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1 Problem

Obtain a Legendre series expansion for the potential inside a resistive bead of radius a and
conductivity σ when a current I enters at one pole through a fine wire, and leaves through
the other pole via a similar fine wire. Define the potential as φ = 0 on the equator.

Refer to the expansion of 1/r given, for example, in eq. (3.38) of [2], to show that,

φ(r) = φ(r, θ, ϕ) =
I

2πσ

[
1

r1(r)
− 1

r2(r)
+

1

2

∫ r

0

(
1

r1(r′)
− 1

r2(r′)

)
dr′

r′

]

=
I

2πσ

[
1

r1(r)
− 1

r1(r)
+

1

2a
ln

a + r cos θ + r2(r)

a − r cos θ + r1(r)

]
, (1)

using Dwight 380.111, where r1,2(r) =
√

r2 ∓ 2ar cos θ + a2 is the distance from the “north”
(“south”) pole to the point r = (r, θ, ϕ) in spherical coordinates.

Suppose the wires have radius b � a, and their surfaces of contact with the bead are
equipotentials, to show that the resistance of the bead is that of a piece of wire roughly b
long, if that wire also had conductivity σ

Hint: Express the radial current density at r = a in terms of delta functions, δ(cos θ− 1)
and δ(cos θ + 1).

Also deduce the potential outside the bead, and the surface charge density thereon, sup-
posing that the fine wires are perfect conductors connected to perfect conducting hemispheres
of radii d > a, which in turn are connected to a ring battery of voltage drop 2V , where V is
the potential at the “north” pole of the bead.

This problem appears in sec. 21 of [1], where eq. (1) is obtained by a different method
than that suggested here.
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2 Solution

2.1 Potential inside the Resistive Bead

Although current is flowing inside the resistive bead, its interior remains electrically neu-
tral to a very good approximation.1 Hence, the electromagnetic scalar potential φ satisfies
Laplace’s equation, ∇2φ = 0.

We analyze the problem in spherical coordinates (r, θ, ϕ), with the origin at the center of
the bead of radius a, and θ = 0 and π at the points of contact with the wires. The problem
has axial symmetry, so φ will be independent of ϕ. We require the potential to be well
behaved at the origin, so it can be expressed in a Legendre series,

φ(r < a) =

∞∑
n=0

An

(r

a

)n

Pn(cos θ). (2)

The convention that φ = 0 at the equator, θ = π/2, implies that An = 0 for n even.
Therefore, we can write,

φ(r < a) =
∑

n odd

An

(r

a

)n

Pn(cos θ). (3)

To complete the solution inside the bead, we need a boundary condition on the potential
φ at the surface of the sphere r = a. We know that the radial component of the current
density, Jr is zero at the surface, except for the contact points where the current enters and
exits. Since J = σE = −σ∇φ, we obtain a condition on the derivative of the potential at
the boundary,

∂

∂r
φ(r = a−) = −Er(r = a−) = −Jr(r = a−)

σ
. (4)

In the limit of very fine wires, the current density Jr(r = a−) is zero except at the poles,
so we can express it in terms of Dirac δ functions. The current dI that crosses an annular
region on the surface of the bead of angular extent d cos θ centered on angle θ is given by,

dI = 2πa2Jr(a
−, θ)d cos θ. (5)

Current I enters at cos θ = 1, and exits at cos θ = −1. Hence, the form,

Jr(a
−, θ) =

I

2πa2
[−δ(cos θ − 1) + δ(cos θ + 1)] . (6)

describes the entrance and exit currents upon integration of eq. (5).
Combining eqs. (3)-(4) and (6), we have,

∑
n odd

nAn

a
Pn(cos θ) =

I

2πa2σ
[δ(cos θ − 1) − δ(cos θ + 1)] . (7)

1For a discussion of the slight departure from electrical neutrality of current-carrying conductors, see [3].
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As usual, to evaluate the Fourier coefficients An, we multiply eq. (7) by Pn(cos θ) and inte-

grate over d cos θ to find, recalling that
∫ 1

−1
Pm(x)Pn(x) dx = 2 δmn/(2n + 1),

nAn

a

∫ 1

−1

P 2
n(cos θ) d cos θ =

2nAn

(2n + 1)a
=

2I

2πa2σ
. (8)

