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1 Problem

Discuss the scattering of a plane electromagnetic wave of angular frequency ω that is normally
incident on a perfectly conducting cylinder of radius a (in vacuum) when the wavelength
obeys λ � a (ka � 1). Comment also on the limit of large cylinders, ka � 1, via the
optical theorem.

Extend the discussion to the case of small conducting elliptical cylinders, which have
(small) flat strips as a limit. Relate the case of a small strip to that of a screen with a small
slit using the electromagnetic version of Babinet’s principle.

2 Solution

The solution for small cylinders follows secs. 361-368 of [1].
The scattering cross section in cylindrical coordinates (r, φ, z), with the cylinder along

the z-axis, is given by,

dσ

dφ
=

power scattered into dφ

incident power per unit area
= r

〈Sscat(φ)〉
〈Sincident〉 . (1)

where,
S = (c/4π)E × B, (2)

is the Poynting vector (in Gaussian units) and c is the speed of light in vacuum.
Because the incident wavelength is large compared to the radius of the cylinder, and the

wave is normally incident, the incident fields are essentially uniform over the cylinder, and
we might suppose the induced fields near the cylinder are the same as the static fields of
a conducting cylinder in an otherwise uniform electric and magnetic field. This approach
was appropriate for the case of scatter by a small sphere [2], but there is no static solution
for an external electric field along the axis of a conducting cylinder. Instead, we follow
an approach perhaps first used by J.J. Thomson in sec. 359 of [1] in which we note that
close to a small cylinder the incident plane wavefunction ei(kx−ωt) can be approximated as
1 + ikx = 1 + ikr cos φ.

We consider the total electric and magnetic fields to be the sum of the incident plane
wave and a scattered wave,

E = E0 e
i(kx−ωt) + Es(r, φ) e

−iωt, B = x̂× E0 ei(kx−ωt) + Bs(r,φ) e−iωt, (3)
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The electric and magnetic fields Es and Bs of angular frequency ω obey the vector Helmholtz
equation (as do also the incident fields),

∇2Es + k2Es = 0 = ∇2Bs + k2Bs, (4)

but only the z-components ψ = Ez or Bz obey the scalar Helmholtz equation with ∇2 in
cylindrical coordinates,

∂2ψ

∂r2
+

1

r

∂ψ

∂r
+

1

r2

∂ψ

∂φ2 + k2ψ = 0, (5)

noting that the fields in this problem do not depend on z. This equation is separable,
permitting solutions that are sums of termsRn(r) cos nφ, where the symmetry of the incident
wave in x implies that terms in sinnφ will not be present. The radial functions Rn obey
Bessel’s equation,

∂2Rn

∂r2
+

1

r

∂Rn

∂r
+

(
k2 − n2

r2

)
Rn = 0, (6)

with solutions,

Rn = Jn(kr) + iNn(kr) = H(1)
n (kr) ≈

⎧⎨
⎩ (−i)n+1

√
2i/πkr eikr (kr large),

−i2n(n− 1)!/π(kr)n (kr small, n > 0).
(7)

The Hankel functions H
(1)
n (kr) (rather than H

(2)
n (kr)) are appropriate in that for large r the

solutions Rn e
−iωt should be outgoing waves. A component ψ of E or B then has the form,

ψ eiωt = ψ0 e
ikx +

∑
n

AnH
(1)
n (kr) cos nφ. (8)

The Fourier coefficients An are to be determined by the conditions that the tangential com-
ponent of the electric field, and the normal component of the magnetic field, vanish at the
surface of the conducting cylinder.

2.1 Electric Field Polarized Parallel to the Wire

In this case we identify ψ as Ez, and the condition is that Ez(a, φ) = ψ(a, φ) = 0. Close to
the cylinder eq. (8) has the form,

ψ eiωt ≈ E0(1 + ikr cos φ) +
∑

n

AnH
(1)
n (kr) cos nφ. (9)

Clearly, An = 0 unless n = 0 or 1. Then, the condition ψ(a, φ) = 0 tells us that,

A0

E0
= − 1

H
(1)
0 (ka)

≈ iπ

2C
,

A1

E0
= − ika

H
(1)
1 (ka)

≈ πk2a2

2
� A0

E0
, (10)

where (referring, for example, to sec. 3.7 of [3]),

C = ln(2/ka) − 0.5772 < 2/ka, (11)
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which becomes large for very small ka, but 1/C > ka. The electric field for r > a is, from
eq. (8),

