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1 Problem

A frequent occurrence in basketball or golf is that the ball rolls around in the rim of the
hoop/cup for a while, then sometimes goes in, sometimes not...

Consider a sphere of radius a that rolls without slipping on a horizontal hoop of radius
b > a. An equilibrium of steady rolling exist with zero “spin” component, ω0 = ω · 1̂ = 0,
where ω is the total angular velocity of the sphere and 1̂ is directed from the point of contact
with the hoop to the center of the sphere. Show that in the case the angular velocity of the
point of contact about the vertical is,

Ω =

√
3g tan θ0

5(b − a sin θ0)
, (1)

for a spherical shell, where θ is the angle of 1̂ to the vertical.
For a basketball of radius 12 cm and a hoop of radius 24 cm, Ω0 ≈ 0.6 revolution per

second at θ0 = 45◦.
Show that this equilibrium is unstable (for b/a = 2). That is, for Ω greater/less than ω0,

the sphere rises/falls, and only in the latter case does it pass through the hoop as desired.

2 Solution

We consider a sphere of radius a that rolls without slipping on a horizontal hoop of radius
b > a.

2.1 Steady Motion with No “Spin”

Before treating the general motion, we consider the special case of steady motion with no
“spin” about the line, 1̂, between the point of contact of the sphere with the hoop and the
center of the sphere.

In this case, the angle θ0 between the vertical, ẑ, and 1̂ is constant, and the center of the
sphere moves in a horizontal circle of radius b − a sin θ0 with constant angular velocity Ω.
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The rolling constraint is,

vcontact = v + ω × a = 0, (2)

where v is the velocity of the center of the sphere, ω is its total angular velocity, and a = −a1
points from the center of the sphere to the point of contact.

In the case of no “spin” about 1̂, the angular velocity ω is perpendicular to 1̂ and in the
vertical plane that contains the center of the hoop and the point of contact, as shown in the
figure above. Then, the rolling constraint (2) implies,

Ω(b − a sin θ0) = ωa. (3)

The torque equation of (steady) motion about the point of contact is,

τ contact = −a× mg = −mag 1̂ × ẑ = mag sin θ0 2̂

=
dLcontact

dt
= Icontact

dω

dt
=

(
I + ma2

)
Ω ẑ ×ω =

(
I + ma2

)
Ωω cos θ0 2̂, (4)

Ω =
mag sin θ0

(I + ma2) ω cos θ0
, Ω2 =

ma2g tan θ0

(I + ma2) (b − a sin θ0)
, (5)

using eq. (3), and defining 2̂ = ẑ × 1̂/ sin θ0, which is into the page in the figure above.
For a spherical shell of radius a = 12 cm, I = 2ma2/3, with b = 2a and θ0 =

45◦, the frequency of revolution of the sphere about the center of the hoop is 2π/Ω =

2π
√

5a(4 −√
2)/6g ≈ 0.6 Hz.

Also, there is a formal equilibrium with θ0 = 0 = Ω, at which the sphere is perched on
a point on the rim. For “spin” ω1 = 0 this equilibrium is unstable, but we need to consider
whether it might be stable for large enough ω1.

2.2 General Equations of Motion

Turning to the general case when θ and φ̇ = Ω vary with time, we introduce the principal
axes (not body axes) 1̂,2̂,3̂, with origin at the center of the sphere. 1̂ points from the point
of contact with the hoop to the center of the sphere, 2̂ = ẑ × 1̂/ sin θ is horizontal, and
3̂ = 1̂ × 2̂ is in the vertical plane containing the centers of the hoop and the sphere. Also,
ẑ = cos θ 1̂ + sin θ 3̂.
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The velocity of the center of the sphere is,

v = −φ̇(b − a sin θ) 2̂ − a θ̇ 3̂. (6)

where Ω = φ̇ is the angular velocity of the sphere about the center of the hoop.
From the rolling constraint (2) we have, recalling that a = −a 1̂,

1 × (ω × a) = −a ω − ω1 a = −1̂ × v = −a θ̇ 2̂ + φ̇(b − a sin θ) 3̂, (7)

ω = ω1 1̂ + θ̇ 2̂ − φ̇
b− a sin θ

a
3̂. (8)

The angular velocity of the triad 1̂,2̂,3̂ is,

ω123 = θ̇ 2̂ + φ̇ ẑ = φ̇ cos θ 1̂ + θ̇ 2̂ + φ̇ sin θ 3̂. (9)

