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1 Problem

Discuss the motion of a “slab” that rolls without slipping on a “cylinder”, when the latter
rolls without slipping on a horizontal plane.1

This problem was suggested by Alexandre Tort. For the related case of one cylinder
on/inside another, see [1, 2]. For the case of a sphere on a fixed cylinder, see pp. 212-214 of
[3].2

2 Solution

We will use a Lagrangian approach.

2.1 Coordinates and Constraints

When the slab, of thickness 2a, mass m and moment of inertia kma2, is directly above
the cylinder, of radius R, mass M and moment of inertia KMR2, and centered upon it,
we define the line of contact of the cylinder with the horizontal plane to be the z-axis, at
x = y = 0. Then, the condition of rolling without slipping for the cylinder is that when it has
rolled (positive) distance X, the initial line of contact has rotated through angle φ = X/R,
clockwise with respect to the vertical, as shown in the figure below. This rolling constraint
can be written as,

X = Rφ. (1)

1Either the “slab” or the “cylinder” (but not both) could have a very large moment of inertia if it is in
the form of a “bobbin” with flanges that extend beyond the supporting surface.

2The author’s interest in such problems was inspired in part by Bob Dylan: “It balances on your head
just like a mattress balances on a bottle of wine.” (Leopardskin Pill-Box Hat, 1966).
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If the slab rolls without slipping such that a line (in the x-y plane) from the center of
the cylinder to the point of contact with the slab angle θ (positive clockwise) to the vertical,
then the initial point of contact of the slab is at distance b from the original point, and the
initial point of contact of the cylinder has rotated by angle φ. The second rolling constraint
is that distance b on the slab equals arc length R(φ − θ) on the cylinder,

b = R(φ − θ) . (2)

The vertical center of the cylinder is at Y = R, and the center of the slab is at,

x = X + (a + R) sin θ + R(φ − θ) cos θ], y = R + (a + R) cos θ − R(φ − θ) sin θ. (3)

Altogether there are 4 constraints on the 6 degree of freedom (x, y, X, Y , φ, θ), of the
two-dimensional motion of the system, such that there are only two independent degrees of
freedom, which we take to be the angles φ and θ.

2.2 Energy

The total energy E = T + V is conserved, where the potential energy V (taken to be zero
when φ = φ0 and θ = θ0),

V = mg(y − y0) = mg{(a + R)(cos θ − cos θ0) − R[(φ − θ) sin θ − (φ0 − θ0) sin θ0]}, (4)

depends on both coordinates φ and θ.3

The kinetic energy of cylinder, whose axis is at (X, Y ), is,

Tcyl =
MẊ2

2
+

Icyl φ̇

2
=

1 + K

2
MR2φ̇

2
, (5)

using the rolling constraint (1) and the expression Icyl = KMR2 for the moment of inertia
Icyl in terms of parameter K.

The kinetic energy of the slab, whose axis is at (x, y), is, using Islab = kma2,

Tslab =
m(ẋ2 + ẏ2)

2
+

Islab θ̇
2

2
=

m(ẋ2 + ẏ2)

2
+

kma2 θ̇
2

2
. (6)

From eq. (3) we have,

ẋ = (a + R) cos θ θ̇ − R(φ − θ) sin θ θ̇ + R(φ̇ − θ̇) cos θ, (7)

ẏ = −(a + R) sin θ θ̇ − R(φ − θ) cos θ θ̇ −R(φ̇ − θ̇) sin θ, (8)

so the kinetic energy of the slab can be written as,

Tslab =
m

2

[
(a + R)2 θ̇

2
+ R2(φ − θ)2 θ̇

2
+ R2(φ̇ − θ̇)2 + 2R(a + R) θ̇(φ̇ − θ̇)

]
+

kma2 θ̇
2

2

=
m

2

[
(1 + k)a2θ̇

2
+ R2(φ − θ)2 θ̇

2
+ 2aR θ̇ φ̇ + R2φ̇

2
]
. (9)

The total kinetic energy Tcyl + Tslab is,

T =
[m + (1 + K)M ]R2

2
φ̇

2
+ maR φ̇ θ̇ +

(1 + k)ma2 + mR2(φ− θ)2

2
θ̇

2
. (10)

3This contrasts with the case of a cylinder rolling on/inside another cylinder [1, 2], where the potential
energy does not depend on φ, such that there is a second conserved quantity for the system.
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2.3 Equations of Motion

2.3.1 φ

The φ-equation for the Lagrangian L = T − V is,

d

dt

∂L
∂φ̇

= [m + (1 + K)M ]R2 φ̈ + maR θ̈ =
∂L
∂φ

= mgR sin θ. (11)

2.3.2 θ

The θ-equation can be written as,

1

m

d

dt

∂L
∂θ̇

= aR φ̈ +
[
(1 + k)a2 + R2(φ − θ)2

]
θ̈ + 2R2(φ− θ)(φ̇ − θ̇) θ̇

=
1

m

∂L
∂θ

= g [(a + R) sin θ + R(φ − θ) cos θ − R sin θ]

= g [a sin θ + R(φ − θ) cos θ] . (12)

2.4 φ = φ0 = Constant

Before discussing the general case, we consider the special case that the cylinder is fixed, but
the initial angle φ0 in not necessarily zero.