Thus, the Legendre series expansion for the potential is,

φ(r < a, θ) =
I

2πaσ

∑
n odd

(
2 +

1

n

) (r

a

)n

Pn(cos θ). (9)

2.2 Current Density inside the Bead

Inside the resistive bead, the current density J is given by,

J = σE = −σ
∂φ

∂r
r̂ − σ

r

∂φ

∂θ
θ̂ = −σ

∂φ

∂r
r̂ +

σ sin θ

r

∂φ

∂ cos θ
θ̂. (10)

In the midplane, (θ = π/2), the current density has only a θ-component (−z-component),
with

Jz(r, θ = π/2) = − I

2πar

∑
n odd

2n + 1

n

(r

a

)n dPn(0)

d cos θ
(11)

=
I

2πar

∑
n odd

(n + 1)(2n + 1)

n

(r

a

)n

Pn+1(0) =
I

πar

∞∑
n=0

(n + 1)(4n + 3)

2n + 1

(r

a

)2n+1

P2n+2(0),

using eq. (14).2

The total current across the midplane is,

Iz(θ = π/2) = 2π

∫ a

0

Jz(r, θ = π/2) r dr (16)

=
I

2a

∫ a

0

∞∑
n=0

(n + 1)(4n + 3)

2n + 1

(r

a

)2n+2

P2n+2(0) dr = I
∞∑

n=0

4n + 3

2n + 1
P2n+2(0) = −I,

as expected, based on numerical evaluation of eq. (16) for terms up to n = N as shown in
the figure below.3

2Some useful relations among the Legendre polynomials are, from eqs. (3.29) and (3.31) of [2],

(2n + 1)Pn(x) = P ′
n+1(x) − P ′

n+1(x), (12)

(1 − x2)
dPn(x)

dx
= n[Pn−1(x) − xPn(x)], (13)

dPn(x)
dx

= nPn−1(x) + x
dPn−1(x)

dx
= −(n + 1)Pn+1(x) + x

(
(2n + 1)Pn(x) +

dPn−1(x)
dx

)
, (14)

∫ 1

−1

xPn(x)Pm−1(x) dx =
2n

(2n + 1)(2n − 1)
δmn. (15)

where P ′
n(x) = dPn(x)/dx.

3Due to Boris Ivetić, http://kirkmcd.princeton.edu/examples/resistive_bead_k3.nb.
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The current density along the axis of the bead is,

Jz(r, θ = 0) = − I

2πa2

∑
n odd

(2n + 1)
(r

a

)n−1

= − I

2πa2

(
3 + 7

r2

a2
+ 11

r4

a4
+ · · ·

)
, (17)

which diverges at the poles (r = a, θ = 0, π), while that on the surface of the bead is,

Jθ(a
−, θ) = −I sin θ

2πa2

∑
n odd

2n + 1

n
P ′

n(cos θ)

= − I

2πa2 sin θ

∑
n odd

(2n + 1)[Pn−1(cos θ) − cos θPn(cos θ)], (18)

using eq. (13), which also is ill behaved at the poles.4

These divergences result from the unphysical assumption that the wires have zero radius.
For wires of finite radius b, the series (9) for the potential will be cut off at large n, as
discussed further below, such that all fields and current densities are finite.

2.3 Closed Form for the Interior Potential

To express the series (9) in closed form, we utilize the expansion for the distance r1 between
the points (a, 0, ϕ) and r = (r, θ, ϕ) given in eq. (3.38) of [2],

1

r1

=
1

a

∞∑
n=0

(r

a

)n

Pn(cos θ), (20)

Similarly, the distance r2 between the points (a, π, ϕ) and (r, θ, ϕ) is,

1

r2
=

1

a

∞∑
n=0

(r

a

)n

Pn(cos(θ − π)) =
1

a

∞∑
n=0

(r

a

)n

Pn(− cos θ) =
1

a

∞∑
n=0

(−1)n
(r

a

)n

Pn(cos θ).

