
Power Consumption
by a Pulsed Copper Magnet

Kirk T. McDonald
Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544

(July 16, 2011)

1 Problem

A resistive copper magnet is designed to generate a magnetic field of specified strength over
a specified volume, but this magnetic field is needed only at regular intervals time T apart.
Discuss how pulsed operation of the magnet could reduce its average power consumption, at
the expense of greater peak power (and voltage) that must be delivered by the power supply.

Comment on the case that the magnet time constant τ = L/R is large compared to T .

2 Solution

This problem was suggested by John Seeman. The solution follows a suggestion by Bob
Palmer, and elaborates on a discussion by Bob Weggel [1].

2.1 DC Operation

The requirement of a specified magnetic field over a specified volume roughly constrains the
stored energy,

U =

∫
B2

2μ0

dVol. (1)

If the copper coils of the magnet occupy a specified volume (surrounding the “good” field
region), this fixes the current density J required to generate the field. For DC operation of
the magnet its power consumption is then given by,

P =

∫
coils

J2

σ
dVol, (2)

where σ is the electrical conductivity of copper. The DC power consumption is independent
of the details of the winding of the coil, although its latter determines the inductance L, its
resistance R and the DC current I .

2.2 Invariance of the Magnet Time Constant

If we consider transient operation of the magnet, we are led to an awareness of the time
constant,

τ =
L

R
. (3)
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The stored energy U and the DC power consumption P are related to the DC current IDC

by,

UDC =
LI2

DC

2
, and PDC = I2

DCR. (4)

Hence, the time constant can also be written as,

τ =
2UDC

PDC

, (5)

which is independent of the details of the winding.

2.3 Pulsed Operation

To deliver the specified magnetic field only at times space by the interval T , including t = 0,
we consider a current waveform,

I(t) =

∞∑
n=0

In cos nωt = Re

∞∑
n=0

In eniωt, (6)

where ω = 2π/T and the Fourier coefficients In are related to the DC current IDC by,

IDC =
∞∑

n=0

In. (7)

The power supply must deliver voltage given by,

V = Lİ + IR = Re
∞∑

n=0

In(niωL + R) eniωt =
∞∑

n=0

In(R cosnωt − nωL sin nωt)

= R

∞∑
n=0

In(cos nωt − nωτ sinnωt). (8)

The peak voltage is the maximum of I0R and ωτR
∑∞

n=1 nIn. When T � τ , such that
ωτ � 1, the peak voltage will be large compared to IDCR = VDC, and the power supply may
be difficult to design.

The time-average power delivered by the supply is,

〈P 〉 =
1

T

∫ T

0

V I dt =
1

T

∞∑
m=0

∞∑
n=0

ImIn

(
R

∫ T

0

cosmωt cos nωt dt − nωL

∫ T

0

cos mωt sin nωt dt

)

=

(
I2
0 +

1

2

∞∑
n=1

I2
n

)
R =

1

2

(
I2
0 +

∞∑
n=0

I2
n

)
R. (9)
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2.3.1 Single Harmonic

If we operate at only harmonic n > 0, then we must have In = IDC, which leads to 〈Pn〉 =
PDC/2.

The power-supply voltage is,

V = IDC(R cos nωt − nωL sinnωt) = IDCR(cos nωt − nωτ sinnωt), (10)

The peak voltage is IDCR = VDC times the maximum of 1 and nωt. When T � τ , such that
ωτ � 1, the peak voltage is,

Vmax = nωτIDCR = nωτVDC � VDC (ωτ � 1). (11)

In principle, we could use an alternative winding that keeps U , P and τ the same, but
has different values I ′, L′ and R′ for I , L and R, subject to,

L′

L
=

R′

R
=

√
I

I ′ . (12)

Then the peak voltage would be the maximum of VDC and,

V ′
max = nωτI ′R′ = nωτIR

√
I ′

I
= nωτ

√
I ′

I
VDC. (13)

By choosing I ′ = I/(nωτ)2 we could achieve a peak voltage/power equal to VDC and an
average power one half the DC value.

This is a huge effort for very little reward; and it may not be practical to wind the magnet
with a very large number of turns so that I ′ is small and L′ and R′ are large.

2.3.2 Geometric Series

An ideal current waveform would be I(t) = IDC δ(t), for which the Fourier coefficients are
I0 = IDC and In = 2IDC for n ≥ 1. However, the validity of the series expansion depends on
the quality of the very high harmonics, which is doubtful in practice. So, we seek a series in
which the Fourier coefficients are nearly equal, but die out slowly at large n, as a reasonable
approximation to a δ-function.

A simple infinite series of coefficients In that sum to IDC is the geometric series,

In =
a − 1

an+1
IDC, (14)

for a > 1. For a slightly larger than 1 the current waveform will be close to a δ-function.
The average power follows from eq. (9) as,

〈Pgeometric〉 =
(a − 1)2I2

DCR

2a2

(
1 +

∞∑
n=0

1

a2n

)
=

(a − 1)(2 − 1/a2)

2(a + 1)
PDC ≈ a − 1

4
PDC, (15)

where the approximation holds for a slightly larger than 1. The peak voltage when ωτ � 1
is

Vmax = ωτR

∞∑
n=1

nIn =
a − 1

a
ωτVDC

∞∑
n=1

n

an
=

ωt

a + 1
VDC (ωτ � 1). (16)
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To have a substantial reduction in power with a slightly larger than 1, the peak voltage/power
will be essentially ωτVDC.

For the example of [1] where τ = 0.71 s, ω = 2π(1/15) = 94.2 s−1, and VDC = 913 V,
ωτVDC ≈ 61 kV. Whether the power supply, and the magnet, can deal with this high voltage
remains to be considered.

When a is only slightly larger than 1 the geometric series converges slowly, and in practice
a large number of terms would need to be kept. For low ω, as in [1], even rather high
harmonics have low frequency compared to the GHz scale that is readily achievable with
contemporary electronic circuits, so the geometric-series waveform could be well realized in
the power supply.
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