of mechanical kinetic energy to magnetic energy in examples with

DC currents.
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of energy at all larger z. At optical frequencies, σ ≈ Re(σ)(1 + iωτ ) from eq. (35) and
k ≈ i Im(k)(1 − i/2ωτ ) from eq. (46), so again Re(−iσ�/k�) = Re(σ)/2 Im(k).

The second line of eq. (56) permits us to identify the speed of the flow of electromagnetic
energy inside the conductor as,

venergy = Re

(−2ik

μ0σ

)
=

⎧⎨
⎩

2πδ
λ

c (rf),

1
ωpτ

c (optical),
(57)

which is small compared to the speed of light in both frequency regimes.
The phase and group velocities, vp and vg, of the waves inside the conductor are,

vp =
ω

Re(k)
=

⎧⎨
⎩

2πδ
λ

c (rf),

2ωτ ω
ωp

c (optical),

vg =
dω

d[Re(k)]
=

1

d[Re(k)]/dω
=

⎧⎨
⎩ ∞ (rf),

−vp (optical).
(58)

We see that the formal group velocity does not have the significance of the velocity of energy
flow inside conductors.

3.4 Detailed Solution of the Boundary-Value Problem

For completeness, we consider metallic reflection as a boundary-value problem, restricting
the frequency to the realm where ωτ � 1, such that the conductivity is purely real (σ =
σ0 � ε0ω).

3.4.1 Polarization Parallel to the Plane of Incidence

The magnetic field has only an x-component when the electric field is polarized in the plane of
incidence, again taking this be the y-z plane. We anticipate that the angle of reflection equals
the angle of incidence, so the magnetic field in vacuum (z < 0) has only the component,

cBx = −E0 ei(k0y sin θ+k0z cos θ−ωt) + E0r ei(k0y sin θ−k0z cos θ−ωt), (59)

where k0 = ω/c, and the amplitude of the reflected wave is not necessarily minus that of the
incident wave. The magnetic field inside the conductor (z > 0) has only the component,

Bcx = B0c ei(kyy+kzz−ωt) (60)

where k2
y + k2

z = k2. For finite conductivity, Bx is continuous at the surface z = 0, which
implies that,

ky = k0 sin θ, k2
z = k2 − k2

0 sin2 θ, (61)

and that,
cB0c = E0r −E0. (62)
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For large conductivity σ0, |k| � k0 so that kz is independent of the angle of incidence θ,

kz ≈ k ≈ 1 + i

δ
, k2

z ≈ 2i

δ2 = iμ0σ0k0c. (63)

Recalling sec. 2.1.2, the electric field in vacuum has the form,

E = (E0 eik0z cos θ + E0r e−ik0z cos θ) ei(k0y sin θ−ωt) cos θ ŷ

−(E0 eik0z cos θ −E0r e−ik0z cos θ) ei(k0y sin θ−ωt) sin θ ẑ. (64)

The fourth Maxwell equation inside the conductor tells us that,

μ0(σ0 − iε0ω)Ec ≈ μ0σ0Ec = ∇× Bc =
∂Bcx

∂z
ŷ − ∂Bcx

∂y
ẑ

= ikzB0c ei(k0y sin θ+kzz−ωt)

(
ŷ − k0

kz
sin θ ẑ

)
. (65)

Continuity of the tangential component of the electric field at the surface of the conductor
implies that,

(E0 + E0r) cos θ =
ikz

μ0(σ0 − iε0ω)
B0c ≈ ikz

μ0σ0
B0c = −k0

kz
cB0c , (66)

where the approximation holds for “good” conductors.
Combining eqs. (62) and (66), we find that,

E0r ≈ −E0

(
1 − 2k0

kz cos θ

)
. (67)

At most angles of incidence, E0r ≈ −E0, as holds in the limit of perfect conductivity, but
at grazing incidence (θ ≈ 90◦), the reflected electric field can depart considerably from the
case on an ideal mirror.

The electric field in vacuum is,

E ≈ 2E0

(
i sin(k0z cos θ) +

k0

kz cos θ
e−ik0z cos θ

)
ei(k0y sin θ−ωt) cos θ ŷ

−2E0

(
cos(k0z cos θ) − k0

kz cos θ
e−ik0z cos θ

)
ei(k0y sin θ−ωt) sin θ ẑ. (68)

The electric field in vacuum next to the surface of the conductor now includes a small
tangential component (as needed for the Poynting vector to have a component normal to
the conductor to supply the energy lost to Joule heating),

E(z = 0) =
2k0E0

kz

ei(k0y sin θ−ωt) ŷ.

