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SOME MECHANICS OF TOYS

Relative Horizontality
Psychology’s famous water-level
test—which involves drawing
where the water level should be
in a tilted container—has long
intrigued researchers. It seems
simple, but many grown-ups can’t
do it. And there's a pronounced
sex difference: Men get it right
much more often than do women.

Now researchers have chalked
up another peculiarity of the test:
Waitresses and bartenders, who
spend a lot of time handling fluid
in tilted glasses, do very badly on
it. This finding, Heiko Hechtand
Dennis Proffitt write in the March
issue of Psychological Science, “is,
to our knowledge, the only docu-
mented case in which perfor-
mance declines with experience.”

Proffitr, a psychologist at the
University of Virginia, says the
study first occurred to him 15
years ago when “l encountered
the first male with a Ph.D. ever
to get the problem wrong.” He
was a psychopharmacologist “who
spends most of his day swishing
things around in test tubes.”
Proffitt reasoned that the man’s
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lab work had taught him to use an
“object-relative” approach—re-
lating the water level to the angle
of the conrainer—rather than an
“environment-relative” approach
that would have related it to a
horizontal plane. The experi-
ment finally took shape when

Draw the water level. Average
error for waitresses was 27
degrees (dofted line).

Hechrt, Proffitt’s graduate stu-
dent, got a job in Munich, site of
the Oktoberfest, where waiters
carry a halt-dozen beer steins in
each hand.

Hecht gave the test ro six
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groups: Oktoberfest waitresses,
male bartenders, male truck driv-
ers, housewives, and male and
female graduate students. The
results: Experience counted—
badly. “Waitresses and bartend-
ers taken together made larger
errors than all other subjects,” the
authors report. The magnitude of
the difference was similar to the
difference between the sexes.
Among the waitresses and bar-
tenders, 32.5% gave correct an-
swers, as opposed to 52.5% for
the truck drivers and housewives.
(Grad students did better.)

Proffitt says the results con-
firm that “the more likely you
are to evaluate the situation rela-
tive to the container, the more
likely there would be error.” Psy-
chologist Lynn Liben of Penn-
sylvania State University, who
has been studying the water-level
problem for 20 years, says the
study helps show that it’s “nort a
simple relationship between ex-
perience in the real world and
what that means in terms of
conceptual representation of
that world.”
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SOME MECHANICS OF TOYS

Water level test. Acceleration could account for
subjects’ “‘error” (dotted line).

Accelerating Fluid

In the Random Samples item “Relative hori-
zontality” (28 Apr., p. 503), it is reported
that people who frequently move liquids rap-
idly in open containers (waitpersons and
bartenders) seem not to appreciate that the
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static surface of a liquid is “horizontal.”

However, these people are paid not to spill
the liquids, whose surfaces are often very near
the rims of the containers. When one accel-
erates a liquid, its surface tends to be perpen-
dicular to the effective gravity vector obtained
by subtracting the acceleration vector from
the ordinary downward gravity vector.

For example, a waitperson might acceler-
ate a cup of coffee over its first meter of
travel in 0.5 seconds, corresponding to an
acceleration, a = 2(distance)/(time)?, or 8
meters/(second)?, which is nearly the pull of
Earth’s gravity (g = 9.8 meters/(second)’.
During this acceleration, the surface of the
liquid would approach an angle, 6, where
tangent B = a/g = 8/9.8, or 8 = 39 degrees.

To save his or her job, the waitperson
would be well advised to tilt the cup during
the initial acceleration, restoring it to the
horizontal only during the steady walk to the
table, and then giving it a reverse tilt as the
cup is decelerated onto the table.

Thus, these workers might well respond
to the psychologists’ water level test by
noting that in situations in which the sur-
face of a liquid is not horizontal, the con-
tainer has usually been tipped to keep the
surface parallel to the rim.

Kirk McDonald
Department of Physics,
Princeton University,

Princeton, NJ 08544, USA
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SOME MECHANICS OF TOYS

Motion of a Leaky Tank Car

The water exits the tank car through a drain at one end.

The water leaves the drain vertically — from the point of view of

the tank car.
Ignore rolling friction.

What is the motion of the leaky tank car?

Kirk T. McDONALD NOVEMBER 29, 2000 4



SOME MECHANICS OF TOYS

Motion of a Leaky Tank Car

No horizontal force on the system = center of mass remains fixed

at r = 0.

Water initially leaks out at x > 0, =, c.m. of tank initially moves

in negative x direction.

