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1 Problem

A space probe is launched from Earth into a transfer orbit whose maximum radius b is
slightly larger than the distance from the Sun to, say, Mars. The launch time is such that
when the probe reaches radius b it has a near collision with Mars, which deflects the velocity
of the probe by ≈ 180◦ with respect to Mars,1 which gives an outward boost to the velocity
of the probe with respect to the Sun.

What is the largest distance from the Sun to which the probe can now travel?
As an intermediate step, calculate such parameters of the transfer orbit as its eccentricity

ε, characteristic radius r0, energy E, angular momentum L, and the maximum and minimum
velocities va and vb.

You may make the approximations that the orbits of Earth and Mars are circular with
radii a and b, respectively, that the masses of Earth and Mars do not affect the transfer orbit
between the two planets, that the mass of the Earth and Sun can be ignored during the near
collision between the probe and Mars, and that the masses of Earth and Mars can again be
ignored after the near collision.

1The utility of considering the near collision in the rest frame of “Mars” may have been first emphasized
in [1]. See also [2].

1



You may also ignore the complication that the distance of closest approach needed for
Mars to deflect the probe by 180◦ is less than its radius.

Calculate the velocity v0 relative to the Earth needed to launch the probe into the transfer
orbit, assuming v0 is parallel to vE, the velocity of the Earth with respect to the Sun.
Compare v0 with the escape velocity ve for the probe from both the Earth and Sun, assuming
that ve is also parallel to vE.

2 Solution

This problem is an example of a 4-body gravitational interaction. An amusing web site on
the n-body problem is http://www.soe.ucsc.edu/~charlie/3body/. See also [3].2

2.1 Solution Assuming that Mars is a Point Mass

Once we know the (purely azimuthal) velocity v′b of the probe after its near collision with
Mars at radius b, we can calculate the maximum distance rmax between the probe and the
Sun according to conservation of angular momentum (about the Sun) and energy (in the
approximation that Earth and Mars can be ignored after the near collision),

bv′b = rmaxvmin, −GM�
rmax

+
v2

min
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2
, (1)

2Oct. 17, 2019: Other pedagogic discussions of the slingshot effect in unpowered spaceflight include [4]-
[8]. This is distinct from the Oberth effect [9]-[11] in which a rocket pulse is more effective if it occurs when
the rocket is in a region of low gravitational potential.

Reviews of the technical literature include [12]-[14].
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The velocity v′b is the result of the elastic collision with Mars in which the initial velocity
of the probe is vb and the velocity vM of Mars is given by,

v2
M =

GM�
b

, (2)

as follows from F = ma assuming the orbit of Mars is circular. As will be verified below in
eq, (9), the velocity vb of the probe at radius b is less than the orbital velocity vM of Mars.

We analyze the collision in the center of mass frame, which is essentially the rest frame
of Mars. In this frame, the initial (and final) speed of the probe is vM − vb, since the initial
velocities are parallel. Assuming that the final velocity of the probe is also in the direction
of Mars’ velocity, we have at once that,

v′b = 2vM − vb. (3)

To determine vb we consider the properties of the elliptical transfer orbit, whose general
form can be written as,

1

r
=

1 + ε cos θ

r0
, (4)

where the azimuthal angle θ is zero when the probe is launched from the Earth. Thus, the
minimum and maximum radii a and b are related to r0 and ε by,

1

a
=

1 + ε

r0
,

1

b
=

1 − ε

r0
, (5)

which tells us that,

r0 =
2ab

a + b
, and ε =

b− a

a + b
. (6)

The characteristic radius r0 has the useful property that r̈ = 0 there, so Fr = mar =

m(r̈ + rθ̇
2
) tells us that,

GM�m
r0

= mr0θ̇
2

=
L2

mr3
0

, (7)

where L = mr2θ̇ is the angular momentum. Thus, the angular momentum of the transfer
orbit is given by,

(L/m)2 = GM�r0. (8)

The maximum and minimum velocities now follow from the angular momentum as,

v2
a =

(
L/m

a

)2

=
GM�r0
a2

, and v2
b =

GM�r0
b2

=
GM�
b

r0
b

= v2
M

2a

a + b
< v2

M . (9)

The energy of the transfer orbit can be calculated at point a,

E =
m

2
v2

a −
GM�m

a
= −GM�m

a + b
. (10)
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A more standard deduction of the relation between the velocities va and vb and the
angular momentum is based on an expression for the energy E of the transfer orbit in which

the kinetic energy term mr2θ̇
2
/2 is replaced by L2/2mr2,

E =
1

2
mṙ2 +

L2

2mr2
− GM�m

r
. (11)

Since ṙ = 0 when r = a or b, we have,

L2

2ma2
− GM�m

a
=

L2

2mb2
− GM�m

b
. (12)

which quickly leads to eq. (8), and thence to eq. (10).
We can now find rmax using els. (1) (2), (3) and, (9),

rmax = b

⎛
⎝1 +

√√√√1 +

(
2 −

√
r0
b

)2
((

2 −
√
r0
b

)2

− 2

)⎞⎠ . (13)

For the Earth and Mars, b = 1.5a, so r0/b = 0.89, (2−√r0/b)
2 = 1.22, and rmax = 1.22b.

