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1 Problem

Calculate the resistance between two contacts on the rim of a disk of radius a, thickness
t � a, and conductivity σ, when each (perfectly conducting) contact extends for a small
distance δ around the circumference, and the distance along the chord between the contacts
is d � δ.

2 Solution

This problem is posed on p. 351 of The Mathematical Theory of Electricity and Magnetism
(1908), by James Jeans,
http://kirkmcd.princeton.edu/examples/EM/jeans_electricity.pdf

It was the subject of Kirchhoff’s first physics paper, Ann. d. Phys. 64, 497 (1845),
http://kirkmcd.princeton.edu/examples/EM/kirchhoff_ap_64_497_45.pdf

We will evaluate the resistance R via Ohm’s Law, R = V/I , by calculating the current I
that flows when a potential difference V is established between the two contacts.

For a thin disk, the current flow is 2-dimensional. Since J = σE, where J is the current
density and E is the electric field, the electric field is 2-dimensional also. And, since E =
−∇φ, where φ is the electric potential, the potential is 2-dimensional as well.

The form of the 2-dimensional potential is well approximated (for distances more than
δ/2 from the centers of the contacts) by considering a cylinder of radius a, rather than the
disk, with a line charge density λ that passes through the center of one contact, and line
charge −λ that passes through the center of the other contact.

The electric field from the wire of charge density λ has magnitude (in Gaussian units),

E1 =
2λ

r1
, (1)
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according to Gauss’ law, where r1 is the distance from the wire to the observer. The corre-
sponding electric potential is,

φ1 = 2λ ln
r1

r0
, (2)

where r0 is a constant of integration. The potential due to the wire with charge density −λ
is similarly,

φ2 = −2λ ln
r2

r0
, (3)

where r2 is the distance from the observer to wire 2. The potential at an arbitrary point is
then given by,

φ = φ1 + φ2 = 2λ ln
r1

r2
. (4)

The total potential difference between the two line charges is formally divergent. To
make physical sense, we can suppose that expression (4) holds only for r1 and r2 greater
than δ/2, the half width of the electrical contacts, and the potential is essentially constant
for smaller values of r1 and r2. That is, we approximate the contacts of width δ by perfectly
conducting wires of radii δ/2, as shown in the figure below. Then, the potential of contact
2 is estimated from eq. (4) by setting r1 = d − δ/2 and r2 = δ/2,

φ(contact 2) = 2λ ln
d − δ/2

δ/2
≈ 2λ ln

2d

δ
. (5)

The potential at the surface of contact 1 is just the negative of eq. (5), so the potential
difference is,

V ≈ 4λ ln
2d

δ
. (6)

We note that the current and the electric field must be tangential to the edge of the disk.
We recall that the equipotentials of eq. (4) are circles, as shown in the figure on the right
above (from Kirchhoff), and that the corresponding electric field lines are also circles which,
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of course, pass through the line charges.1 Hence, the boundary condition on the electric field
at the edge of the disk is indeed satisfied.

To complete the solution, we must calculate the current I that is flowing. For this,
we can integrate the current density J across any surface between the two contacts. For
convenience, consider a cylindrical surface of radius r centered on one of the contacts, such
that δ/2 < r � d. Since r � d, this surface is essentially an equipotential, and the electric
field is essentially that due to the nearby charge density λ. Namely, the electric field is
normal to this surface, with magnitude,

E =
2λ

r
. (7)

The current density across this surface is given by J = σE. Restricting the problem to a
disk of thickness t, the relevant area of the surface is πrt, so the total current is,

I = πrt · σ · 2λ

r
= 2πσλt, (8)

which is independent of the choice of r.
Finally, the resistance is found by combining eqs. (6) and (8),

R =
V

I
≈ 4λ ln 2d/δ

2πσλt
=

2

πσt
ln

2d

δ
, (9)

independent of the radius a of the disk.

1See, for example, pp. 74a-b of http://kirkmcd.princeton.edu/examples/ph501/ph501lecture6.pdf

3