(21)

4For x = cos θ ≈ 1, sin θ =
√

1 − x2 ≈ √
2(1 − x) and Pn(x) =

∑n
m=0[C

n
m]2(x − 1)n−m(1 + x)m/2n ≈

1 − n2(1 − x)/2, so that eq. (18) leads to,

Jθ(a−, x ≈ 1) ≈ − I

2πa2

√
1 − x

2
√

2

∑
n odd

(4n2 − 1). (19)
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Hence,
1

r1

− 1

r2

=
2

a

∑
n odd

(r

a

)n

Pn(cos θ). (22)

It follows that, on integration along the radius from the origin to the point (r, θ),

∫ r

0

(
1

r1

− 1

r2

)
dr′

r′
=

2

a

∑
n odd

1

n

(r

a

)n

Pn(cos θ). (23)

Then, eqs. (9) and (22)-(23) combine to give to the alternative form (1) for φ,

φ(r < a, θ, ϕ) =
I

2πσ

[
1

r1(r)
− 1

r2(r)
+

1

2

∫ r

0

(
1

r1(r′)
− 1

r2(r′)

)
dr′

r′

]
,

=
I

2πσ

[
1

r1(r)
− 1

r1(r)
+

1

2a
ln

a + r cos θ + r2(r)

a − r cos θ + r1(r)

]
, (1)

where r′ = (r′, θ, ϕ).
As we approach the “north” pole, r1 → 0, the first term in eq. (1) dominates. Similarly,

near the “south” pole, r2 → 0, the second term dominates (we claim; details in eqs. (39)-(40)
below). That is, the potential φ diverges at the poles for the case of very fine wires.

The electric field inside the bead has components,

Er(r) = −∂φ

∂r
=

I

2πσ

[
r − a cos θ

r3
1(r)

− r + a cos θ

r3
2(r)

+
1

2r r1(r)
− 1

2r r2(r)

]
, (24)

Eθ(r) =
sin θ

r

∂φ

∂ cos θ
(25)

=
I sin θ

2πσ

[
a

r3
1(r)

+
a

r3
2(r)

+
a + r1(r)

2ar1[a − r cos θ + r1(r)]
+

a + r2(r)

2ar2[a + r cos θ + r2(r)]

]
.

The radial electric field (24) (and the radial current density J = σE) vanishes on the surface
of the bead, r = a, except at the poles, θ = 0, π. The electric field on the midplane θ = π/2
is,

Eθ(θ = π/2) = −Ez(θ = π/2) =
I

2πσ

[
2a

(r2 + a2)3/2
+

1

a(r2 + a2)1/2

]
. (26)

The total current crossing the midplane is, using Dwight 201.01 and 201.03,

2π

∫ a

0

|Jz(θ = π/2)| r dr = 2πσ

∫ a

0

|Ez(θ = π/2)| r dr

= I

∫ a

0

r dr

[
2a

(r2 + a2)3/2
+

1

a(r2 + a2)1/2

]
= I, (27)

as expected.
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2.4 Formal Solution for Wires of Radius b

This section was suggested by Boris Ivetić.
We can obtain a solution for wires of radius b � a, which make contact with the bead

over a spherical cap of angle α = sin−1 b/a ≈ b/a, if we suppose that the radial electric field
on this cap is given by,

Er(a
−, |cos θ| > cos α ≈ 1 − b2/2a2) =

Jr

σ
≈ ∓ I

πb2σ
, (28)

which is a good approximation for small b/a. As before, the radial electric field at the surface
of the bead is zero outside the region of contact with the wires,

Er(a
−, |cos θ| < cosα) = 0. (29)

Now, eqs. (3)-(4), together with the boundary conditions (28)-(29), lead to the relation,

∑
n odd

nAn

a
Pn(cos θ) = ± I

πb2σ

⎧⎨
⎩

1 (|cos θ| > cosα),

0 (|cos θ| < cosα).
(30)

Multiplying by Pn and integrating with respect to x = cos θ yields, using eq. (12),

2nAn

(2n + 1)a
=

2I

πb2σ

∫ 1

cosα

Pn(x) dx =
2I

(2n + 1)πb2σ

∫ 1

cos α

(P ′
n+1(x) − P ′

n−1(x)) dx, (31)

An =
Ia

nπb2σ
(Pn−1(cosα) − Pn+1(cos α)). (32)

