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1 Problem

In a series R-L-C circuit, as sketched below, the maximum power is delivered to the load
resistor R at the resonant (angular) frequency ω0 = 1/

√
LC, where L is the inductance and

C is the capacitance of the circuit.1 The frequency bandwidth 2δ is defined by the relation
that the power delivered into the resistor at frequencies ω0 ± δ is one half the maximum.
The Q of this circuit is defined as the reciprocal of the relative bandwidth, ω0/2δ.

2

Deduce the Q of this circuit, and relate it to the electromagnetic field energy of the
circuit.

Generalize this result to a circuit with frequency-dependent reactance X(ω) for which
X(ω0) = 0.

2 Solution

2.1 Series R-L-C Circuit

The impedance Z of the circuit when operated at angular frequency ω is,3

Z = R + iX = R + i

(
ωL − 1

ωC

)
= R + i

ω2LC − 1

ωC
, (1)

where X = ωL − 1/ωC is the reactance. The resonant frequency is,

ω0 =
1√
LC

, (2)

1If the circuit represents an antenna (built from perfect conductors), the load power is radiated to
“infinity” and R is the radiation resistance of the antenna.

2For the origin of this usage of the symbol Q, see [1].
3The term impedance was introduced by Heaviside [2]. See also, [4, 5].
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at which the reactance vanishes, the impedance is simply Z = R and the drive voltage V0 eiωt

leads to current I0 eiωt given by,4

I0 =
V0

R
. (3)

The time-average power delivered from the source to the load resistor is,

P0 =
Re(V I∗)

2
=

V 2
0

2R
=

I2
0R

2
. (4)

The time-average (magnetic) energy stored in the inductor is,

〈UB(ω0)〉 =
LI2

0

4
=

LV 2
0

4R2
, (5)

while the time-average (electric) energy stored in the capacitor is,

〈UE(ω0)〉 =
Q2

0

4C
=

ω2
0I

2
0

4C
=

LI2
0

4C
= 〈UL(ω0)〉 = 〈U0〉 , (6)

noting that I = dQ/dt = iωQ, so that I and Q are 90◦ out of phase, as are the magnetic
and electric energies (5)-(6), and hence their equality at resonance implies that each of these
are equal to the total (time-average) stored energy 〈U0〉.

Away from resonance the current is given by,

I =
V0

Z
, (7)

and the power delivered to the load resistor is,

P =
Re(V I∗)

2
=

|I |2 R

2
=

V 2
0

2
Re

1

Z∗ =
V 2

0

2
Re

1

R − iX
=

V 2
0 R

2(R2 + X2)
=

P0

1 + X2/R2
. (8)

The power P is one half of P0 at frequencies where X = ±R. That is, for,

± R = X =
ω2LC − 1

ωC
=

ω2 − ω2
0

ωω2
0C

, (9)

which leads to the quadratic equation,

ω2 ± ω2
0RCω − ω2

0 = 0. (10)

The solutions are,

ω =
±ω2

0RC ±√
ω4

0R
2C2 + 4ω2

0

2
. (11)

4If the circuit is small compared to the wavelength λ = 2πc/ω0, where c is the speed of light, then the
current is the same throughout the circuit. Otherwise, I0 is strictly just the current at the terminals of the
voltage source.
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We now restrict the analysis to cases where the τ = RC time constant is small compared to
the period 2π/ω0, and we take the second ± sign in eq. (11) to be +, finding,

ω ≈ ω0 ± ω2
0τ

2
≡ ω0 ± δ. (12)

The quantity 2δ ≈ ω2
0τ is called the bandwidth of the circuit.

The reciprocal of the relative bandwidth is called the Q of the resonance,

Q =
ω0

2δ
≈ 1

ω0τ
=

ω0P0

ω2
0P0RC

=
ω0I

2
0L

2P0
=

2ω0 〈U0〉
P0

=
ω0L

R
=

XL(ω0)

R
=

XC(ω0)

R
. (13)

This demonstrates the usual lore that the Q of a series R-L-C circuit can be expressed in
terms of (time-average) quantities at resonance, or in terms of component impedances, as,

Q ≡ ω0

bandwidth
≈ 2ω0 × stored energy at resonance

power delivered to the load at resonance

≈ reactance of L or of C at resonance

R
. (14)

2.2 Circuit with Impedance Z = R + iX(ω) and X(ω0) = 0

For a more general circuit only some of the analysis of sec. 2.1 holds, namely eqs. (3)-(4)
and (7)-(8).

