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1 Problem

In typical models of classical diamagnetism (see, for example, sec. 34-4 of [1] or sec. 11.5 of
[2]) the change of the magnetic moment of an “atom” is deduced when an external magnetic
field increases “slowly” from 0 to B = B ẑ. The “atom” consists of an electron of charge −e
and mass m that is in a circular orbit of radius r0 in the x-y plane about a “fixed nucleus”
of charge e′ at the origin. It is tacitly assumed that the radius of the orbit remains r0 at
all times, although this is not consistent with the effect of perturbations on motion in a 1/r
potential, even if radiation is ignored (as it must be in any classical model of a stable atom).1

Give a model of classical diamagnetism that includes the (small) effect of changes in the
radius of the orbit as external magnetic field increases. Compare the present case to the
so-called satellite paradox [4, 5, 6]. The latter is that the effect of atmospheric drag on a
satellite in a low orbit about the Earth is to increase the speed of the satellite as it slowly
spirals inwards towards the Earth’s surface.

2 Solution

Aspects of this problem have been discussed in [7].
We suppose that at time t = 0 an external magnetic field, perpendicular to the (x-y)

plane of the electron’s orbit, turns on according to,

B(t) = Ḃ t (t > 0), (1)

where Ḃ is a constant. As a result, an external azimuthal electric field,

Eext(r, t) = −rḂ

2c
φ̂ (t > 0), (2)

is generated according to Faraday’s law (in cylindrical coordinates (r, φ, z) with the “fixed
nucleus” at the origin, and in Gaussian units).2 Then, the external (Lorentz) force on the
electron is,

Fext = −e
(
Eext +

v

c
× Bext

)
=

erḂ

2c
φ̂ − evφB

c
r̂ +

eṙB

c
φ̂, (3)

1Diamagnetism has recently been consider in another type of classical “atom” [3], consisting of an electron
somehow confined to the surface of a sphere.

2Faraday’s law actually only tells us that
∮

Eφ r dφ = −πr2Ḃ/c, so that 〈Eφ〉 = −rḂ/2c where the
average is taken over the orbit. In general, the induced electric field includes another component in the x-y
plane that is essentially uniform over the “atom”, which has the effect of creating a small electric dipole
moment for the “atom” while the magnetic field is changing. We ignore this tiny effect, which in any case
vanishes once the magnetic field takes on a steady, nonzero value.
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where v = ṙ r̂ + rφ̇ φ̂, and we write rφ̇ = vφ. As vφB = vφtḂ, the first and second terms of
eq. (3) are of similar order (and both are small compared to the Coulomb force −ee′ r̂/r2).

We suppose that the change in magnetic field is so slow that the resulting radial velocity ṙ
is negligible compared to the azimuthal velocity vφ; hence, the third term is small compared
to the first and second terms of eq. (3). However, the third term plays a role in insuring that
“a magnetic field does no work”. Thus, during time dt the electron moves distance,

ds = v dt = (ṙ r̂ + rφ̇ φ̂) dt (4)

and the work done on it by the external fields is,

dWext = F · ds = −ev · Eext dt =
er2φ̇Ḃ

2c
dt =

ervφḂ

2c
dt. (5)

The equation of motion for the electron is,

ma = m
(
r̈ − rφ̇

2
)

r̂ + m
(
rφ̈ + 2ṙφ̇

)
φ̂ = −e

(
Etot +

v

c
× Bext

)
= −ee′

r2
r̂ +

erḂ

2c
φ̂ − erφ̇B

c
r̂ +

eṙB

c
φ̂, (6)

For slow changes in the magnetic field we neglect r̈ compared to rφ̇
2
, so the radial equation

of motion can be written as,

mrφ̇
2 ≈ ee′

r2
+

erφ̇B

c
=

mr3
0φ̇

2

0

r2
+

erφ̇B

c
, (7)

where r0 and v0 = r0φ̇0 are the radius and azimuthal velocity, respectively, of the circular
orbit when B = 0.