But if the tank keeps rolling in the —x direction, the total

momentum of tank + water will become negative.

So, the tank must reverse direction and move in the +z direction

after a while!

The water inside the tank moves relative to the tank in the +x

direction, and pushes the tank in this direction.

Eventually this push is sufficient to reverse the initial negative

velocity of the tank.
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SOME MECHANICS OF TOYS

Motion of a Leaky Tank Car

Let x(t) be the horizontal coordinate of the center of the tank car.
m = mass of tank car (without water).

Tarain = d relative to center of tank car.

M (t) is the mass of the water remaining in the tank.

dM (t') = amount of water that drained out in the interval dt’

centered on an earlier time t'.

X (t,t") = horizontal coordinate at time ¢ of the water that drained

out at time ¢’

The center of mass of the entire system must remain at the origin,

0= (m+ M(@)z(t)+ [dM({t")X(t,1).

Kirk T. McDONALD NOVEMBER 29, 2000 6



SOME MECHANICS OF TOYS

Motion of a Leaky Tank Car

In the interval dt’ at an earlier time ', mass —M (¢')dt’ of water

drains out with horizontal velocity @(t') in the lab frame.

At time t' the drain was at x(t') + D, so at time ¢ the element
dM is at X(t,t') =x(t')+ D+ z(t')(t —t').

Thus the c.m. of the whole system,

0 = (mA-M(8)a(t)—t fj dt' M )i(t')— f) dt M(E)e(t')+ D—i(t).

Take time derivatives,

First derivative : 0= (m+M)i— [ dt' M(t')i(t')~MD,
= Total momentum of system is zero.

Second derivative: 0= (m+ M)i— MD,

— The force on the tank + water is just the reaction force M D

of the acceleration of the water relative to the tank.

This can be integrated for simple hypotheses as to the velocity of

the water as it leaves the drain....
Kirk T. McDONALD NOVEMBER 29, 2000 7



SOME MECHANICS OF TOYS

Mechanics of a Washing Machine

. Fixed point
AN in the lab e

~N 7

~
\\____’/

The drum and symmetrical part of the load have mass M.

The shaft of the drum is at (r,0) and is connected to the origin
by a zero-length spring of constant k£ (and damping factor ).

An unbalanced load of mass m lies at distance a from the center
of the drum and at angle ¢ with respect to a fixed direction in the
laundromat.

The washer motor turns the drum with angular velocity ¢ = ).
Kirk T. McDONALD NOVEMBER 29, 2000 8



SOME MECHANICS OF TOYS

Mechanics of a Washing Machine

Equations of motion:
My + mr,, = —kr —yr,
where 1, = (r + acos(¢ — 0)) F + asin(¢ — ) 0,

r component : P =7r0>+b0%cos(p—0) —wir —T'r,

¢ component : rf =—2r0+bsin(g—0)—ITré,

where Wy =

b = distance from shaft of drum to c.m.
b)? = centrifugal force.

—2r0 = Coriolis force.

Kirk T. McDONALD NOVEMBER 29, 2000



SOME MECHANICS OF TOYS

Mechanics of a Washing Machine

Steady Motion: r =0, ¥ = 0 and H=0.

The shaft of the drum moves in a circle of radius ry and the mass
m is at constant azimuth ¢y = ¢ — 6 relative to the azimuth of

the shaft.
Xo% om0 o
all = .
Jwg — 22+ 1202 YT -2

Balanced load =m=0, = b=1ry=0.

o =

Unbalanced load:
Low spin, Q<K wy, = ¢g=0,
High spin, Q> wy, = ¢9=m.

A kind of inverted pendulum!

bw
Tem = .
J(wg — Q)2 + 1202

At high spin, the center of mass of the system approaches the

origin, although the shaft of the drum is off center in the lab.

Kirk T. McDONALD NOVEMBER 29, 2000 10



SOME MECHANICS OF TOYS

Mechanics of a Washing Machine

An unbalanced load would be unstable for {2 > wy if only radial

motion of the shaft were possible.

b—0=¢py = =0 = i=(Q*—w)r+bQ*cospy—Tr.
Stability against perturbations is due to the Coriolis force!

At high spin, the perturbed motion is a circle of radius ry whose

center is displaced by a small amount for the center of the machine

in the lab frame.

Try it yourself sometime!

Kirk T. McDONALD NOVEMBER 29, 2000 11



A Toy with a Gravitational Critical Radius

Such toys appear in science museums to
illustrate orbital motion under the influence

of gravity:.