For a flyby of Jupiter from Earth, b = 5.2a, so r0/b = 0.32, (2 −√r0/b)
2 = 2.05, and

rmax = 1.32b.
That is, the slingshot effect is not strong enough to propel a satellite that barely reaches,

say, Jupiter on to Saturn. The satellite must be launched from Earth into an orbit that
would carry it some distance beyound Jupiter, but with the slingshot effect the unperturbed
orbit can be insufficient to reach Saturn, which the perturbed orbit can. Early discussions
of this scenario were given in [2, 15].

2.2 A More Realistic Deflection Angle

We have assumed that Mars deflects the probe by 180◦ in the Mars frame. This would
require the probe to pass arbitrarily close to the center of Mars, which is unrealistic.

Here we calculate the deflection angle supposing the distance of closest approach is the
radius of Mars.
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In the Mars frame, where we ignore the gravity of the Earth and Sun, the trajectory of the
probe is a hyperbola. We use the notation shown in the figure on the previous page, where
the impact parameter is labeled B, and the distance from the intersection of the asymptotes
to the focus is Aε. The eccentricity ε is related by,

ε2 = 1 +
B2

A2
, (14)

and the equation of the hyperbola is,

1

r
=

1 + ε cos θ

A(ε2 − 1)
, (15)

taking the origin at the (left) focus and measuring azimuth θ from the line between the focus
and the intersection of the asymptotes.

The length A is related to the energy in the Mars frame via,

A =
GMMm

2E
=

GMM

(vM − vb)2
=
MM

M�

b(a+ b)

3a + b− 2
√

2a(a + b)
= 4, 500 km, (16)

since in the Mars frame the initial velocity of the probe is vM − vb.
We see that the angle between the sides Aε and B of the right triangle A-B-Aε is φ/2,

where φ is the deflection angle of the probe in the Mars frame. Hence,

1

ε
= sinφ/2. (17)

From eq. (15), the distance d of closest approach is,

d = A(ε− 1) = A

(
1

sinφ/2
− 1

)
, (18)

so the angle of deflection in the Mars frame is related by,

sin φ/2 =
A

A+ d
. (19)

If we take the distance of closest approach to be the radius of Mars, d = rM = 3, 435 km,
then the deflection angle in the Mars frame would be φ = 70◦.

The deflection angle ψ in the Sun’s frame is given by,

tan φ =
(vM − vb) sinφ

(vM − vb) cos φ− vM
= −0.097, (20)

noting that vb = vM

√
r0/B ≈ 0.9vm. Hence, the deflection angle ψ ≈ 174.4◦ if the probe

skims over the surface of Mars.
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2.3 Launch Velocity

We first calculate the escape velocity ve for the probe from both the Earth and Sun, assuming
that vE is parallel to vE, which is the most favorable direction for the launch. The velocity
of the Earth with respect to the Sun is given by F = ma as,

v2
E =

GM�
a

, (21)

assuming the orbit of the Earth is circular. For the probe to escape from the Earth-Sun
system, its launch velocity ve must be such that the total energy of the probe is zero. We
calculate in the frame of the Sun, where the velocity of the probe (just after rocket burnout)
is ve + vE , whose magnitude is ve + vE since the two velocities are parallel. The energy
relation for escape is,

E = 0 =
m

2
(ve + vE)2 − GMEm

re
− GM�m

a
. (22)

We note that the escape velocity from only the Earth is given by,

v2
e,E =

2GMEm

re
, (23)

so with aid of this and eq. (19), eq. (22) can be written as,

(ve + vE)2 = v2
e,E + 2v2

E . (24)

Thus, the escape velocity from the Earth-Sun system is,

ve =
√
v2

e,E + 2v2
E − vE . (25)

Numerically, ve,E ≈ 11, 000 m/s and vE ≈ 30, 000 m/s, so ve ≈ 13, 800 m/s.
To launch into the transfer orbit via velocity v0 = v0 v̂E, the magnitude of the probe

velocity relative to the Sun just after rocket burnout is v0 + vE, so the energy relation is,

E =
m

2
(v0 + vE)2 − GMEm

re
− GM�m

a
=
m

2
v2

a −
GM�m

a
, (26)

using eq. (10). Again using eq. (23), we find,

v0 =
√
v2

e,E + v2
a − vE. (27)

Since va = vE

√
2b/(a + b) ≈ 33, 000 m/s, v0 ≈ 4, 800 m/s.
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