The azimuthal equation of motion is,

m(rφ̈ + 2ṙφ̇) =
erḂ

2c
+

eṙB

c
. (8)

The terms rφ̈ and ṙφ̇ are of comparable magnitude. Multiplying eq. (8) by r, we can integrate
to find the (mechanical) angular momentum,

Lz = mr2φ̇ = mr2
0φ̇0 +

er2B

2c
. (9)

Using eq. (9) for φ̇ in eq. (7), we find,

r3
0

r3
− r2

0

r2
≈ e2rB2

4m2c2r0φ̇
2

0

. (10)

Assuming a solution of the form r = r0(1 + Δ), we obtain,

r ≈ r0

(
1 − e2B2

4m2c2φ̇
2

0

)
= r0

(
1 − e2r2

0B
2

4m2c2v2
0

)
. (11)
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That the radius r of the perturbed orbit departs from r0 by a term that is second order in
the magnetic field B was mentioned in [7] without a detailed derivation.

Returning to eq. (9), the angular velocity is, to second order in B,

φ̇ ≈ φ̇0 +
eB

2mc
+

e2B2

2m2c2φ̇0

, (12)

and the azimuthal velocity is,

vφ ≈ v0 +
er0B

2mc
+

e2r2
0B

2

2m2c2v0
, (13)

to the same order.
The motion (11)-(13) does not have the character of that in the satellite paradox. For

positive v0, the energy of the classical “atom” is increased by the perturbing magnetic field.
That is, Wext > 0 according to eq. (5), while the radius of the orbit decrease with time
according to eq. (11), and the azimuthal velocity increases according to eq. (13). This is the
behavior for negative, rather than positive, Ẇext in the satellite paradox [4, 5].

To first order in the magnetic field B, eq. (13) is the same as obtained by supposing that
the azimuthal force −eEφ directly affects the azimuthal velocity (i.e., that eq. (8) can be
approximated as v̇φ = er0Ḃ/2mc), in contrast to the case of the satellite paradox where the
change in azimuthal velocity is the negative of the naive expectation [4]. However, eq. (13)
differs in second order from the result of this assumption, as needed to explain the energy
balance to this order (see Appendix A).

Indeed, if one is willing to accept eq. (13) to first order as “obvious”, then the radial
equation of motion can be written as,

mv2
φ

r
≈ ee′

r2
+

evφB

c
=

mr0v
2
0

r2
+

evφB

c
, (14)

which is a quadratic equation in 1/r with the approximate solution,

1

r
≈ 1

r0
− e2r0B

2

4m2c2v2
0

, (15)

which leads to eq. (11) but with the opposite sign for the second term.
Coming at length to the issue of diamagnetism, we note that the orbital angular momen-

tum is,
L = mrvφ ẑ, (16)

The magnetic moment of the system is, following Larmor,

μ = − e

2mc
L = −ervφ

2c
ẑ ≈ −erv0

2c
ẑ− e2r2

0

4mc2
B+

e3r3
0B

2

8m2c3v0
ẑ ≡ μ0+μdiamagnetic+O(B2), (17)

where,

μ0 = −erv0

2c
ẑ, and μdiamagnetic = − e2r2

0

4mc2
B (18)

as in the usual treatments [1, 2] which simply assume that r = r0 always. From eq. (11) we
see that this is a very good assumption within the context of a classical “atom” (so long as
one ignores effects of radiation).
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A Appendix: Energy Balance

The energy of the classical “atom” in a magnetic field B = B(t) ẑ is,3

U =
m(ṙ2 + v2

φ)

2
− ee′

r
. (19)

We ignore the contribution of ṙ to the kinetic energy, and write,

U ≈ mv2
φ

2
− mr0v

2
0

r
≈ mv2

0

2

(
1 +

er0B

mcv0
+

e2r2
0B

2

4m2c2v2
0

)
− mv2

0

(
1 +

e2r2
0B

2

4m2c2v2
0

)

= −mv2
0

2
+

er0v0B

2c
+

e2r2
0B

2

8mc2
(20)

to second order in field strength B. Then, to this order,

U̇ ≈ er0v0Ḃ

2c
+

e2r2
0BḂ

4mc2
=

er0v0Ḃ

2c

(
1 +

er0B

2mcv0

)
≈ ervφḂ

2c
= Ẇext, (21)

recalling eqs. (5) and (13).

B Appendix: Why Doesn’t the Satellite Paradox Hold

for Classical Diamagnetism?