In general, we cannot identify an effective inductance L and effective capacitance C
such that the reactance has the form X(ω) = ωL − 1/ωC (see footnote 4 of [6]). If the
reactance vanishes at some “resonant” frequency ω0 then for nearby frequencies it is a good
approximation to write,

X(ω) ≈ (ω − ω0)
dX(ω0)

dω
. (15)

Then, eq. (9) becomes,

± R = X(ω ± δ) ≈ ±δ
dX(ω0)

dω
, (16)

and hence,

δ ≈ R

|dX(ω0)/dω| , (17)

and,

Q =
ω0

2δ
≈ ω0 |dX(ω0)/dω|

2R
=

πf0 |dX(f0)/dω|
R

, (18)
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where ω0 = 2πf0. The form (18) is often used to evaluate the Q of an antenna system via
computation of the (terminal) reactance near resonance.5

Comparison of eq. (18) with the last form of eq. (14) permits us to say that close to the
resonant frequency ω0 the general circuit is equivalent to a series R-L-C circuit with,6

L0 =
1

2

dX(ω0)

dω
, and C0 =

1

ω2
0L0

=
2

ω2
0 dX(ω0)/dω

. (21)

In addition, we can deduce from the complex version of Poynting’s theorem (see, for
example, [6]) that,

X(ω) =
4ω[〈UB(ω)〉 − 〈UE(ω)〉]

|I(ω)|2 , (22)

where now 〈UB〉 and 〈UE〉 are the (time-average) energies associated with the magnetic field
B and electric field E.7 Using eq. (22) in (18), we have that,

Q =
ω0

P0

∣∣∣∣d(ω[〈UB(ω)〉 − 〈UE(ω)〉])
dω

∣∣∣∣
ω0

. (24)

Alternatively, eq. (9) can be written as,

± R = X(ω0 ± δ) =
4(ω0 ± δ)[〈UB(ω0 ± δ)〉 − 〈UE(ω0 ± δ)〉]

|I(ω0 ± δ)|2

=
4(ω0 ± δ)R[〈UB(ω0 ± δ)〉 − 〈UE(ω0 ± δ)〉]

P0
, (25)

5Expression (18) can be generalized to a “potential Q” of a circuit at angular frequency ω0 even if
X(ω0) �= 0, in that if the circuit were “tuned” by adding (lossless) inductors or capacitors as needed to bring
X(ω0) to 0, the (potential) Q of the “tuned” circuit would be [7],

Qtuned ≈ ω0 |dX(ω0)/dω| + |X(ω0)|
2R

. (19)

6It is proposed in [8] that the equivalent inductance and capacitance at any frequency be defined by,

L(ω) =
1
2

(
dX(ω)

dω
+

X(ω)
ω

)
, and C(ω) =

2
ω2 (dX(ω)/dω − X(ω)/ω)

, (20)

for which L(ω) = L and C(ω) = C when X = ωL − 1/ωC. The utility of such a definition is unclear.
7In [13] it is also proposed that we identify,

L =
4(〈UB〉 − 〈UB,rad〉)

|I|2 , and C =
|I|2

4ω2(〈UE〉 − 〈UE,rad〉) , (23)

but as discussed in footnote 4 of [6], this is unsatisfactory since in general 〈UB,rad〉 �= 〈UE,rad〉 (see the
Appendix of [6]), so that we do not recover eq. (22) when writing X = ωL − 1/ωC. That is, the “reactive”
field energy 〈UB〉 − 〈UE〉 includes contributions from “radiation” field energy (contrary to the assumptions
of many workers [8, 10, 9, 11, 12], who may have been misled by the special case of a single, small dipole
radiator).
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noting that since P (ω0 ± δ) = P0/2, eq. (8) tell us that |I(ω0 ± δ)|2 = P0/R. The two cases
of eq. (25) can now be written as,

ω0 + δ =
P0

4[〈UB(ω0 + δ)〉 − 〈UE(ω0 + δ)〉] , (26)

ω0 − δ =
P0

4[〈UB(ω0 − δ)〉 − 〈UE(ω0 − δ)〉] . (27)

For δ small compared to ω0 it is a good approximation that,

〈UB(ω0 + δ)〉 − 〈UE(ω0 + δ)〉 ≈ − 〈UB(ω0 − δ)〉 − 〈UE(ω0 − δ)〉 , (28)

such that,

δ ≈ P0

4[〈UB(ω0 + δ)〉 − 〈UE(ω0 + δ)〉] , (29)

and the Q of the circuit is given by,

Q =
ω0

2δ
≈ 2ω0[〈UB(ω0 + δ)〉 − 〈UE(ω0 + δ)〉]

P0
. (30)

The forms (24) and (30) differ from that of eq. (14) in that the energy in the numerator
is the so-called (time-average) reactive field energy 〈UB〉 − 〈UE〉 (see, for example, sec. 3 of
[6]),8 rather than the total stored energy at resonance.9,10
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