The time rate of change of the principal axes is related by,

d̂i

dt
= ω123 × î, (10)

d1̂

dt
= (φ̇ cos θ 1̂ + θ̇ 2̂ + φ̇ sin θ 3̂) × 1̂ = φ̇ sin θ 2̂ − θ̇ 3̂, (11)

d2̂

dt
= (φ̇ cos θ 1̂ + θ̇ 2̂ + φ̇ sin θ 3̂) × 2̂ = φ̇ sin θ 1̂ + φ̇ cos θ 3̂, (12)

d3̂

dt
= (φ̇ cos θ 1̂ + θ̇ 2̂ + φ̇ sin θ 3̂) × 3̂ = θ̇ 1̂ − φ̇ cos θ 2̂. (13)

The force and torque equations of motion of (the center of) the sphere of radius a are,

F− mg ẑ = m
dv

dt
= −m φ̈(b − a sin θ) 2̂ + ma φ̇ θ̇ cos θ 2̂ −ma θ̈ 3̂

−mφ̇(b − a sin θ)(φ̇ sin θ 1̂ + φ̇ cos θ 3̂) − maθ̇(θ̇ 1̂ − φ̇ cos θ 2̂)

= −m(φ̇
2
(b − a sin θ) sin θ + a θ̇

2
) 1̂ + m(2a φ̇ θ̇ cos θ − φ̈(b − a sin θ)) 2̂

−m(a θ̈ + φ̇
2
(b − a sin θ) cos θ) 3̂, (14)

dL

dt
= I

dω

dt
= Iω̇1 1̂ + Iθ̈ 2̂ + I

(
φ̇ θ̇ cos θ − φ̈

b − a sin θ

a

)
3̂ + Iω1(φ̇ sin θ 2̂ − θ̇ 3̂)

+Iθ̇(φ̇ sin θ 1̂ + φ̇ cos θ 3̂) − Iφ̇
b − a sin θ

a
(θ̇ 1̂ − φ̇ cos θ 2̂)

= I

(
ω̇1 − φ̇ θ̇

b − 2a sin θ

a

)
1̂ + I

(
θ̈ + ω1 φ̇ cos θ + φ̇

2 b − a sin θ

a
cos θ

)
2̂

+I

(
2φ̇ θ̇ cos θ − ω1 θ̇ − φ̈

b − a sin θ

a

)
3̂

= τ = a× F (15)

= −ma(2a φ̇ θ̇ cos θ − φ̈(b− a sin θ)) 3̂ −ma(a θ̈ + φ̇
2
(b − a sin θ) cos θ) 2̂ + mag sin θ 2̂,
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where I is the moment of inertia of the sphere about its center. The components of the
equation of motion (15) are:

1̂ : ω̇1 = φ̇ θ̇
b − 2a sin θ

a
, (16)

2̂ :
(
I + ma2

)(
θ̈ + φ̇

2 b− a sin θ

a
cos θ

)
+ I ω1 φ̇ cos θ = mag sin θ, (17)

3̂ :
(
I + ma2

)(
2φ̇ θ̇ cos θ − φ̈

b − a sin θ

a

)
= I ω1 θ̇. (18)

For steady motion with θ = θ0 = constant and φ̇ = Ω = constant, we have that ω1 =
constant from eq. (16), eq. (18) is trivial, and eq. (17) leads to,

Ω2 +
IΩω1

I + ma2
=

ma2g tan θ0

(I + ma2) (b − a sin θ0)
(19)

which reduces to eq. (5) for the special case of no “spin”, i.e., ω1 = 0.
The coupled equations of motion (16)-(18) are intricate, and we limit further discussion

to two special cases: either the “spin” ω1 is negligible, or the equilibrium is with θ0 = 0 = Ω.

2.2.1 Stability of Steady Motion with No “Spin”

For ω1 negligible, we consider possible nutations of the form,

θ = θ0 + ε sin αt, φ̇ = Ω + δ sinαt, (20)

sin θ ≈ sin θ0 + ε cos θ0 sinαt, cos θ ≈ cos θ0 − ε sin θ0 sinαt, (21)

for small constants ε and δ. Then, to first order in ε and δ, eq. (18) becomes,

2Ωα ε cosαt cos θ0 ≈ α δ cos αt
b− a sin θ0

a
, δ ≈ 2 ε Ω

a

b − a sin θ0
cos θ0. (22)

and eq. (17) becomes,

mag(sin θ0 + ε cos θ0 sinαt) ≈ −α2 ε
(
I + ma2

)
sinαt (23)

+
(
I + ma2

)
(Ω2 + 2Ω δ sinαt)

(
b

a
− sin θ0 − ε cos θ0 sinαt

)
(cos θ0 − ε sin θ0 sinαt),

ε m a g cos θ0 ≈ −α2 ε
(
I + ma2

) − ε
(
I + ma2

)
Ω2

[
b − a sin θ0

a
sin θ0 + cos2 θ0

]