E ≈ E0 e
−iωt

[
eikx +

iπ

2C
H

(1)
0 (kr) +

πk2a2

2
H

(1)
1 (kr) cos φ

]
ẑ, (12)

and the magnetic field follows from Faraday’s law as,

B = − i

k
∇ ×E ≈ E0 e

−iωt

{
−eikx ŷ − iπka2

2r
H

(1)
1 (kr) sinφ r̂ (13)

+
π

2

[
1

C
H

(1)
1 (kr) − ik2a2

(
H

(1)
0 (kr) − H

(1)
1 (kr)

kr

)
cosφ

]
φ̂

}
.

For large r the electric and magnetic field are, neglecting terms in k2a2 compared to 1/C,
given by,

E(kr � 1) ≈ E0 e
−iωt

[
eikx +

1

C

√
iπ

2kr
eikr

]
ẑ, (14)

recalling eq. (7),1 and,

B(kr � 1) ≈ E0 e
−iωt

[
−eikx ŷ − 1

C

√
iπ

2kr
eikr φ̂

]
. (15)

The time-average Poynting vector in the far zone is,

〈S(kr � 1)〉 =
c

8π
Re(E × B�)

≈ cE2
0

8π

{[
1 − sin[kr(1 − cos φ) − π/4]

C

√
π

2kr

]
x̂

+

[
π

2C2kr
− sin[kr(1 − cosφ) − π/4]

C

√
π

2kr

]
r̂

}
. (16)

The sine functions with arguments kr(1 − cosφ) − π/4 oscillate extremely rapidly in φ for
large r, and average to zero. Hence,

〈S(kr � 1)〉 ≈ cE2
0

8π

[
x̂ +

π

2C2kr
r̂
]
≡ 〈S0〉 x̂ + 〈Sscat〉 . (17)

At large r the cross terms in the Poynting vector involving the incident and scattered fields
can be neglected, and the scattered Poynting vector 〈Sscat〉 is entirely due to the scattered
fields. This appealing decomposition does not hold at small r.

The differential scattering cross section is, according to eq. (1),

dσ‖
dφ

≈ π

2C2k
, (18)

1This result appears at the top of p. 432 of [1].
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and the total scattering cross section is,

σ‖ ≈ π2

C2k
≈ π2

k ln2(2/ka)
, (19)

which is much smaller than the wavelength λ, with a logarithmic dependence on the wire
radius a.

The result (19) gives only a faint hint of the fact that a grid of wires with a � λ and
spacing d such that a� d� λ is essentially totally reflecting for polarization parallel to the
wires, as if the scattering cross section of each wire equals the spacing d � λ [4].

2.2 Electric Field Polarized Perpendicular to the Wire

In this case the magnetic field is parallel to the z-axis, and we take ψ = Bz and the condition
that the tangential electric Eφ(a, φ) field vanish at the surface of the wire becomes,

0 =
1

k

∂Bz(a, φ)

∂r
=

1

k

∂ψ(a, φ)

∂r
= iE0 e

ika cosφ cos φ+
∑

n

AnH
(1)
n

′
(ka) cos nφ

≈ iE0 cos φ− kaE0 cos2 φ+
∑

n

AnH
(1)
n

′
(ka) cosnφ

≈ −ka
2
E0 + iE0 cos φ− ka

2
E0 cos 2φ+

∑
n

AnH
(1)
n

′
(ka) cosnφ. (20)

Thus, An = 0 for n > 2,

A0

E0
≈ ka

2H
(1)
0

′
(ka)

= − ka

2H
(1)
1 (ka)

≈ − iπk
2a2

4
, (21)

A1

E0
≈ − i

H
(1)
1

′
(ka)

≈ −πk
2a2

2
, (22)

A2

E0

≈ − i

H
(1)
2

′
(ka)

≈ πk3a3

4
≈ 0 , (23)

noting that for n > 0 and small ka, H
(1)
n

′
(ka) ≈ iN ′

n(ka) ≈ i2nn!/π(ka)n+1. The magnetic
field for r > a is, from eq. (8),2

B ≈ E0 e
−iωt

[
eikx − iπk2a2

4
H

(1)
0 (kr) − πk2a2

2
H

(1)
1 (kr) cos φ

]
ẑ, (24)

and the electric field follows from the fourth Maxwell equation as,

E =
i

k
∇ × B ≈ E0 e

−iωt

{
eikx ŷ +

iπka2

2r
H

(1)
1 (kr) sin φ r̂ (25)

+
πk2a2

2

[
H

(1)
1 (kr)

2
+ i

(
H

(1)
0 (kr) − H

(1)
1 (kr)

kr

)
cosφ

]
φ̂

}
.