A Mathematica evaluation of the potential, φN(r = a−, sin θ = b/a = 0.03) =∑2N−1
n odd An

(
r
a

)n
Pn(cos θ) =

∑N
n=0 A2n+1

(
r
a

)2n+1
P2n+1(cos θ), at the point of contact of the

outer radius of the lead wire with the resistive bead, for b/a = 0.03, is shown below as a
function of N , the number of terms computed.5

The numerical evaluation converges to ≈ 1.05I/πσb after roughly N = 2a/b = 67 terms,
while sec. 2.2 indicates that the value should be I/2πσb. In my view, while the numerical

5Due to Boris Ivetić, http://kirkmcd.princeton.edu/examples/resistive_bead_k1.nb.
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evaluation converges, the asymptotic value so found is not necessarily accurate, as each
Pn(cos θ) is itself the result of a series expansion, also requiring >∼ a/b terms for convergence,
such that the overall numerical computation involves thousands of terms for N > a/b.6,7

So, we return to discussion of the forms (1) and (9) in sec. 2.5.

2.4.1 Current across the Midplane

For the case of wires with finite radius, b/a = 0.03, we use the potential with Fourier
coefficients (32) to obtain the current density at the midplane, θ = π/2, recalling eqs. (10)
and (14),

Jz(r, θ = π/2) = − Ia

πrb2

∑
n odd

1

n
P ′

n(0)(Pn−1(cos α) − Pn+1(cos α))
(r

a

)n

=
Ia

πrb2

∑
n odd

n + 1

n
Pn+1(0)(Pn−1(cos α) − Pn+1(cos α))

(r

a

)n

=
Ia

πrb2

∞∑
n=0

2n + 2

2n + 1
P2n+2(0)(P2n(cos α) − P2n+2(cosα))

(r

a

)2n+1

. (34)

The corresponding total current flowing across the midplane is, using eq. (13),

Iz(θ = π/2) = 2π

∫ a

0

Jz r dr

= 2I
a2

b2

∞∑
n=0

1

2n + 1
P2n(0)(P2n(cosα) − P2n+2(cos α)). (35)

A Mathematica evaluation of the current across the midplane, IN(θ = π/2), is shown
below for b/a = 0.03 as a function of N , the number of terms computed.8

6For large enough n, Pn(x) is oscillatory on the interval [cosα, 1], so the integral
∫ 1

cosα
Pn(x) dx goes to

zero and the potential remains finite near the poles.
7In case of finite wires, b/a = 0.03, we can use the potential found above to obtain the current density

along the axis of the bead,

Jz(r, θ = 0) = −σ
∂φ(r, θ = 0)

∂r
= − I

πb2

∑
n odd

(Pn−1(cos α) − Pn+1(cosα))
( r

a

)n−1

. (33)

At the poles, r = a, θ = 0, π, all terms in the series (33) cancel except for the very first, with P0(cosα) = 1,
which implies that Jz(a, θ = 0, π) = −I/πb2, as expected for lead wires of radius b.

8Due to Boris Ivetić, http://kirkmcd.princeton.edu/examples/resistive_bead_k4.nb.
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The numerical evaluation converges to a value about 1.25 times that expected.

2.5 Ohm’s Law for Wires of Radius b

When considering actual wires of radius b � a, we suppose that our solution (1) based on
wires of zero radius, holds away from the region of contact between the wire and the bead.
Indeed, we expect that the potential close to the wire, and outside the resistive bead, to be
constant in planes perpendicular to the axis of the wire, so that the interface between the
wire and the bead is an equipotential. This cuts off the formal divergence in eq. (1) near the
poles.

In this way, the potential at the upper interface is obtained from (1) on putting r1 = b
and neglecting all but the first term,

φinterface ≡ V ≈ I

2πσb
. (36)

The potential difference across the bead is twice this,

ΔV = 2V ≈ I

πσb
= I

b

σπb2
≡ IR. (37)

Thus, the effective resistance of the bead is,

R ≈ 1

πσb
=

b

σπb2
, (38)

which is also the resistance of a piece of wire of radius b, length b, and conductivity σ.