+2Ω δ
(
I + ma2

) b − a sin θ0

a
cos θ0, (24)

α2 ≈ −m a g cos θ0

I + ma2
− Ω2

[
b − a sin θ0

a
sin θ0 + cos2 θ0

]
+ 4Ω2 cos2 θ0. (25)

For this case we also have Ω2 given by eq. (5), so,

α2 ≈ −m a g cos θ0

I + ma2
− mag sin2 θ0

(I + ma2) cos θ0
+ 3

mag sin θ0 cos θ0

(I + ma2) (b/a − sin θ0)

=
mag

(I + ma2) (b/a − sin θ0) cos θ0
[3 sin θ0 cos2 θ0 − sin2 θ0 − cos2 θ0(b/a − sin θ0)]. (26)
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A numerical calculation (https://kirkmcd.princeton.edu/examples/rim.xlsx) indicates that α2 <
0 for any angle θ0 when b/a > 1.88.1 In regulation basketball, b/a is very close to 2, so α2 < 0
for any θ0, and the equilibrium with ω1 = 0 is unstable. That is, if a basketball starts to roll
around the hoop, it quickly falls in or out.

2.2.2 Sphere Directly above a Point on the Hoop

We now turn to the equilibrium of a sphere whose center is at rest directly above some point
on the hoop, with the sphere spinning about the vertical.

We consider possible, small nutations about this equilibrium as in eqs. (20)-(21), but here,
θ0 = 0 = Ω. Then, the right side of eq. (16) is of second order, so in the first approximation
ω1 is constant. Equation (18) now implies that,

− δ
(
I + ma2

) b

a
cos αt = εI ω1 cos αt, δ = −ε

I

I + ma2

aω1

b
, (27)

and eq. (17) leads to,

ε mag sinαt ≈ −α2 ε
(
I + ma2

)
sinαt + δ I ω1 sinαt,

mag ≈ −α2
(
I + ma2

) − I

I + ma2

aω1

b
I ω1, (28)

α2 ≈
(

I

I + ma2

)2

ω2
1

a

b
− m a g

I + ma2
. (29)

This equilibrium is stable for,

ω1 >
I + ma2

I

√
gb

a2

ma2

I + ma2
. (30)

For a basketball of radius a = 12 cm and a hoop with b/a = 2, the minimum “spin” ω1 for
stability of this equilibrium is only 2 Hz.2

Note, however, that no stability is possible in the limit b → ∞, which corresponds to a
spinning sphere on a straight wire.3

A Appendix: The Limit of b → ∞
In the limit of b → ∞, the hoop becomes a long, straight wire for small φ, say along the
x direction. Then, the horizontal vector 2̂ is x̂, and the quantity φ(b − a sin θ ≈ φ b takes
on the significance of the position x of the center of the sphere along the wire (for small φ).

1When stability is possible, it is most stable angle for θ0 ≈ 42◦.
2Gyroscopic stability of a basketball on a curved hoop occurs for smaller ω1 than when balancing it on

your finger. For the latter, see http://kirkmcd.princeton.edu/examples/basketball.pdf.
3This case was discussed on pp. 212-214 of http://kirkmcd.princeton.edu/examples/Ph205/ph205l20.pdf.

See also §424, p. 360 of Milne’s Vectorial Mechanics, especially eq. (8),
http://kirkmcd.princeton.edu/examples/mechanics/milne_mechanics.pdf.
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Furthermore, φ̇(b − a sin θ) → ẋ and φ̈(b − a sin θ) → ẍ. Then, the component equations of
motion (16)-(18) become,

1̂ : a ω̇1 = θ̇ ẋ, (31)

2̂ :
(
I + ma2

)
θ̈ = mag sin θ, (32)

3̂ : − (
I + ma2

)
ẍ = aI ω1 θ̇. (33)

These are the equations of motion found on p. 214 of
http://kirkmcd.princeton.edu/examples/Ph205/ph205l20.pdf, but with x → −x. See also §424,
p. 360 of Milne’s Vectorial Mechanics, especially eqs. (7)-(9),
http://kirkmcd.princeton.edu/examples/mechanics/milne_mechanics.pdf.

In particular, eq. (32) indicates that once θ is nonzero, further motion only increases θ
(until the sphere loses contact with the wire).

A finite radius of curvature b of the (horizontal) wire leads to more intricate 2- and
3-componets of the equations of motion, i.e., eqs. (17)-(18), which permit gyroscopic stabi-
lization of the sphere for large enough “spin” ω1 (at some values of θ0).
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