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1 Problem

A conducting sphere of radius a, relative dielectric constant € = 1 (i.e., D = E in Gaussian
units), and relative permeability © = 1 rotates with constant angular velocity w about a
diameter. A constant, uniform, external magnetic field B is applied parallel to the axis of
rotation. The total charge on the sphere is zero. Assuming that you can ignore any magnetic
field due to the rotating sphere, calculate the following steady-state quantities (in any order):
a) The electric field E everywhere.
b) The volume charge density p inside the sphere and the charge density o on its surface.
c¢) The electric potential ¢ everywhere, defining the potential at infinity to be zero.
Comment briefly on how the solution would differ if the sphere were superconducting.
Hint: a possible sequence is to calculate the electric field inside the sphere, the charge
density inside the sphere, the potential inside the sphere, the potential outside the sphere,
the electric field outside the sphere, and finally the surface charge density. Check that the
total charge is zero. Note that in the steady state, charges are at rest with respect to an
ordinary conductor, unless there is an electromotive force present — which there is not in the
present problem.

2 Solution

This problem is from Sec. 48 of Mason and Weaver, The Electromagnetic Field (U. Chicago
Press, 1929), kirkmcd. princeton. edu/examples/EM/mason_emf_29.pdf, which uses Heaviside-
Lorentz units = factors of 47 different from Gaussian units!

In the steady state, charges cannot be in motion relative to a sphere of finite conductivity
unless there is a driving electromotive force — which is absent in the present problem. Oth-
erwise, Joule losses would quickly reduce the relative velocity of the charges to zero. Hence,
if a nonzero charge density p arises, the charges are rotating with angular velocity w.

This contrasts with the case of a superconductor, in which currents can flow without an
electromotive force. On a superconducting sphere, surface currents develop so as to cancel
the external magnetic field in the interior of the sphere (for any angular velocity w). The
surface current would vary as sin 6, as discussed, for example, in Ph501 Problem Set 4, prob.
9a.! Outside the sphere these currents would add a dipole magnetic field to the uniform
external magnetic field. The surface current is not due to the rotation of a net surface
charge density, as this would require the interior of the superconductor to have a nonzero
charge density, and hence a nonzero electric field. Rather, the surface of the sphere remains
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neutral, and the electric field is everywhere zero. The surface currents are thus unrelated to
the angular velocity of the sphere, which can have any value without changing the magnetic
fields. [For another variant, see prob. 7.45 of D..J. Griffiths, Introduction to Electrodynamics,
34 ed. (Prentice Hall, 1999), http://kirkmcd. princeton. edu/examples/EM/griffiths_em3. pdf

Returning to the case of finite conductivity o, the key argument is that there can be no
net force on charges inside the sphere due to the macroscopic E and B fields there.

One way to argue is to consider, for any point inside the sphere, the a comoving inertial
frame in which that point is instantaneously at rest. Then, at that point the current density
J* vanishes in the comoving frame, according to the first paragraph of this solution. The
Lorentz transformation between the laboratory and comoving frames tells us that 0 = cE* =
vo(E + v/c x B), noting that B is transverse to v, and hence any needed electric field E
will be also. Thus, the (lab-frame) electric field inside the sphere is related by,

E=-' xB. (1)
c

This leaves unresolved the question as to what force provides the centripetal acceleration
w?r| of the electrons and ions at distance r| from the axis of the sphere. Consider first the
case of zero magnetic field. Whenever a conductor spins about an axis, internal forces must
be generated to provide the centripetal force, or the conductor would fly apart. There must
be microscopic forces that act on the conduction electron as well as on the positive ion lattice,
or all the conduction electrons would accumulate the surface leaving the interior positively
charged and hence unstable against breakup. Since conductors do not typically fall apart
when spun, we infer that microscopic internal forces, presumably due to electromagnetic
fields, will provide the centripetal force —mw?r, for both electron and ions so that the bulk
material remains neutral.

The result that the electric field E* must vanish at the point that defines the comoving
inertial frame implies that the atoms of the sphere cannot have taken on a dipole deformation
proportional to r |, as might have appealed to one’s intuition. Otherwise, the sphere would
have a bulk polarization P* proportional tor |, a uniform bound charge density p; = —V*-P*
(looking ahead to eq. (5)), and hence a nonzero electric field E*.2

In any case, an external magnetic field causes forces in addition to the microscopic forces
that provide the centripetal force inside the rotating sphere. In the steady-state of a rotating
conductor the interior charges must rotate as for a rigid body, so there must be no net
additional force on these charges. Since the rotating free charges experience a v X B force,
there must be some other force that cancels this. The free charge distribution rearranges
itself until it generates an electric field that cancels the magnetic force. That is, the resulting
volume charge distribution p obeys,

v
Fmacroseopic =0= P <E + Z X B) ) (2)

so far as the macroscopic fields E and B are concerned.