To verify the claim that the first term of eq. (1) dominates for small r1, we consider the
point (r, θ) = (a− b, 0) for b � a. Then, the first term of eq. (1) is 1/b, and the second term
is 1/(2a− b) which is negligible compared to the first. Inside the integral term of eq. (1), we
have R1 = a − r and R2 = a + r, so the integral is,

∫ a−b

0

(
1

r1
− 1

r2

)
d ln r =

∫ a−b

0

2

a2 − r2
dr =

1

a
ln

2a − b

b
≈ 1

a
ln

2a

b
. (39)
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The ratio of the integral term to the first term of (1) is therefore,

b

2a
ln

2a

b
, (40)

which goes to zero as b becomes small.

2.6 Magnetic Field and Poynting Vector

The power dissipated by the resistive bead is, according to eq. (38),

P = I2R ≈ I2

πσb
. (41)

As a check on the solution (9) for the potential, we consider whether the dissipated power
equals the integral of the Poynting flux, S = (c/4π)E × B (in Gaussian units), normal to
the surface of the bead, where c is the speed of light in vacuum.

For this, we need the magnetic field B at r = a, due to the electric currents in the
problem. This field is azimuthal, because of the azimuthal symmetry of the problem. Then,
the magnetic field at the surface of the resistive bead follows easily from Ampère’s law,

2πr⊥Bϕ(r = a−) = 2πa sin θB0 = −4π

c
I, Bϕ(r = a−) = − 2I

c a sin θ
, (42)

The radial component of the Poynting vector also depends on the electric field component,

Eθ(r = a− = −1

a

∂φ(r = a−)

∂θ
. (43)

Then, the radial component of the Poynting vector at the surface of the bead is,

Sr(r = a−, θ) =
c

4π
Eθ(r = a−)Bϕ(r = a−) =

I

2πa2

1

sin θ

∂φ(r = a−)

∂θ

= − I

2πa2

∂φ(r = a−)

∂ cos θ
= − I

2πa2

I

2πaσ

∑
n odd

(
2 +

1

n

)
P ′

n(cos θ). (44)

The integral of the radial component of the Poynting vector over the surface of the bead
is,

Pinto bead = −2πa2

∫ 1

−1

Sr(r = a−, θ) d cos θ =
I2

2πaσ

∑
n odd

(
2 +

1

n

) ∫ 1

−1

P ′
n(cos θ) d cos θ

=
I2

πaσ

∑
n odd

(
2 +

1

n

)
≈ b

a
I2R

∑
n odd

(
2 +

1

n

)
. (45)

Formally, the result (45) diverges, which corresponds to infinite power dissipation at the
points of contact of the wires with the bead, in the limit of zero radius of these wires.
For wires of finite radius b, the power dissipated is finite, P = I2R for resistance R as
approximated in eq. (38), but then the formal solutions (1) and (9) are only approximate.
Since the sum of the first N terms of the series

∑
N odd(2 + 1/n) is roughly N , we infer that

the form (9) for the potential inside the bead in case of wires of radius b is a reasonable
approximation if we keep only the first N ≈ a/b terms.
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2.6.1 Finite wire case

Following the same steps as in eqs (42)-(45) for the potential as calculated in sec. 2.4, the
total power flowing into the bead is,

Pinto bead = −2πa2

∫ cos(π−α)

cos(α)

Sr(r = a−, θ) d cos θ

=
2I2

πbσ

a

b

∑
n odd

1

n
Pn(cosα) (Pn−1(cosα) − Pn+1(cosα))

=
2I2

πbσ

a

b

∞∑
n=0

1

2n + 1
P2n+1(cosα) (P2n(cos α) − P2n+2(cosα)) . (46)

A Mathematica computation of eq. (46) for b/a = 0.03 is show above, as a function of the
number N of terms kept in the summation.9 The series appears to converge to 1.3I2/πσb
rather than to I2R = I2/2πσb as expected from sec. 2.5. If the numerical result in sec. 2.4
were correct, we would expect eq. (46) to converge to 1.05I2/πσb, which suggests that neither
numerical result is highly accurate.

2.7 Potential outside the Resistive Bead

We now consider the problem outside the bead, for which one model is that the wires are
perfect conductors extending from r = a to distance d, where they are attached to perfectly
conducting hemispheres of radius d, with a ring-shaped battery of potential difference 2V
between them at location (r, θ) = (d, π/2).