Then, the φ-equation of motion (11) is to be ignored, and the θ-equation (12) becomes,

[
(1 + k)a2 + R2(φ0 − θ)2

]
θ̈ − 2R2(φ0 − θ) θ̇

2
= g [a sin θ + R(φ0 − θ) cos θ] . (13)

The potential energy (4) becomes,

V

m
= g{(a + R)(cos θ − cos θ0) − R[(φ0 − θ) sin θ − (φ0 − θ0) sin θ0]}, (14)

the kinetic energy (10) becomes,

T

m
=

(1 + k)a2 + R2(φ0 − θ)2

2
θ̇

2
, (15)

and the total energy becomes,

E

m
=

(1 + k)a2 + R2(φ0 − θ0)
2

2
θ̇

2

0 =
(1 + k)a2 + R2(φ0 − θ)2

2
θ̇

2

+g{(a + R)(cos θ − cos θ0) − R[(φ0 − θ) sin θ − (φ0 − θ0) sin θ0]}. (16)

2.4.1 Small Oscillations

We first seek an oscillatory solution, of the form,

θ = θ0 + α eiωt, θ̇ = iαω eiωt, θ̈ = −αω2 eiωt, (17)
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where α is small. Using this trial solution in eq. (13), and keeping terms only to order α, we
have,

sin θ ≈ sin θ0 + αeiωt cos θ0, cos θ ≈ cos θ0 − αeiωt sin θ0, (18)

−αω2
[
(1 + k)a2 + R2(φ0 − θ0)

2
]

eiωt

≈ g
[
a

(
sin θ0 + α eiωt cos θ0

)
+ R(φ0 − θ0 − α eiωt)

(
cos θ0 − αeiωt sin θ0

)]
(19)

≈ g [a sin θ0 + R(φ0 − θ0) cos θ0] + αg [a cos θ0 − R(φ0 − θ0) sin θ0 − R cos θ0] eiωt.

The constant term must be zero, which tells us that,

tan θ0 =
R

a
(θ0 − φ0) = −b0

a
, (20)

recalling eq. (2).
The terms in αeiωt must be the same on both sides of eq. (19), which tells us that the

angular frequency ω of small oscillations is related by,

ω =

√
g{R[cos θ0 − (θ0 − φ0) sin θ0] − a cos θ0}

(1 + k)a2 + R2(φ0 − θ0)2
=

√
g(R cos θ0 − a/ cos θ0)

a2(1 + k + tan2 θ0)
. (21)

Oscillatory solutions exist only for,

R >
a

cos2 θ0
, cos θ0 <

√
a

R
, (22)

which always requires that R > a.
In particular, ω =

√
g(R − a)/a2(1 + k) for φ0 = 0 = θ0. For this case, the constant

energy is,

E

m
=

(1 + k)a2

2
θ̇

2

0 =
(1 + k)a2

2
θ̇

2 − g(a + R)(1 − cos θ), (23)

and we record the full equation of motion,[
(1 + k)a2 + R2 θ2

]
θ̈ + 2R2 θ) θ̇

2
= g [a sin θ −R θ cos θ] . (24)

For reference, we also record that in this case,

θ̇
2

= θ̇
2

0 +
2g(a + R)(1 − cos θ)

(1 + k)a2
, (25)

[
(1 + k)a2 + R2 θ2

]
θ̈ = g(a sin θ − R θ cos θ) − 2R2 θ

(
θ̇

2

0 +
2g(a + R)(1 − cos θ)

(1 + k)a2

)
.(26)

For a solid slab of half width c, k = (1 + c2/a2)/3, so for φ0 = 0 = θ0,

ω =

√
3g(R − a)

4a2 + c2

solid−→
cube

√
3g(R − a)

5a2
. (27)

Note that it is possible to have small oscillations about a nonzero value of θ0, if the slab
is appropriately off center with respect to the initial point of contact with the cylinder. For
example, a cube of half length a = R/2 would oscillate about an initial configuration with

b0 = −√
3R/6, θ0 = 30◦ and φ0 = 15◦ at angular frequency ω =

√
2g/

√
3R = 1.075

√
g/R.