2K.T. McDonald Dielectric Cylinder That Rotates in a Uniform Magnetic Field (Mar. 12, 2003),
http://kirkmcd.princeton.edu/examples/rotatingcylinder.pdf



By either argument, the electric field in the interior of the sphere is,
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The charge distribution can now be obtained via the first Maxwell equation,
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The total charge in the interior of the sphere is,

dma’p  2wBa®

@=—3 3¢ (6)

It is noteworthy that the charge distribution in the interior is uniform, but the electric field
is not spherically symmetric. This can happen if the surface charge distribution (required
since the sphere is neutral overall) is not spherically symmetric.?

The strategy for the remainder of the problem is as follows. Use E = —V ¢ to deduce the
form of the electric potential in the interior of the sphere. Next, extrapolate the potential
to the exterior by matching at the boundary » = a. Then, we calculate the electric field
outside the sphere, and finally we can calculate the surface charge distribution.

This problem is azimuthally symmetric, so the electric scalar potential ¢ depends only
on r and 6,

E=-V¢=—f———— (7)
Hence, for r < a eq. (3) tells us that,

0 wBrsin®0 wBr?sin®6
a—f:ﬁ, and so ¢(T<G)Z¢O+T. (8)

As a check, egs. (3) and (7) also tell us that,

0 Br? sin 0 cos 0 Br?in?
a_?:w r Sl;l cos 7 and likewise ¢:¢0+%‘ )

For r > a, the charge density vanishes so V2¢ = 0 there, and we can expand the potential
in terms of Legendre functions as,

G(r>a)=>_ %Pn(cose), (10)

3See also, K.T. McDonald, Electric Field of a Uniform Charge Density (July 27, 2009),
http://kirkmcd.princeton.edu/examples/uniformcharge.pdf




choosing ¢(r = 0o0) = 0. To match this to eq.(8) at = a, we note that,
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and,
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Matching egs. (10) and (12) at r = a, we see that all the A; vanish except Ay and Az, which
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The potential is then,
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We can now calculate the electric field outside the sphere to be,
0 a wBa® [ a a’
E.(r> = —=¢9=+— | 5 —-3—PF ), 16
(r>a) or ¢0T2 + 3c (7"2 a2 (16)
10¢ wBa®sinf cos §
Ey(r > = ——— =— : 17
o(r>a) r 00 crt (17)
For comparison, we rewrite the electric field (3) in the interior as,
2wB
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C

The tangential electric field Fy must be continuous at the boundary r» = a, which is
satisfied by eqs. (17) and (19).
The surface charge density o can now be found via a Gaussian pillbox surrounding a
segment of the surface r = a,
E.(r=a")—E.(r=a") ¢,  wBa

— — _5P 20
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The total charge on the surface of the sphere is,

9y  wBa
4ma + e
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Q = 4na® (
which must be the negative of the total charge (6) inside the sphere, since the total charge
is zero. Hence, at great length we determine the constant ¢, to be,

wBa?
3¢

by = (22)



We can now go back and tidy up the quantities that contain ¢,

o(r<a) = gf(r —a’>—r'P), (23)
o(r>a) = —%;%, (24)
E(r>a) = —%EPQ, (25)

v = ;”fri (2—5P,). (26)

How big is the charge density o, in terms of electrons/cm?? Suppose, for example, that
w = 1rad/s, B =1 tesla = 10" gauss, and a = 1 cm. Then, o ~ 10*/10'* = 1078 esu/cm?.
Since the charge of the electron is e ~ 5 x 107!° esu, the surface charge density would be
about 20 electrons/cm?.

Returning to the issue of the centripetal force, we consider its magnitude compared to
that of the v x B force,

Mew?r L MeCw 10727 .10 w < 10-TY (27)
evB/c e BT 100 B B

For the example of w = 1 rad/s and B = 10" gauss, the ratio is negligible. Even in the
Earth’s magnetic field, ~ 1 gauss, the ratio would not be appreciable until w ~ 107 rad/s!
Hence, the issue of the microscopic origin of the centripetal force in a spinning conductor is
more of pedagogic than practical interest.

Note. This example is abstracted from the larger topic of unipolar (or homopolar)
induction (Faraday, 1831).* From eq. (1), and also eq. (18), we see that the radial electric
field in the equatorial plane inside the conducting sphere is

wrB

E.(r<a,0=mn/2)=— .

(28)

Hence, there is a voltage difference AV = wBa?/2 between the axis and the equator of the
sphere. If a load resistor R is connected via wires with sliding contacts at the pole and the
equator of the sphere, a current / = AV/R will flow, and power can be extracted from the
system. In this case, there is a torque exerted on the radial current by the magnetic field,

a IB 2
N = / rFy dr—— rdr =~ , (29)
0 2c
and an external source must provide input power,
IBa?
P:Nw:“’2“ = AV, (30)
c

4M. Faraday, Experimental Researches in Electricity, Phil. Trans. Roy. Soc. London 122, 125 (1832),
sec. 4, http://kirkmcd.princeton.edu/examples/EM/faraday_ptrsl_122_125_32.pdf
See also, A.I. Miller, Unipolar Induction: a Case Study of the Interaction between Science and Technology,
Ann. Sci. 38, 155 (1981), http://kirkmcd.princeton.edu/examples/EM/miller_as_38_155_81.pdf



which exactly equals the power dissipated in the load resistor.