One answer is that “magnetic fields do no work”.
The phenomenon of classical diamagnetism, as described by eqs. (11) and (13), contra-

dicts the claim in [5] that the qualitative behavior seen in the satellite paradox (the velocity
increases as the radius decreases, and vice versa) holds for any perturbation of motion in a
1/r potential. The argument in [5] is based on the claim that all relevant behavior of the
system can be related to its energy, and that changes in the energy are due to the work
done by the perturbing forces. However, since “magnetic fields do no work”, they can lead
to perturbations whose effect is not captured by arguments based on energy.

For completeness, we analyze the satellite paradox in a manner similar to that given in
sec. 2.

Suppose the external force is purely a drag force,

Fext = −Cvp v ≈ −Cvp
φ(ṙ r̂ + vφ φ̂), (22)

where p is a small non-negative number, perhaps 0 or 1, and C is the drag coefficient. Unlike
the case of an “atom” in an external magnetic field, it suffices to consider only the case that
vφ is positive.

3Note that the energy, −μ · B = ervB/2c ≈ er0v0B/2c, of the magnetic moment μ in the external
magnetic field B is already contained in the microscopic energy expression (19), which is also the energy in
the Darwin approximation (see, for example, eq. (22) of [8]).
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We again neglect r̈ compared to rφ̇
2

in the radial equation of motion,

φ̇
2 ≈ φ̇

2

0r
3
0

r3
− Cṙvp

φ

mr
, or v2

φ ≈ v2
0r0

r
− Crṙvp

φ

m
, (23)

where v0 is the azimuthal velocity of the (nearly) circular orbit at some reference radius r0.
The effect of the drag force is to decrease r, so that ṙ is negative, and eq. (23) tells us that
vφ > v0 for all r < r0. Thus, the radial equation of motion contains the qualitative nature
of the satellite paradox, that the drag force increases the azimuthal velocity, rather than
reducing it.

In the first approximation, we ignore the small radial component of the drag force, so
that,

φ̇
2 ≈ φ̇

2

0r
3
0

r3
, and vφ ≈ v0

(r0

r

)1/2

. (24)

The azimuthal equation of motion is,

rφ̈ + 2ṙφ̇ = −Cr1+pφ̇
1+p

m
. (25)

An analytic solution is especially simple for p = 0 (drag force proportional to velocity).4

As before, we use the derivative of the result (24) of the radial equation in the azimuthal
equation (25) to find,

ṙ = −2C

m
r, (26)

and hence
r = r0e

−2Ct/m. (27)

Thus, using eq. (24),
vφ = v0e

Ct/m. (28)

In contrast, the radius (11) of the classical “atom” in an external magnetic field decreases
as the field increases whether the azimuthal force applies a drag or a boost! Furthermore,
when the azimuthal force on the classical “atom” is a drag the azimuthal velocity decreases
in magnitude,5 and increases when the force is a boost.

C Appendix: Adiabatic Invariance

A more formal approach to the problem of classical diamagnetism can be based on the
(nonrelativistic) Lagrangian,6

L =
mv2

2
− e

v

c
· A + eV =

m(ṙ2 + r2φ̇
2
)

2
− er2φ̇B(t)

2c
+

ee′

r
, (29)

4An analytic solution is also possible for the case of p = −1, i.e., for a constant drag force [6].
5See sec. 2.1 of [9].
6In the present example the term −ev ·A/c can be rewritten as μ ·B, where μ is the (orbital) magnetic

moment.
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for the electron (of charge −e) in the Coulomb potential V = e′/r of the nucleus and the
external magnetic field B(t) = B ẑ = ∇ × A where A = rB φ̂/2. As the Lagrangian (29)
does not depend on coordinate φ, the canonical momentum pφ is conserved, and we identify
this as the z component of the canonical angular momentum,

lz = pφ =
∂L
∂φ̇

= mr2φ̇ − er2B

2c
= Lz − er2B

2c
= L0 = mr0v0 , (30)

where Lz = mr2φ̇ is the mechanical angular momentum about the z axis. Thus,

φ̇ =
L2

0

mr2
+

eB

2mc
, (31)

where eB(t)/2mc is the cyclotron (Larmor) frequency.
The radial equation of motion is,

mr̈ = mrφ̇
2 − erφ̇B

c
− ee′

r2
=

L2
0

mr3
− e2rB2

4mc2
− L2

0

mr0r2
≡ −∂Ueff

∂r
, (32)

where we note that ee′ = L2
0/mr0 for the initial circular orbit. The effective radial potential

Ueff is,

Ueff(r, t) =
L2

0

2mr2
+

e2r2B2

8mc2
− L2

0

mr0r
. (33)

However, the problem is not one of small oscillations about a fixed minimum of the effective
potential. Rather, we suppose that the orbit at time t is nearly circular with radius r(t) such
that the effective potential is minimum at this time. That is, we set eq. (32) to zero, which
leads again to eq. (10), to the solutions (11)-(13) and to the magnetic moment (18).