2This result appears near the bottom of p. 434 of [1].
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For large r the electric and magnetic field are given by,

B(kr � 1) ≈ E0 e
−iωt

[
eikx − k2a2

√
iπ

2kr
eikr

(
1

2
− cosφ

)]
ẑ, (26)

and,

E(kr � 1) ≈ E0 e
−iωt

[
eikx ŷ − k2a2

√
iπ

2kr
eikr

(
1

2
− cos φ

)
φ̂

]
. (27)

The time-average Poynting vector in the far zone is, again neglecting the rapidly oscillating
cross terms,

〈S(kr � 1)〉 ≈ cE2
0

8π

[
x̂ +

πk3a4

2r

(
1

4
− cos φ+ cos2 φ

)
r̂

]
≡ 〈S0〉 x̂ + 〈Sscat〉 . (28)

The differential scattering cross section is, according to eq. (1),

dσ⊥
dφ

≈ πk3a4

2

(
1

4
− cos φ+ cos2 φ

)
, (29)

which is much larger in the backward hemisphere than in the forward, and the total scattering
cross section is,

σ⊥ ≈ 3π2k3a4

4
, (30)

which is small compared to the geometric cross section 2a.
The result (30) anticipates that a grid of fine wires is essentially transparent to fields

polarized perpendicular to the wires [4].

2.3 Surface Charge and Current on the Wire

The surface charge and current densities σ and K on the wires of radius a are given by,

ς(φ) =
Er(a, φ)

4π
=

i

4πak

∂Bz(a, φ)

∂φ
, K(φ) =

c

4π
r̂×B(a, φ) = − ic

4πk
r̂×(∇×E(a, φ)). (31)

When the electric field is polarized parallel to the wires, E = Ez ẑ and,

ς‖ = 0, K‖,z =
ic

4πk

∂Ez(a, φ)

∂r
, (32)

where Ez near the wires follows from eqs. (12),

Ez

E0

eiωt ≈ 1 + ikr cosφ+
iπ

2C
H

(1)
0 (kr), (33)
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with C given by eq. (11). Hence, the surface current is,

K‖,z ≈ c

4π
E0

( π
2C

H
(1)
0 (ka) − cosφ

)
e−iωt ≈ − c

4π

iE0

Cka
e−iωt. (34)

since 1/C > ka.
When the electric field is polarized perpendicular to the wires, the magnetic field is

parallel to them, and,

ς⊥ =
i

4πak

∂Bz(a, φ)

∂φ
, K⊥,φ = − c

4π
Bz(a, φ), (35)

where Bz at r = a follows from eqs. (24), neglecting the term of order k2a2/C,

Bz

E0

eiωt ≈ 1 + ika cosφ+
πk2a2

2
H

(1)
1 (kr) cos φ

≈ 1. (36)

Hence, the surface charge and current densities are,3

ς⊥ ≈ 0, K⊥,φ ≈ − c

4π
E0 e

−iωt. (37)

The current (34) for polarization parallel to the wire is much larger than that for the
case of perpendicular polarization. The current density in a conducting mirror would be
Kmirror = cE0/2π, so the current in for polarization perpendicular to the wire roughly as
expected if the wire were a piece of a mirror, while the current for polarization parallel to
the wire is much larger than this expectation. However, it has become popular to imply
that the current for parallel polarization is as expected, and the current for perpendicular
polarization is suppressed [5, 6].

