
The Tennis Racquet Theorem
Kirk T. McDonald

Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544

(December 1, 1988; updated July 16, 2021)

1 Problem

In 1834, Poinsot [1] considered the torque-free motion of a rigid body whose principal mo-
ments of inertia are I1 < I2 < I3, and deduced what is now known as the tennis-racquet

theorem, that motion with the angular velocity ω initially near principal (body) axis 2 is
“unstable”.1 This disconcerting behavior is the subject of many YouTube videos, such as
https://www.youtube.com/watch?v=1VPfZ_XzisU https://www.youtube.com/watch?v=L2o9eBl_Gzw

Examine the special case where the kinetic energy has the form T = L2/2I2, and L is the

angular momentum about the center of mass. Use expressions for T and L to show that,
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and that Euler’s equations lead to,

ω1 = ω1,max sech[k ω2,max (t− t0)], (2)

ω2 = ω2,max tanh[k ω2,max (t − t0)], ω2,max =
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ω3 = ω3,max sech[k ω2,max (t − t0)]. (4)

As t → ∞, ω1, ω3 → 0, while ω2 → ω2,max, and the final rotation is about axis 2. Thus, for

this special case. a kind of stability occurs.
Relate this special case to the general behavior when T �= L2/2I2.

2 Solution

In general, for principal (body) axes 1̂, 2̂ and 3̂ we have,
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1See, for example, sec. 37 of [2].
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For the special case considered here, 2I2T = I1I2 ω2
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3 = L2. From eq. (6), we
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Then, Euler’s equation for ω̇2 in torque-free motion2 leads to,
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= k(t− t0), ω2 = ω2,max tanh[k ω2,max (t − t0)], (12)

using Dwight 140.1, http://kirkmcd.princeton.edu/examples/EM/dwight_57.pdf.
Then, from eq. (9),
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And, exchanging indices 1 and 3,

ω3 = ω2,max

√
I2

I3

I2 − I1

I3 − I1
sech[k ω2,max (t − t0)] = ω3,max sech[k ω2,max (t− t0)]. (15)

As t → ∞, ω1, ω3 → 0, while ω2 → ω2,max, and the final rotation is about axis 2. Thus, for

the special case of T = L2/2I2, a kind of stability occurs.

3 Comments

Poinsot [1] noted that it is useful to consider the path (polhode) of the angular velocity vector
ω on the inertia ellipsoid, which is the surface defined by eq. (5) for constant kinetic energy
T in torque-free, rigid-body motion. The figure below (from [3]) illustrates various possible
polhodes.

2See, for example, eq. (36.4) of [2].

2



When the angular velocity vector ω is close to principal axes ±1̂ or ±3̂, the polhodes are

nearly circular, and an observer readily characterizes the motion of the spinning free body
as “stable”. But for polhodes far from these axes, the angular velocity ω passes close to
both 2̂ and −2̂ during each cycle of the (mathematically stable) motion. To an observer,
this behavior seems rather disconcerting, and it is commonly called “unstable”.

The special case considered here, T = L2/2I2, corresponds to motion along the “sepa-
rating polhodes”, shown as dashed curves in the above figure. We have seen that it takes
an infinite time for ω to move from its initial direction to alignment with either 2̂ or −2̂, so
the motion never completes a full cycle around the separating polhodes. As remarked above,

this behavior has a kind of “stability”.
We infer from this problem that the cycle time for a trajectory very close to the separating

polhodes is very long, approaching infinity in the limit considered here. The long period
of such cycles contributes to the impression by the “casual” observer that the motion is

“unstable”.3
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