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1 Problem

Show that a distortionless electromagnetic pulse (a soliton) can propagate with its magnetic
field at right angles to a steady magnetic field that is applied to a magnetic medium, the
direction of propagation being perpendicular to both of these fields.

Deduce the equations of motion for the magnetization M = Nm of a medium that
consists of N permanent dipoles m (with angular momentum L = Γm) per unit volume
when the medium is immersed in a magnetic field B. Consider the specific example of a
static magnetic field B0x̂ and a pulse By(z − vt)ŷ.

The physical picture is that the magnetic field By of the pulse precesses the dipoles in the
x-z plane by exactly 360◦ as the pulse passes, restoring the medium to its initial condition
– in which the dipoles are lined up with the static field B0x̂.

The solution can be deduced considering the pulse area function defined by,

A(z, t) = Γ

∫ t

−∞
By(z, t′) dt′. (1)

Show that if B0 = 0 then a formal solution for the behavior of the medium is Mx = M0 cos A,
Mz = M0 sinA, supposing that Mx(t = −∞) = M0, and Mz(t = −∞) = 0 (even though Bx

has been temporarily set to 0).
Generalize this solution to the case of nonzero B0 (nonzero ω0 ≡ ΓB0) by supposing that

Mz = F (ω0)M0 sinA where F (0) = 1 and Mx = M0[F (ω0)(cos A − 1) + 1], where the latter
form preserves the condition that Mx = M0 when A = 0. Show that the equations of motion
for the magnetization imply that area function obeys the Mathieu equation,

Ä =
1

τ 2
sinA, (2)

where the function F is given by,

F (ω0) =
1

1 + ω2
0τ

2
, (3)

in terms of a constant τ that will prove to be a measure of the pulse width.
Solve eq. (2) by multiplying by Ȧ, etc., to show that a pulse solution with velocity v is,

A = 4 tan−1[e(t−z/v)/τ ], (4)

and the corresponding magnetic field pulse is,

By =
2

Γτ
sech

(
t − z/v

τ

)
. (5)

Also, give expressions for the components of the magnetization M(t).
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2 Solution

The phenomenon of self-induced transparency for electromagnetic pulses in a magnetic
medium was first analyzed and demonstrated in the laboratory by McCall and Hahn [1].
See also [2].

As in the related problem of wave amplification in a magnetic medium [3], we note that
when a magnetic dipole m is subject to a magnetic field B it experiences a torque m × B
that precesses the angular momentum L = m/Γ, where Γ = m/L is the gryomagnetic ratio
of the dipole. If the magnetic dipoles are electrons, then Γ = e/2mec ≈ 107 Hz/gauss, where
e and me are the charge and mass of the electron, and c is the speed of light. Thus,

m × B =
dL

dt
=

1

Γ

dm

dt
. (6)

The equation of motion of a single moment is,

dm

dt
= Γm × B, (7)

so the equation of motion for the magnetization M = Nm is therefore,

dM

dt
= ΓM ×B. (8)

For a magnetic field Bxx̂ + By(t)ŷ, the components of eq. (8) are,

dMx

dt
= −ΓByMz , (9)

dMy

dt
= ΓBxMz ≡ ω0Mz (10)

dMz

dt
= Γ(ByMx − BxMy) = ΓByMx − ω0My, (11)

where ω0 ≡ ΓBx.
The hint is to consider the pulse area function,

A(z, t) = Γ

∫ t

−∞
By(z, t′) dt′, (12)

whose time derivatives are,
Ȧ = ΓBy, Ä = ΓḂy. (13)

First we consider the case that ω0 = 0, for which the equations of motion (9)-(11) reduce
to,

Ṁx = −ΓByMz, My = const., Ṁz = ΓByMx. (14)

We readily find two solutions for Mx and Mz,

Mx = M0 sinA, Mz = −M0 cos A, (15)
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and,
Mx = M0 cos A, Mz = M0 sin A. (16)