2.4 The Optical Theorem and Scattering by a Large Conducting

Cylinder

The optical theorem (see, for example, the Appendix of [7]) states that the total scattering
cross section is related to the imaginary part of the forward scattering amplitude according
to,

σ =
4π

k
Im[f(0, 0)], (38)

where for scattering by a finite object of a plane wave the electric (or magnetic) field in the
far zone is written, in spherical coordinates (r, θ, φ),

E(r → ∞) = E0 e
i(kz−ωt) + f(θ, φ)

ei(kr−ωt)

r
. (39)

3Note that the surface current circulates around the wire in this case, which behavior will also hold for
a conducting elliptic cylinder.
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Papas [8] showed that for scattering off a cylindrical object, with axis the z-axis and incident
wave in the x-direction, the form (38) still holds provided we write the electric (or magnetic)
field in the far zone (in cylindrical coordinates (r, φ, z)) as,4

E(r → ∞) = E0 e
i(kx−ωt) +

√
2πif(φ)

ei(kr−ωt)

√
kr

. (40)

Comparing with the approximations (15) and (26) we obtain functions f that are purely
real, and the optical theorem implies the cross sections are zero. To obtain small nonzero
cross sections, we must make a better approximation, which does not ignore small imaginary
parts.

We do this in a way that also permits analysis of cylinders of arbitrary radius, using a
representation of plane waves in terms of Bessel functions due to Jacobi [9],

eikx = eikr cosφ = J0(kr) + 2
∞∑

n=1

inJn(kr) cos nφ. (41)

2.4.1 Electric Field Polarized Parallel to the Wire

Using eq. (41), we see that for the electric field polarized parallel to a conducting cylinder of
radius a the wavefunction (8) will vanish at the surface of the cylinder if we set the Fourier
coefficients to be [10],

A0 = −E0
J0(ka)

H
(1)
0 (ka)

, An = −2inE0
Jn(ka)

H
(1)
n (ka)

(n > 0). (42)

The asymptotic electric field can now be written as,

Ez(r → ∞) = E0 e
i(kx−ωt) + i

√
2i

π
E0

(
J0(ka)

H
(1)
0 (ka)

+ 2

∞∑
n=1

Jn(ka)

H
(1)
n (ka)

cosnφ

)
ei(kr−ωt)

√
kr

, (43)

noting that e−iπ/4 =
√

1/i = −i√i. Comparing with eq. (40), the scattering amplitude is

f(φ) =
i

π

(
J0(ka)

H
(1)
0 (ka)

+ 2
∞∑

n=1

Jn(ka)

H
(1)
n (ka)

cosnφ

)
, (44)

and the optical theorem (38) tells us that the total scattering cross section is,

σ‖ =
4

k
Im

(
i
J0(ka)

H
(1)
0 (ka)

+ 2i
∞∑

n=1

Jn(ka)

H
(1)
n (ka)

)
=

4

k

⎛
⎜⎝ J2

0 (ka)∣∣∣H(1)
0 (ka)

∣∣∣2 + 2
∞∑

n=1

J2
n(ka)∣∣∣H(1)

n (ka)
∣∣∣2
⎞
⎟⎠ . (45)

For small cylinders, ka � 1, J0(ka) ≈ 1, N0(ka) ≈ 2C/π, Jn(ka) ≈ 0 for n > 0 and hence,

σ‖(ka � 1) ≈ 4

kN2
0 (0)

=
π2

C2k
. (46)

4Papas’ version may be the earliest statement of the optical theorem.
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as previously found in eq. (19).

For large cylinders, ka� 1, J2
n(ka)/

∣∣∣H(1)
n (ka)

∣∣∣2 ≈ cos2(ka−nπ/2−π/4) and the resulting

expression (45) is the sum of rapidly oscillating terms. The convergence of this sum is poor
for large ka, although Papas [8] showed that one can transform it into an integral form which
yields,

σ‖(ka � 1) ≈ 4a, (47)

twice the diameter of the wire. Corrections for finite values of ka are reviewed in [11].

2.4.2 Electric Field Polarized Perpendicular to the Wire

In this case we write the magnetic field, Bz, in the form (8), and the condition that the
radial derivative ∂Bz(a, φ)/∂r vanish at the surface of the wire is satisfied with the aid of
the derivative of eq. (41) with respect to r, such that,

A0 = −E0
J ′

0(ka)

H
(1)
0

′
(ka)

, An = −2inE0
J ′

n(ka)

H
(1)
n

′
(ka)

(n > 0). (48)

The asymptotic magnetic field can now be written as,

Bz(r → ∞) = E0 e
i(kx−ωt) + i

√
2i

π
E0

(
J ′

0(ka)

H
(1)
0

′
(ka)

+ 2
∞∑

n=1

J ′
n(ka)

H
(1)
n

′
(ka)

cosnφ

)
ei(kr−ωt)

√
kr

. (49)

Comparing with eq. (40), the scattering amplitude is,

f(φ) =
i

π

(
J ′

0(ka)