−2E0

(
1 − k0

kz cos θ

)
ei(k0y sin θ−ωt) sin θ ẑ. (69)
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The ratio W of the tangential to normal components of the electric field in vacuum at the
surface of the conductor is,

W ≈ − k0

kz sin θ
= −π(1 − i) δ

λ sin θ
, (70)

which ratio is sometimes called the wave tilt [21, 22].
From eqs. (62) and (67) we now have that,

cB0c ≈ −2E0

(
1 +

k0

kz cos θ

)
≈ −2E0. (71)

The fields inside the conductor are then, recalling eqs. (60) and (65),

Ec ≈ 2k0E0

kz
e−z/δei(k0y sin θ+z/δ−ωt)

(
ŷ − k0

kz
sin θ ẑ

)
, (72)

cBc ≈ −2E0 e−z/δ ei(k0y sin θ+z/δ−ωt) x̂. (73)

The damped, transmitted wave makes a small angle θc to the z-axis,

θc ≈ k0δ sin θ =
2πδ

λ
sin θ. (74)

The phase velocity of the wave inside the conductor is,

vp =
2πδ

λ
c

(
ẑ +

2π

λ
sin θ ŷ

)
, (75)

whose magnitude vp ≈ (2πδ/λ)c is very small compared to the speed of light in vacuum.
The time-average Poynting vector in the conductor is entirely in the +z-direction,

〈S〉 =
c ε0

2
Re(Ec × cB�

c) ≈
2πδ

λ
c ε0E

2
0 e−2z/δ ẑ. (76)

3.4.2 Polarization Perpendicular to the Plane of Incidence

For completeness, we also consider the case where the electric field is polarized in the x-
direction (i.e., perpendicular to the plane of incidence).

We anticipate that the angle of reflection equals the angle of incidence, so the electric
field in vacuum (z < 0) has only the component,

Ex = E0 ei(k0y sin θ+k0z cos θ−ωt) + E0r ei(k0y sin θ−k0z cos θ−ωt). (77)

The electric field inside the conductor (z > 0) has only the component,

Ecx = E0c ei(kyy+kz z−ωt) (78)

where k2
y + k2

z = k2. For finite conductivity, Ex is continuous at the surface z = 0, which
implies that,

ky = k0 sin θ, k2
z = k2 − k2

0 sin2 θ ≈ k2. (79)
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and that,
E0c = E0 + E0r. (80)

Recalling sec. 2.1.1, the magnetic field in vacuum has the form,

cB = (E0 eik0z cos θ − E0r e−ik0z cos θ) ei(k0y sin θ−ωt) cos θ ŷ

−(E0 eik0z cos θ + E0r e−ik0z cos θ) ei(k0y sin θ−ωt) sin θ ẑ. (81)

Faraday’s law inside the conductor tells us that,

− iωBc = −ik0cBc = ∇× Ec =
∂Ecx

∂z
ŷ − ∂Ecx

∂y
ẑ

= ikzE0c ei(k0y sin θ+kzz−ωt)

(
ŷ − k0

kz
sin θ ẑ

)
. (82)

Continuity of the tangential component of the magnetic field at the surface of the conductor
implies that,

(E0 − E0r) cos θ = −kz

k0
E0c. (83)

Combining eqs. (80) and (83), we find that,

E0r ≈ −E0

(
1 − 2k0 cos θ

kz

)
. (84)

At all angles of incidence, E0r ≈ −E0, as holds in the limit of perfect conductivity, so this
case is simpler than that of polarization parallel to the plane of incidence.

The electromagnetic fields in vacuum are,

E ≈ 2E0

(
i sin(k0z cos θ) +

k0 cos θ

kz
e−ik0z cos θ

)
ei(k0y sin θ−ωt) x̂, (85)

cB ≈ 2E0

(
cos(k0z cos θ) − k0 cos θ

kz

e−ik0z cos θ

)
ei(k0y sin θ−ωt) cos θ ŷ

−2E0

(
i sin(k0z cos θ) +

k0 cos θ

kz
e−ik0z cos θ

)
ei(k0y sin θ−ωt) sin θ ẑ. (86)

The electric field in vacuum next to the surface of the conductor again includes a small
tangential component (as needed for the Poynting vector to have a component normal to
the conductor to supply the energy lost to Joule heating),

E(z = 0) =
2k0 cos2 θE0

kz
ei(k0y sin θ−ωt) x̂. (87)

The ratio W of the normal to tangential components of the magnetic field in vacuum at the
surface of the conductor is,

W ≈ −k0 sin θ

kz
= −π(1 − i) δ sin θ

λ
, (88)
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which ratio could be called the wave tilt, but apparently is not.
From eqs. (80) and (84) we now have that,

E0c ≈ 2k0 cos θE0

kz
. (89)

The fields inside the conductor are then, recalling eqs. (78) and (82),

Ec ≈ 2k0 cos θE0

kz
e−z/δei(k0y sin θ+z/δ−ωt) x̂, (90)

cBc ≈ −2 cos θE0 e−z/δei(k0y sin θ+z/δ−ωt)

(
ŷ − k0

kz
sin θ ẑ

)
. (91)

The time-average Poynting vector in the conductor is entirely in the +z-direction,

〈S〉 =
c ε0

2
Re(Ec × cB�

c) ≈
2πδ

λ
c ε0 cos2 θE2

0 e−2z/δ ẑ, (92)

and vanishes as the angle of incidence approaches 90◦. This result reinforces the previous im-
pression that the case of polarization perpendicular to the plane of incidence on a conductive
mirror is less interesting than the case of parallel polarization.

A Appendix: Does a Free Electron in a Plane Electro-

magnetic Wave Experience a Radiation Pressure?

That the answer to the above question is no has been reviewed in [23].
However, this issue is somewhat subtle in that if a plane electromagnetic wave overtakes

an initially free electron, the latter takes on a constant drift velocity in the direction of
propagation of the wave, as first noted by McMillan [24].15 See also [26], and references
therein. During the interval in which the strength of the wave at the position of the charge
rises from zero to its steady-state value, the electron experiences a transient force in the
direction of propagation that could be characterized as a “radiation pressure”.16
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