We seek a pulse solution for By, so A(z, t = −∞) = 0 for any finite z, with the initial (and
final) condition that the magnetization is aligned along the x axis, i.e., Mx(t = −∞) = M0

and Mz(t = −∞) = 0. Clearly, the solution (16) is of the desired character.
Turning to the case of nonzero B0, i.e., nonzero ω0, we extrapolate solution (16) by

supposing that,
Mz = F (ω0)M0 sinA, (17)

where F (0) = 1. A related trial solution for Mx is,

Mx = M0[F (ω0)(cos A − 1) + 1], (18)

which preserves the initial condition that Mx(t = −∞) = M0.
To verify these trial solutions, we differentiate eq. (11) and combine with eqs. (9)-(10)

and (13),

M̈z = ΓḂyMx + ΓByṀx − ω0Ṁy = ÄMx − Γ2B2
yMz − ω2

0Mz

= M0Ä[F (cosA − 1) + 1] − M0Ȧ
2F sinA − M0ω

2
0F sinA. (19)

But also,

M̈z =
d2

dt2
(FM0 sinA) =

d

dt
(FM0Ȧ cos A) = FM0Ä cos A − FM0Ȧ

2 sinA. (20)

Combing eqs. (19) and (20) we find,

Ä =
ω2

0F

1 − F
sinA =

1

τ2
sin A, (21)

where the constant τ is defined by,

1

τ 2
=

ω2
0F

1 − F
, and so F (ω0) =

1

1 + ω2
0τ

2
, (22)

which obeys F (0) = 1 as required.
It turns out that we do not need the most general solution of the Mathieu equation (21).

It suffices to use the particular solution found on multiplying eq. (21) by Ȧ,

ȦÄ =
1

τ 2
Ȧ sinA, (23)

which integrates to,
Ȧ2

2
= K − cos A

τ 2
. (24)

The pulse area A and its time derivative vanish at t = −∞ for any finite z, so the constant
of integration is K = 1/τ 2. Thus,

Ȧ2

2
=

1 − cos A

τ 2
=

2

τ 2
sin2 A

2
. (25)
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Taking the square root, we have,
Ȧ

2
=

1

τ
sin

A

2
, (26)

or,
d(A/2)

sin(A/2)
=

dt

τ
, (27)

which integrates to,

ln[tan(A/4)] =
t

τ
+ K. (28)

A clever trick is to evaluate the integration constant K at the time t0(z) such that half
the pulse has arrived at position z: A(t0) = Amax/2. If we define Amax to be 2π, a compact
solution is obtained. Thus,

A(t0) = π, tan
A(t0)

4
= 1, (29)

ln[tan(A(t0)/4)] = 0 =
t0
τ

+ K, (30)

so K = −t0/τ . The solution (30) is now,

ln[tan(A/4)] =
t− t0

τ
, (31)

so,

tan
A

4
= e(t−t0)/τ , (32)

and,
A = 4 tan−1[e(t−t0)/τ ]. (33)

Since we desire a solution that describes a traveling pulse with velocity v, we identify t0 at
point z as z/v, and write,

A = 4 tan−1 f, with f = e(t−z/v)/τ . (34)

We see that τ is the characteristic width of the pulse (although this is even clearer once we
have deduced eq. (45).)

To evaluate the components of the magnetization M, we need explicit forms for sinA
and cosA, which will also permit a confirmation that the solution (34) satisfies the Mathieu
equation (21).

Since tan(A/4) = f , we have,

cos2 A

4
=

1

1 + f2
, and sin2 A

4
=

f2

1 + f2
. (35)

Then,

sinA = 2 sin
A

2
cos

A

2
= 4 sin

A

4
cos

A

4

(
cos2 A

4
− sin2 A

4

)

= 4

√
f2

1 + f2
· 1

1 + f2

(
1 − f2

1 + f2

)
= 4

f(1 − f2)

(1 + f2)2
= 4

1
f
− f

( 1
f

+ f)2

= −2 tanh

(
t− z/v

τ

)
sech

(
t − z/v

τ

)
. (36)
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Likewise,

cos A = 1 − 2 sin2 A

2
= 1 − 8 sin2 A

4
cos2 A

4
= 1 − 8f2

(1 + f2)2
= 1 − 8

( 1
f

+ f)2

= 1 − 2 sech2

(
t − z/v

τ

)
. (37)

Also,

Ȧ =
4

1 + f2
ḟ =

4

τ

f

1 + f2
=

4

τ

1
1
f

+ f
=

2

τ
sech

(
t − z/v

τ

)
, (38)

noting that ḟ = f/τ . Hence,

Ä =
4

τ

(
ḟ

1 + f2
− 2f2ḟ

(1 + f2)2

)
=

4

τ 2

f(1 − f2)

(1 + f2)2
=

sinA

τ 2
, (39)

in agreement with eq. (21).
The components of the time-dependent magnetization are obtained as follows:

Mx

M0
= 1 + F (cosA − 1) = 1 − 2F sech2

(
t − z/v

τ

)
. (40)

We see that Mx(t = +∞) = 1, and Mx(0) ≈ −1 for ω0τ � 1 (F ≈ 1).