9Due to Boris Ivetić, http://kirkmcd.princeton.edu/examples/resistive_bead_k2.nb.
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In the region a < r < d and outside the wires at θ = 0 and π, the potential obeys
∇2φ = 0, is azimuthally symmetric, and symmetric about the plane θ = π/2, so it can be
expanded as,

φ(a < r < d) =
∑
n odd

[
Bn

(r

a

)n

+ Cn

(a

r

)n+1
]

Pn(cos θ). (47)

Continuity of the potential at r = a requires, recalling eqs. (3) and (8), that,

Bn + Cn = An =
(2n + 1)I

2πanσ
=

(2n + 1)bV

an
. (48)

The constant potential V on the upper hemisphere requires that,

φ(r = d, 0 < cos θ < 1) = V =
∑

n odd

[
Bn

(
d

a

)n

+ Cn

(a

d

)n+1
]

Pn(cos θ), (49)

and the constant potential V on the upper wire requires that,

φ(a < r < d, θ = 0) = V =
∑

n odd

[
Bn

(r

a

)n

+ Cn

(a

r

)n+1
]

. (50)

If we multiply eq. (49) by Pn(cos θ) = Pn(x) and integrate over x from 0 to 1, we obtain
(using Wolfram Alpha with integrate Legendre P(n,x) from x=0 to 1),10

V

∫ 1

0

Pn(x) dx =

√
π V

2Γ(1 − n
2
)Γ(n+3

2
)
≡ KnV =

1

2n + 1

[
Bn

(
d

a

)n

+ Cn

(a

d

)n+1
]

, (51)

K1 = 1/2, K3 = −1/8, K5 = 1/16, K7 = −5/128, K9 = 7/256, K11 = −21/1024, ...
Combining this with eq. (48), we find,

Bn =
(2n + 1)V

(d
a
)n − (a

d
)n+1

[
Kn − b

an

(a

d

)n+1
]

, Cn =
(2n + 1)V

(d
a
)n − (a

d
)n+1

[
b

an

(
d

a

)n

− Kn

]
. (52)

10Jackson uses Rodrigues’ formula and integration by parts n times to find
Kn = (−1/2)(n−1)/2(n − 2)!!/2[(n + 1)/2]!, his eq. (3.26) [2].
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It is not obvious how well the Bn and Cn of eq. (52) satisfy the condition (50), but a
numerical example suggests that they do so. For example, suppose that d = 2a, b/a = 0.03
and V = 1. Then, using only the first six terms of eq. (50) yields the following plot,11

The potential outside the perfectly conducting hemispheres, which are held at potentials
±V , is given in eq. (3.36) of [2]. In our notation,

φ(r > d) = V
∑

n odd

(2n + 1)Kn

(
d

r

)n+1

Pn(cos θ). (53)

2.8 Surface Charge Density on the Resistive Bead

We also infer that the surface r = a of the bead supports electric charge density,

ς(θ) =
Er(r = a+) −Er(r = a−)

4π
= − ∂

∂r
[φ(r = a+) − φ(r = a−)] (54)

=
∑

n odd

−nBn + (n + 1)Cn + nAn

a
Pn(cos θ) =

∑
n odd

(2n + 1)Cn

a
Pn(cos θ).

This illustrates the general result that current-carrying conductors (of finite conductivity σ)
have nonzero surface charge density, as needed to shape the electric field E = J/σ which
drives the current inside the conductor [4].

For completeness, we compute the linear charge density λ on the lead wires, and the
surface charge density ς on the inside and outside surfaces of the hemispheres at r = d,

λ(a < r < d, θ = 0, π) = 2πb ς =
b

2
Eθ = − b

2r

∂φ

∂θ

=
b

2r
sin θ

∑
n odd

[
Bn

(r

a

)n

+ Cn

(a

r

)n+1
]

P ′
n(cos θ)

≈ ± b2

2r2

∑
n odd

[
Bn

(r

a

)n

+ Cn

(a

r

)n+1
]

P ′
n(1)

11In the limit that d 
 a, Bn → 0, Cn → An, and eq. (50) would imply that V → 0. That is, to satisfy
all three constraints (47), (49) and (50) on the potential φ(a < r < d), we need Bn nonzero, and d/a finite.
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≈ ± b2