This is very reassuring, except we recall the basic consequence of the Lorentz force law,
that magnetic fields do no work.? On reflection, we realize that the torque described
by eq. (29) is on the conduction electrons, and not on the lattice of positive ions, which is
what the outside source makes mechanical contact with. But, because the currents must
flow essentially radially, the lattice must set up azimuthal electric fields to counteract the
azimuthal magnetic force. These electric fields are what do the work.

Note 2. Contemporary interest in this problem is because of its possible relevance to the
difficult question of the magnetism of planets and stars. Two web pages on this intriguing
topic are, http://www-istp.gsfc.nasa.gov/earthmag/dmglist.htm
http://wuw.psc.edu/science/glatzmaier.html
The planetary dynamo problem is an aspect of magnetohydrodynamics. See chap. 18 of,
http://wuw.pma.caltech.edu/Courses/ph136/ph136.html
for an up-to-date introduction to this field.

Note 3. The solution presented here is based on the conventional wisdom that no charge
separation occurs in a spinning object that is in zero external electric and magnetic fields.%
The difficulty in explaining planetary magnetism has led to the conjecture, particularly by
P.M. Blackett in 1947,” that spinning neutral objects can generate magnetic fields without
the presence of internal convective flow. This idea is generally believed to be incorrect, but
still has its enthusiasts (somewhat on the fringes of science).®

Note 4. In a paramagnetic medium there is a small effect whereby rotation induces a
small magnetic field even in the absence of external electric and magnetic fields, as noted
by Barnett.? Paramagnetic materials contain permanent moments whose average alignment
is zero in the absence of an external magnetic field. If a paramagnetic material is placed in
a rotating frame, the Coriolis effect on the molecular currents induces a precession of the
magnetic moments that has the same sense no matter what the orientation of the magnetic
moment. This results in a net effective current in the same sense as the angular velocity of
the body, and hence a net magnetic field. There is an even smaller effect of the same sign
due to the centrifugal force.

Since iron is paramagnetic, this might have some relation to the Earth’s magnetic field,
but Barnett calculated that it would imply a field of about 107!° gauss. Nonetheless, Barnett
was able to detect the effect in spinning iron rods, finding a value close to 1/2 that predicted
by classical theory. Since this work was done the same year as the Einstein-de Haas experi-

5The mantra that “magnetic fields do no work” has limited applicability. See, for example, K.T. Mc-
Donald, Magnetic Forces Can Do Work (April 10, 201),
http://kirkmcd.princeton.edu/examples/disk.pdf
For a subtler example of a motor that involves a conductor rotating in a magnetic field, see K.T. McDonald,
Ball-Bearing Motor (May 17, 2011), http://kirkmcd.princeton.edu/examples/motor.pdf

6 A neutral, conducting spinning body of radius R does develop a tiny charge separation at order w? R?/c.
See, for example, K.T. McDonald, Charged, Conducting, Rotating Sphere (July 22, 2009),
http://kirkmcd.princeton.edu/examples/chargedsphere.pdf

"P.M. Blackett, The Magnetic Field of Massive Rotating Bodies, Nature 159, 658 (1947),
http://kirkmcd.princeton.edu/examples/EM/blackett_nature_159_658_47.pdf

8See, for example, http://mesonpi.cat.cbpf.br/e2006/graduacao/pdf _g2/sirag-vigier3.pdf

9S.J. Barnett, Magnetization by Rotation, Phys. Rev. 6, 239 (1915),
http://kirkmcd.princeton.edu/examples/EM/barnett_pr_6_239_15.pdf



ment,'® which is conceptually related, and the latter claimed to agree with classical theory,

Barnett’s work initially attracted little attention. But Einstein was wrong and Barnett was
right. We now know that paramagnetism in iron is a nonclassical effect, and Barnett should
be credited as having the first experimental result that showed the electron gyromagnetic
ratio to be 2, not 1.

Note 5. For additional discussion of this problem, see P. Lorrain, Electrostatic charges
in v x B fields: the Faraday disk and the rotating sphere, Eur. J. Phys. 11, 94 (1990),
http://kirkmcd.princeton.edu/examples/EM/lorrain_ejp_11_94_90.pdf
P. Lorrain, J. McTavish and F. Lorrain, Magnetic fields in moving conductors: four simple
examples, Eur. J. Phys. 19, 451 (1998),
http://kirkmcd.princeton.edu/examples/EM/lorrain_ejp_19_451_98.pdf

10A. Einstein and W.J. De Haas, Experimental proof of the existence of Ampére’s molecular currents,
Proc. KNAW 18, 696 (1915), http://kirkmcd.princeton.edu/examples/EM/einstein_knawp_181_696_15.pdf
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