Mz

M0
= F sinA = −2F tanh

(
t − z/v

τ

)
sech

(
t− z/v

τ

)
. (41)

In the limit that ω0τ � 1 (F ≈ 1), we have,

M2
x + M2

z

M2
0

≈ 1 − 4 sech2

(
t− z/v

τ

)
+ 4 sech4

(
t − z/v

τ

)

+ 4 tanh2

(
t− z/v

τ

)
sech2

(
t− z/v

τ

)
= 1. (42)

The behavior of the magnetization in the x-z plane is essentially a single revolution about
the y axis, beginning and ending with Mx = M0, Mz = 0, and with Mx = −M0 at the
position of the peak of the traveling pulse.

To find My we use eq. (11) for Ṁz together with eqs. (13), (17)-(18), (22) and (38):

ω0My = ΓByMx − Ṁz = ΓByM0[1 + F (cosA − 1)] − FȦ cosA = ΓByM0(1 − F )

= ΓByω
2
0τ

2FM0 = ω2
0τ

2FM0Ȧ = 2ω2
0τFM0 sech

(
t − z/v

τ

)
. (43)

Thus,

My = 2ω0τFM0 sech

(
t− z/v

τ

)
, (44)
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and,

By =
My

Γω0τ 2FM0
=

2

Γτ
sech

(
t − z/v

τ

)
=

2B0

ω0τ
sech

(
t− z/v

τ

)
. (45)

This hyperbolic secant pulse propagates without distortion or attenuation, with the leading
“edge” of the pulse putting energy into the medium by flipping the magnetic dipoles, and
the trailing edge of the pulse extracting the same energy by flipping the dipoles back to their
original position.

Since My is proportional to By, we see that the equations of motion (9)-(11) are nonlinear.
The pulse height of the soliton wave (45) cannot be chosen arbitrarily, as in linear wave
propagation, but must be inversely proportional to the pulsewidth τ . In the intersting limit
that ω0τ � 1, i.e., where the pulse width is short compared to the Larmor precession period,
the peak field strength of the pulse is large compared to the static field B0 although the wave
magnetization My is small compared to M0.

From Faraday’s law, we deduce that the electric field of the pulse is in the x direction,
with,

Ex =
v

c
By. (46)

Taking the curl of the fourth Maxwell equation (assuming the medium to have dielectric
constant ε = 1), we find,

∇2H −∇(∇ · H) =
1

c2

∂2B

∂t2
. (47)

Since,

Hy = By − 4πMy = (1 − 4πΓω0τ
2FM0)By =

(
1 − 4πω2

0τ
2F

M0

B0

)
By, (48)

the y component of eq. (47) tells us that,

v

c
=

√
1 − 4πω2

0τ
2F

M0

B0
. (49)

The ratio of M0 to B0 in a magnetic medium can be as large as the effective permeability,
i.e., of order 103. In practice, not only is ω0τ � 1, but also ω2

0τ
2M0/B0 � 1, so the soliton

velocity v is approximately c.

References

[1] S.L. McCall and E.L. Hahn, Self-Induced Transparency by Pulsed Coherent Light, Phys.
Rev. Lett. 18, 908 (1967),
http://kirkmcd.princeton.edu/examples/optics/mccall_prl_18_908_67.pdf Pulse-Area-
Pulse-Energy Description of a Traveling-Wave Laser Amplifier, Phys. Rev. A 2, 861
(1970), http://kirkmcd.princeton.edu/examples/optics/mccall_pra_2_861_70.pdf

[2] G.L. Lamb, Jr, Analytical Descriptions of Ultrashort Optical Pulse Propagation in a
Resonant Medium, Rev. Mod. Phys. 43, 99 (1971),
http://kirkmcd.princeton.edu/examples/optics/lamb_rmp_43_99_71.pdf

6



[3] K.T. McDonald, Wave Amplification in a Magnetic Medium (May 1, 1979),
http://kirkmcd.princeton.edu/examples/magnetic_waves.pdf

7