[s there a surface of revolution, r = r(z) > 0, such that circular

orbits are unstable for r < regtical”

The surface may have a nonzero minimum radius R at which
the slope dr/dz is infinite. Then the motion of a particle with
T < Teitical Tapidly leads to excursions to the minimum radius R,

after which the particle falls off the surface.

Kirk T. MCDONALD NOVEMBER 29, 2000 12
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A Toy with a Gravitational Critical Radius

A stability analysis shows that the frequency w of small oscillations
about a circular orbit of radius ry on a surface of revolution r(z)

is related by

where () is the angular frequency of the circular motion at ry.
The orbit is unstable when w? < 0, i.e., when rory > 3r.

Equivalently, the orbit is unstable wherever (1/72)” < 0,

i.e., where the function 1/7? is concave inwards.

Examples:
Hyperboloid of revolution : r* — 2* = R°,
2V 3R
T'min — R? Tcritical — L = 1.157rpin.
3
Modified g g (-1 < 2z<0)
odified — : r=— — 2z
2 21— 227 ’
Ok
T'min — ij = 1-34rmin-

T critical =—
V5

Kirk T. McDONALD NOVEMBER 29, 2000 13



SOME MECHANICS OF TOYS

Static Equilibrium in a Force Field

Impossible if F = VV, and V?V = 0.

On the Nature of the Molecular Forces which regulate the Constitu-

tion of the Luminiferous Ether. By S. EArNsHAW, M. A. of St. Jokn's
College, Cambridge.

[Read March 18, 1839.]

In order that ¥ may be a maximum, we must have fulfilled the
following conditions, viz.

dV =0, dV =0 dFV =0.nmcisisers (1),
d}V, diV, diV all negative .....coeceereerenrenena. (2),
&Y.V > (dd, V)“l

and

@A V5 ([ ensmmpnnssnssaasr (B);

&Y.V > (d,d, V)

The most curious and perhaps least expected result of this assumption
is, that the molecular forces which regulate the vibrations of the ether do
not vary according to Newton's law of universal gravitation : and it is not
a little remarkable, that a force, whether attractive or repulsive, varying

according to this law, is the only one which cannot possibly actuate the
particles of a' vibrating medium.

Trans. Camb. Phil. Soc. 7, 97 (1842).

Kirk T. McDONALD NOVEMBER 29, 2000
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SOME MECHANICS OF TOYS

ON THE SUSPENSION OF A BALL BY A JET OF WATER.

[From the Fourth Volume of the Third Series of “Memoirs of the Literary
and Philosophical Society of Manchester.” Session 1869-70.]

(Read March 8, 1870.)

WHEN a ball made of cork, or any very light material, is placed in a
concave basin, from the middle of which a jet of water rises to the height of
four or five feet, the jet maintains the ball in suspension; that is to say, it
takes and keeps it out of the basin. The ball is not kept in one position, it
oscillates up and down the jet; nor is its centre kept exactly in a line
with the jet, it often remains for a long time on one side of it. In fact, the
ball appears to be in equilibrium when it is struck by the jet in a point
about 45° below the horizontal circle. In this way, for some seconds at
a time, the ball appears as though it were hanging to the jet, and then
oscillates in an irregular manner about this position. If its oscillations
become so great that it leaves the jet, it instantly drops, but in descending
it generally comes back into the jet before it reaches the basin. The friction
of the water causes the ball to spin rapidly; and as it moves about the jet,
it spins sometimes in one direction, sometimes in another, always about a
horizontal axis. Of the water which strikes the ball, part is immediately
splashed off in all directions, part is deflected off at the tangent, and part
adheres to the ball, and is carried round with it, until it is thrown off by
centrifugal force.

OSBORNE REYNOLDS.

What provides the horizontal stability”

Kirk T. McDONALD NOVEMBER 29, 2000 15
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Levitation in a Fluid Jet

Consider the example of styrofoam balls in an air jet.

Three forces:

o Gravity: F, = —mgz = —%Wa3pbaug2, (V%gravity =0).

e High-speed air drag:  Fgpae = C—fpaima%%.
. Y, 2
e Pressure-gradient effects: Fyp, = —%WCLBP/ — %W@Bpair%7

using Bernoulli’s law, P + pai,0° /2 =PF,.

Only the third force can provide horizontal stability.