H
(1)
0

′
(ka)

+ 2

∞∑
n=1

J ′
n(ka)

H
(1)
n

′
(ka)

cos nφ

)
, (50)

and the optical theorem (38) tells us that the total scattering cross section is,

σ⊥ =
4

k
Im

(
i
J ′

0(ka)

H
(1)
0

′
(ka)

+ 2i
∞∑

n=1

J ′
n(ka)

H
(1)
n

′
(ka)

)
=

4

k

⎛
⎜⎝ J

′2
0 (ka)∣∣∣H(1)

0

′
(ka)
∣∣∣2 + 2

∞∑
n=1

J
′2
n (ka)∣∣∣H(1)

n

′
[ka)
∣∣∣2
⎞
⎟⎠ . (51)

For small cylinders, ka � 1, J ′
0(ka) = −J1(ka) ≈ −ka/2, N ′

0(ka) = −N1(ka) ≈ 2/πka,
J ′

n(ka) ≈ (ka)n−1/2n(n− 1)!, N ′
1(ka) ≈ 2nn!/π(ka)n+1, for n > 0 and hence,

σ⊥(ka � 1) ≈ 3π2k3a4

4
, (52)

as previously found in eq. (30).

For large cylinders, ka � 1, J
′2
n (ka)/

∣∣∣H(1)
n

′
(ka)
∣∣∣2 ≈ sin2(ka − nπ/2 − π/4) and the

resulting expression (51) is the sum of rapidly oscillating terms. I believe this sum converges
to,

σ⊥(ka � 1) ≈ 4a ≈ σ‖(ka� 1). (53)

In the optical limit, ka� 1, we expect the cross section to be independent of polarization, but
it remains somewhat surprising that it is twice the geometric cross section in the absence of
absorption. This fact is likely related to the nonplanar character of a wire, for which currents
on its “sides” play a significant role, as anticipated by Young [12].
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3 Scattering by a Small Conducting Elliptical Cylinder

The method of sec. 2 (determining the Fourier coefficients of a solution to the Helmholtz wave
equation using the good-conductor boundary condition at the surface of the cylinder) was
applied to the case of an elliptic cylinder by Sieger [13], using elliptic cylindrical coordinates.
However, the expansion functions appropriate for elliptic coordinates are not well known,
and this approach has been used only infrequently [14, 15, 16, 17]. The notation of this
section follows Brooker [17].

A flat conducting strip can be considered as a limit of a conducting elliptic cylinder as
its minor axis goes to zero. In this limit the strip still has two sides that can, in general,
support different charge and currents densities, and which can be singular along the edges
of the strip. The analysis of elliptic cylinders in [17] assumed that the fields obey certain
symmetry conditions (see, for example, sec. 11.2 of [18] and also [19]) that are valid for thin
strips but not for general elliptic cylinders. The attempt here is to study elliptic cylinders in
greater generality. However, we will only obtain simple results for elliptic cylinders that are
nearly circular. Brooker reports (private communication) that he has now obtained results
for general elliptic cylinders which remain valid in the limit of thin strips.

For elliptical cylinders with focal axes parallel to the z-axis in the plane y = 0, the
relevant elliptic cylindrical coordinates (μ, ϕ, z) are related to rectangular coordinates by,

x = b cosh μ cosϕ, y = b sinhμ sinϕ. (54)

Curves of constant μ are ellipses, and curves of constant ϕ are hyperbolae, with foci at
(x, y) = (0,±b). For large μ, cylindrical coordinates (r, φ) are related to (μ, ϕ) by μ ≈
ln(2r/b) and ϕ ≈ φ. The semimajor axis a of an ellipse of constant μa has value,

a = b cosh μa, μa = cosh−1 a

b
, sinh μa =

√
a2

b2
− 1. (55)

In the figure below, the x-axis is to the right and the y-axis is up.

The Helmholtz equation is separable in elliptic cylindrical coordinates, and wavefunctions
of the form M(μ)Φ(ϕ) lead to versions of Mathieu’s equation for both M(μ) and Φ(ϕ) in
which the wavenumber k appears in a parameter,

q =
k2b2

4
. (56)
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Since parameter b is less than the semimajor axis a of the elliptic cylinder, q � 1 for small
cylinders with ka � 1. We will only consider small cylinders here, such that we can take
q ≈ 0.