This is about 2% less than the angular frequency ω =
√

6g/5R = 1.095
√

g/R for θ0 = 0.
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2.4.2 Angle θs at which the Slab Falls off the Cylinder

As the slab rotates it may lose contact with (separate from) the cylinder, say at angle θs.
This happens when the normal force N12 of the cylinder on the slab vanishes, which

occurs when the component of the gravitational force mg equals the component of ma along
an axis that makes angle θs to the vertical,

mg cos θs = m(−ẍs sin θs − ÿs cos θs). (28)

From eqs. (7)-(8), we find,

ẍ = (a + R)(cos θ θ̈ − sin θ θ̇
2
) − R[(φ − θ)(sin θ θ̈ + cos θ θ̇

2
) + sin θ θ̇(φ̇ − θ̇)]

+R[cos θ(φ̈− θ̈) − sin θ θ̇(φ̇ − θ̇)], (29)

ÿ = −(a + R)(sin θ θ̈ + cos θ θ̇
2
) − R[(φ − θ)(cos θ θ̈ − sin θ θ̇

2
) + cos θ θ̇(φ̇ − θ̇)]

−R[sin θ(φ̈ − θ̈) + cos θ θ̇(φ̇ − θ̇)], (30)

ẍ sin θ + ÿ cos θ = −(a + R) θ̇
2 − R[(φ − θ) θ̈ + θ̇(φ̇− θ̇)] − R θ̇(φ̇ − θ̇)

= −R(φ − θ) θ̈ + (R − a) θ̇
2 − 2R φ̇ θ̇. (31)

For constant angle φ0, the relation (28) becomes,

g cos θs = R(φ0 − θs) θ̈s − (R − a) θ̇
2

s. (32)

Equations (13) and (16) can be used in eq. (32) to determine θ̈s and θ̇s, but the resulting
expression is lengthy. Even for the particular case that φ0 = 0 = θ0, the resulting expression
for θs is complicated,

g cos θs =
R θs

(1 + k)a2 + R2 θ2
s

[
2R2 θs

(
θ̇

2

0 +
2g(a + R)(1 − cos θs)

(1 + k)a2
+ g(R θs cos θs − a sin θs)

)]

−(R − a)

(
θ̇

2

0 +
2g(a + R)(1 − cos θs)

(1 + k)a2

)
. (33)

One conclusion that can be drawn is that for R � a the (thin) slab will not fall off the
(large) cylinder (which is perhaps obvious without the preceding analysis).
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2.5 Both φ and θ Vary

2.5.1 Coupled Oscillations

We first consider the possibility of small, coupled oscillations in both φ and θ, with equilib-
rium angles φ0 and θ0.

We seek an oscillatory solution of the form (17)-(18) for θ, and,

φ = φ0 + β eiωt, (34)

where β is small, for φ. To use these trial solutions in eqs. (11)-(12), we have in addition to
eq. (18) that,

sin φ ≈ sinφ0 + β eiωt cosφ0, cos φ ≈ cos φ0 − β eiωt sinφ0. (35)

Then, keeping terms only that are constant or proportional to eiωt,4 the θ-equation of motion
(12) becomes,

−ω2βaR eiωt − ω2α eiωt
[
(1 + k)a2 + R2(φ0 − θ0)

2
]

≈ g
{
a(sin θ0 + α eiωt cos θ0) + R[φ0 − θ0 + (β − α) eiωt](cos θ0 − α eiωt sin θ0)

}
. (36)

The constant term in eq. (36) must be zero, which again tells us that,

tan θ0 =
R

a
(θ0 − φ0) = −b0

a
. (37)

The terms in eiωt must be the same on both sides of eq. (36), which tells us that,

ω2
[
βaR + α(1 + k)a2 + αR2(φ0 − θ0)

2
]

= g {R[(α − β) cos θ0 − α(θ0 − φ0) sin θ0] − αa cos θ0}
= g [R(α − β) cos θ0 − αa/ cos θ0] . (38)

To go further, we now consider the φ-equation (11),

− ω2 eiωt
{
β[m + (1 + K)M ]R2 + αmaR

} ≈ mgR(sin θ0 + αeiωt cos θ0). (39)

The constant term in eq. (39) must vanish, which implies that coupled oscillations are only
possible for θ0 = 0. Then, from eq. (37) we have that φ0 = b0 also, and eq. (38) becomes

ω2
[
βaR + α(1 + k)a2

]
= g [R(α − β) − αa] . (40)

In addition, the terms in eiωt on the left and right sides of eq. (39) must be the same, which
implies that,

− ω2
{
β[m + (1 + K)M ]R2 + αmaR

}
= αmgR. (41)

This condition cannot be satisfied, so there is no coupled oscillatory motion when the
cylinder is free to roll; it will always roll out from under the slab, which rotates until it
falls off the cylinder at some angle θs of separation. An analysis of angle θs could be given
via an extension of the discussion in sec. 2.4.2, but we will not pursue this here.

4We will not consider terms in e2iωt since the approximations (18) and (35) have omitted terms of this
type.
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2.5.2 Small Oscillations of the Slab

We next consider the possibility that as the cylinder rolls the slab executes small oscillatory
motion in θ, with an angular frequency that varies “slowly” with time. In the “instantaneous”
approximation, the angular frequency ω(t) is just that associated with that found in sec. 2.4
for φ0 = φ(t).

It does not appear that analytic techniques are especially helpful in the next approxima-
tion, such that it is best to use numerical integration of the equations of motion (11)-(12)
to carry the discussion further.
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