4r2

∑
n odd

n(n + 1)

[
Bn

(r

a

)n

+ Cn

(a

r

)n+1
]

, (55)

ς(r = d−) = −Er(r = d−)

4π
=

1

4π

∂φ(r = d−)

∂r

=
1

4πd

∑
n odd

[
nBn

(
d

a

)n

− (n + 1)Cn

(a

d

)n+1
]

Pn(cos θ), (56)

ς(r = d+) = − 1

4π

∂φ(r = d+)

∂r
=

V

4πd

∑
n odd

(n + 1)(2n + 1)KnPn(cos θ),(57)

where P ′
n(1) = dPn(x = 1)/dx = n(n + 1)/2, and sin θ ≈ b/r for points on the surface of the

lead wires.

A Appendix: Resistive Spherical Shell

This Appendix was suggested by Boris Ivetić.
We can also consider the case of a resistive spherical shell of outer radius a and thickness

ε � a.

A.1 Surface Current and Total Resistance of the Shell

The surface current density K (per unit length) on a resistive shell has only a θ-component,
related by conservation of charge flowing across rings of circumference 2πa sin θ at angles θ
as,

Kθ(θ) =
I

2πa sin θ
. (58)

To estimate the electrical resistance R of the spherical shell, we note that an annulus of
extent a dθ about angle θ, with circumference C = 2πa sin θ, has resistance dR = a dθ/σSC =
dθ/2πσS sin θ to the surface current Kθ. To find the total resistance, we integrate dR from
θ = b/a to π − b/a, supposing the current enters and exits the shell through wires of radius
b � a. Then,

R ≈ 2

∫ π/2

b/a

dR =
1

πσS

∫ π/2

b/a

dθ

sin θ
≈ − 1

πσS
ln

b

2a
, (59)

which is very large for small b/a, in contrast to the result (38) for a solid resistive bead (of
volume conductivity σ).

A.2 Potential inside the Shell

The resistive shell supports charge densities on both of its surfaces, which in the limit of zero
thickness ε we suppose is a single surface density ς(a, θ). Then, the potential for r < a−ε ≈ a
(as well at that for a < r < d and r > d) obeys ∇2φ = 0, so we can again seek a potential
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in spherical coordinates that is independent of azimuth ϕ, and symmetric about the plane
θ = 0, with the form (3),

φ(r < a) =
∑

n odd

An

(r

a

)n

Pn(cos θ). (3)

This surface current is driven by the electric field Eθ inside the resistive shell according
to Ohm’s law, which we take to have the form,

Kθ = σSEθ(r = a−) = −σ
∂φ(r = a−)

∂θ
= σS sin θ

∂φ(r = a−)

∂ cos θ
= σS sin θ

∑
n odd

AnP
′
n(cos θ).(60)

where σS is the surface conductivity.12 Then, recalling eq. (58) and using eq. (13),

(1 − cos2 θ)
∑

n odd

AnP
′
n(cos θ) =

∑
n odd

nAn[Pn−1(cos θ) − cos θPn(cos θ)] =
I

2πaσS
. (61)

To find A1, we simply integrate eq. (61) with respect to cos θ from −1 to 1,

A1

∫ 1

−1

(1 − cos2 θ) d cos θ =
4A1

3
=

I

πaσS
, A1 =

3I

4πaσS
. (62)

For n > 1, we multiply eq. (61) by Pn−1(cos θ) and integrate to find, using eq. (13),

2n(n + 1)

(2n − 1)(2n + 1)
An =

2(n − 1)(n − 2)

(2n − 1)(2n − 3)
An−2, An =

(n − 1)(n − 2)(2n + 1)

n(n + 1)(2n − 3)
An−2. (63)

Thus, A3 = 7A1/18, A5 = 11A1/45, A7 = 5A1/28, ..., with An ≈ (1 − 2/n)An−2 for large n.
The potential is divergent at the poles of the shell, which divergence is suppressed in

practice by the finite radius b of the lead wires, which implies that An → 0 for n large
enough that Pn(cos θ) is oscillatory on the interval 0 < θ < b/a.
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