The expansion functions M and Φ depend on q as well as on μ or ϕ, and can be labeled
by an integer index n. Both cosinelike and sinelike functions exist, called Mcn(μ, q) and
Msn(μ, q) for M , and cen(ϕ, q) and sen(ϕ, q) for Φ. Solutions to the Helmholtz equation
involve products of cosinelike functions, or products of sinelike functions.

For small q,

ce0(ϕ, q � 1) ≈ 1√
2
, (57)

cen(ϕ, q � 1) ≈ cos nϕ (n > 0), (58)

sen(ϕ, q � 1) ≈ sinnϕ (n > 0), (59)

To represent the outgoing scattered wave we need “radial” functions M with asymptotic
behavior eikr/

√
r, which are the so-called Mathieu functions of the third kind, Mc

(3)
n (μ, q)

and Ms
(3)
n (μ, q). These functions have been defined so as to have asymptotic behavior very

similar to that of the Hankel function H
(1)
n ,

Mc(3)
n (μ→ ∞, q)

ei[kr−(2n+1)π/4]

√
kr

, (−1)nMs(3)
n (μ → ∞, q) =

ei[kr+(2n−1)π/4]

√
kr

. (60)

For small q = k2b2/2, the functions M
(3)
n (μ, q � 1) can be related to Hankel functions

H
(1)
n (2

√
q cosh μ) = H

(1)
n (kb cosh μ) according to eqs. 20.6.12-13 of [20], noting that the only

nonzero coefficients Am
n (q = 0) or Bm

n (q = 0) are A0
0(0) = 1/

√
2 and An

n(0) = Bn
n(0) = 1 for

n > 0, according to eq. 20.2.29, and hence,

cen(0, 0) = An
n(0), se′n(0, 0) = nBn

n(0). (61)

Then,

Mc(3)
n (μ, q � 1) ≈ H(1)

n (kb cosh μ), (62)

Ms(3)
n (μ, q � 1) ≈ tanh μH(1)

n (kb cosh μ), (63)

but Ms
(3)
0 (μ, q) = 0. It is important to note that the simple forms (62)-(63) hold only if

kb cosh μ is not small, i.e., for large μ in which case the elliptic cylinder is very close in form
to a circular cylinder.5

The general form of a solution ψ to the scalar Helmholtz equation is, for q = 0 as
appropriate for small cylinders, and for incident waves whose direction makes angle φ0 to
the x-axis (in the x-y plane),

ψ eiωt = E0 e
ik(x cosφ0+y sin φ0)

+

∞∑
n=0

(
AnMc(3)

n (μ, q � 1) cen(μ, q � 1) +BnMs(3)
n (μ, q � 1) sen(μ, q � 1)

)
≈ E0 e

ik(x cosφ0+y sin φ0)

+

∞∑
n=0

(AnA
n
n(0) cosnϕ +BnB

n
n(0) tanh μ sinnϕ) H(1)

n (kb coshμ). (64)

5Thanks to Geoff Brooker for pointing this out.
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In the far field, where tanh μ ≈ 1 and ϕ ≈ φ, this becomes,

ψ(kr � 1) ≈ E0 e
i[k(x cosφ0+y sinφ0)−ωt] (65)

+

√
2i

πkr
ei(kr−ωt)

∞∑
n=0

(−i)n+1 (AnA
n
n(0) cosnφ+ (−1)nBnB

n
n(0) sinnφ) .

3.1 Electric Field Polarized Parallel to the Cylinder

We again consider the scalar function ψ = Ez, now subject to the condition that ψ(μ, ϕ) = 0
on the elliptical surface μ = μa of semimajor axis a � λ given by eq. (55).

For small x the incident waveform is approximately,

E0[1 + ik(x cosφ0 + y sin φ0)] = E0[1 + ikb(coshμ cosϕ cosφ0 + sinhμ sinϕ sin φ0)]. (66)

The condition that ψ(μa, ϕ) = 0 implies that the only nonzero Fourier coefficients are,

A0

E0
≈ − 1

A0
0(0)H

(1)
0 (kb cosh μa)

≈ i
√

2π

2 ln(ka/2)
=
i
√

2π

2C
, (67)

A1

E0
≈ − ikb coshμa cosφ0

B1
1(0)H

(1)
1 (kb cosh μa)

≈ −ka cosφ0

N1(ka)
≈ πk2a2 cos φ0

2
� A0

E0
, (68)

B1

E0
≈ − ikb sinhμa sinφ0

B1
1(0)H

(1)
1 (kb cosh μa)

≈ −kb sinhμa sinφ0

N1(ka)
≈
πk2a2

√
1 − b2

a2 sinφ0

2
� A0

E0
.(69)

The far-field (65) of Ez is the same as that given in eq. (14), and hence the scattering cross
section for a near-circular elliptical cylinder of semimajor axis a� λ is the same as that for
a circular cylinder of the same radius, eqs. (18)-(19), for any angle of incidence φ0.