We have found one invariant in this problem, the canonical angular momentum lz of
eq. (30). Because this remains constant during changes in the magnetic field, whether
these are adiabatic or not, we can certainly identify the canonical angular momentum as
an adiabatic invariant. We could define the canonical magnetic moment μC as,

μC = − e

2mc
lz = μz +

e2r2B2

2m2c2
≈ μz +

e2r2
0B

2

2m2c2
, (34)

which is also an adiabatic invariant. However, the ordinary magnetic moment μz is not an
adiabatic invariant in this problem.

We can compare the present case of a classical “atom” to that of an electron in a uniform
magnetic field. For bound motion in the latter case we cannot begin with zero magnetic
field, but we suppose instead that B = B0 ẑ at time t = 0.

Then, the Lagrangian is obtained from eq. (29) by setting e′ = 0. The canonical angu-
lar momentum (30) is again (an adiabatic) invariant, while the radial equation of motion
simplifies to mr2φ̇ = er2B/c for slow changes in the magnetic field B. Hence, the canonical
angular momentum lz can be written as,

lz = mr2φ̇ − er2B

2c
=

er2B

2c
=

Lz

2
, (35)
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and the canonical magnetic moment is,

μC = − e

2mc
lz =

μz

2
. (36)

In this case the ordinary magnetic moment μz is also an adiabatic invariant. However,
most discussions of the motion of charged particles in slowly varying magnetic fields do not
emphasize that the ordinary magnetic moment is (somewhat accidentally) twice the invariant
canonical magnetic moment, which may leave a misimpression as to the (non)invariance of
the ordinary magnetic moment in other circumstances.

Acknowledgment

Thanks to Vladimir Onoochin for drawing the author’s attention to this problem, and to
Vladimr Hnizdo and Dmitry Peregoudov for e-discussions of it.

References

[1] R.P. Feynman, R.B. Leighton and M. Sands, The Feynman Lectures on Physics, Vol. 2
(Addison-Wesley, 1964), http://www.feynmanlectures.caltech.edu/II_34.html

[2] E.M. Purcell, Electricity and Magnetism, 2nd ed. (McGraw-Hill, 1985),
http://kirkmcd.princeton.edu/examples/EM/purcell_em_85.pdf

[3] On Non-zero Classical Diamagnetism: A Surprise, N. Kumar and K.V. Kumar (Nov.
20, 2008), http://kirkmcd.princeton.edu/examples/EM/kumar_physics-class-ph-0811-3071.pdf

[4] B.D. Mills, Jr., Satellite Paradox, Am. J. Phys. 27, 115 (1959),
http://kirkmcd.princeton.edu/examples/mechanics/mills_ajp_27_115_59.pdf

[5] L. Blitzer, Satellite Orbit Paradox: A General View, Am. J. Phys. 39, 882 (1971),
http://kirkmcd.princeton.edu/examples/mechanics/blitzer_ajp_39_882_71.pdf

[6] F.P.J. Rimrott and F.A. Salustri, Open Orbits in Satellite Dynamics, Tech. Mech. 21,
207 (2001), http://kirkmcd.princeton.edu/examples/mechanics/rimrott_tm_21_207_01.pdf

[7] S.L. O’Dell and R.K.P. Zia, Classical and semiclassical diamagnetism: A critique of
treatment in elementary texts, Am. J. Phys. 54, 32 (1986),
http://kirkmcd.princeton.edu/examples/EM/odell_ajp_54_32_86.pdf

[8] K.T. McDonald, Darwin Energy Paradoxes (Oct. 29, 2008),
http://kirkmcd.princeton.edu/examples/darwin.pdf

[9] J.D. Olsen and K.T. McDonald, Classical Lifetime of a Bohr Atom (Mar. 7, 2005),
http://kirkmcd.princeton.edu/examples/orbitdecay.pdf

7