6

3.2 Electric Field Polarized Perpendicular to the Cylinder

In this case we take ψ = Bz, and the condition is that the tangential electric field Eϕ ∝
∂Bz/∂μ = ∂ψ/∂μ vanish on the surface of the elliptical cylinder μ = μa.

From eq. (64) with x cos φ0 + y sinφ0 = b(coshμ cosϕ cosφ0 + sinhμ sinϕ sin φ0),

∂ψ(x � λ)

∂μ
eiωt ≈ E0 ikb(sinhμ cosϕ cosφ0 + cosh μ sinϕ sinφ0)

[1 + ikb(coshμ cosϕ cosφ0 + sinhμ sinϕ sin φ0)]

+
∞∑

n=0

(
kb sinh μAnA

n
n(0)H

(1)
n

′
(kb coshμ) cos nϕ (70)

+
BnB

n
n(0)

cosh μ

[
H

(1)
n (kb cosh μ)

cosh μ
+ kb sinh2 μH(1)

n

′
(kb coshμ)

]
sinnϕ

)
.

6This result is implicit in [14], but was not made explicit there perhaps because of lack of knowledge of
the Mathieu functions for large and small arguments.
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The term in E0 can be rewritten as,

E0

(
−k

2b2

2
cosh μ sinhμ

+ikb(sinhμ cosϕ cosφ0 + cosh μ sinϕ sinφ0)

−k
2b2

2

[
cosh μ sinhμ cos 2ϕ cos 2φ0 +

cosh2 μ+ sinh2 μ

2
sin 2ϕ sin 2φ0

])
. (71)

The condition that ∂ψ(μa)/∂μ = 0 on the ellipse μa (where kb cosh μa = ka) implies that
the only nonzero Fourier coefficients are,

A0

E0

≈ kb cosh μa

2A0
0(0)H

(1)
0

′
(ka)

= − ka√
2H

(1)
1 (ka)

≈ − iπk
2a2

2
√

2
, (72)

A1

E0
≈ − ikb coshμa cosφ0

A1
1(0)H

(1)
1 (ka)

≈ πk2a2 cos φ0

2
, (73)

B1

E0

≈ − ikb cosh2 μa sinφ0

B1
1(0)
[
H

(1)
1 (ka)/ cosh μa + kb sinh2 μaH

(1)
1

′
(ka)
] ≈ πk2a2 sin φ0

2
, (74)

A2

E0

≈ −kb cosh μa cos 2φ0

2A2
2(0)H

(1)
2

′
(ka)

≈ iπk4a4 cos 2φ0

16
� A0

E0

, (75)

B2

E0
≈ − kb cosh μa(cosh

2 μa + sinh2 μ2) sin 2φ0

4B2
2(0)
[
H

(1)
2 (ka)/ cosh μa + kb sinh2 μaH

(1)
2

′
(ka)
] ≈ iπk4a4 sin 2φ0

16
� A0

E0
.(76)

For large r the magnetic field now follows from eq. (65) as,

B(kr � 1) ≈ E0 e
−iωt

[
eik(x cosφ0+y sinφ0) − k2a2

√
iπ

2kr
eikr

(
1

2
− cos(φ− φ0)

)]
ẑ, (77)

which is the same as eq. (26) if we measure angle φ with respect to the angle of incidence
φ0. Hence the scattering cross section for a near-circular elliptical cylinder of semimajor axis
a� λ, for any angle of incidence in the x-y plane, is the same as that for a circular cylinder
of the same radius, eqs. (18)-(19).

3.3 Large Elliptical Cylinders

Scattering by an elliptical cylinder of arbitrary size can be discussed using the equivalent
of Jacobi’s identity (41) for the expansion of a plane wave in Mathieu functions. See, for
example, eqs. (38) and (41) of [21]. However, we do not pursue this further here.
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