Velocity of the jet:
A A 2
v, R L2 oy 2 (1 — ) :

2 2 23222
rov, Ar
Viv=0=u~—F-" & ——,
M b 20z 222

where 3 = cone angle of jet. [Need V x v # 0, so V?v # (]

[This is a viscous flow pattern (Schlichting, Landau).]

Kirk T. McDONALD NOVEMBER 29, 2000 16
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Levitation in a Fluid Jet

Vertical equilibrium: 0= F, + Fyae . + Fyp.

3 Phallg P 3 P -

1 da dapyy
. 2<1_)_ P2b ng-
ZO 320 3A Pair

—F 2ma” A Py 2
Vertical stability :  wyert = J<ZO) -7 3pa (1 - a) )

m mz 20

so stable when zy > 2a = diameter of ball.

Horizontal stability: Fy.(r, z0) = Fuwagr + Fvp,

5 N 2 4 Ov?
— ﬂ-a/ irvvr _ﬂ-a/ ir—
Pa 3 Pa or
4ad A2 p et 32 36%z 5
~ I ——— — —MWyo,T
30224 4 8a

[ < 1is the cone angle.

For Bzg &~ 2a, (..) ~1— (>0, = stable oscillations.

Whori <0 .
Y o~ = Yumpy’.
Wyert 6CL

20 > a, 620 — 20’7 =

Kirk T. McDONALD NOVEMBER 29, 2000 17
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The Levitron™

A magnetic dipole [ of mass m in a gravtiational

and a magnetic field has energy

U(r,z) =mgz — ji-B(r, 2).

For a stable equilibrium we need

FZ:—8U<O7ZO) :O:—mg—l—/jaB(O,ZO),
0z 0z
8U(O, ZO) . 8B<O, ZQ)

F.—— —0=i- |
g or V=n or

For an equilibrium above a source with B. > 0, we have

0B./0z < 0, so I must be opposite to B.
But in magnetostatics, g will align with B.
= Need a dynamic mechanism to keep i opposite to B.

Mechanical spin of the dipole provides the mechanism to defeat

Earnshaw’s theorem.

http://www.physics/ucla.edu/marty/levitron/

Kirk T. McDONALD NOVEMBER 29, 2000 18
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The Levitron™

Torque equation : — = X B,

“Large” spnw = L=10u=Iw—,
L4
di uB
dt  Iw
= L precesses about B with angular velocity

—

= X [i .

ubB

() =
Iw'’

= (i-B = const = uBcosb,

where 6 is the (constant) angle /~ 180° between (i and B.

If w too small, the dipole “falls over”;

If w too big, then 2 < wyse, = [ can’t stay aligned with B.

1 (MBO)UQ <w< 1 (MBO)?’/ ’ Winax

TS ~ 3.
Tgyration \ T 9T gyration \ 11 Wmin
Kirk T. McDONALD NOVEMBER 29, 2000 19
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The Levitron™

Stability requires (in addition to wpin < W < Wnax)
82(](0, ZU) . 82B<O, ZU)

= — > ()
022 . 022 ’
0*U(0 0°B(0
(720):_[[. <7ZO)>O.
or? or?
(i opposite to local B = need
0°B(0,29)  0°B.(0, 2) _ 0B,(0, 2)
9,2 = 9,2 >0, using 9, =0,
9?B(0,z) 9%B.(0,z) 1 (8B,(0,2)\°
d Y _ zZ ) r ) O
o or? or? i By ( or ) e

where B = /B2 + B2 and By = B.(0, 2).

Magnetic field due to a uniformly magnetized disk of radius a

a

V25

Magnetic field due to a current loop of radius a

= Stable for g < 7y < (Berry)

= Stable for g <z < i.

V2

Kirk T. McDONALD NOVEMBER 29, 2000
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t is a fact of common experience that if a
circular disk (for example, a penny) is
spun upon a table, then ultimately it
comes to rest quite abruptly, the final stage
of motion being characterized by a shudder
and a whirring sound of rapidly increasing
frequency. As the disk rolls on its rim, the
point P of rolling contact describes a circle
with angular velocity (2. In the classical
(non-dissipative) theory', 2is constant and
the motion persists forever, in stark conflict
with observation. Here I show that viscous
dissipation in the thin layer of air between
the disk and the table is sufficient to
account for the observed abruptness of the
settling process, during which, paradoxical-
ly, {2 increases without limit. I analyse the
nature of this ‘finite-time singularity] and
show how it must be resolved.

Let « be the angle between the plane of
the disk and the table. In the classical
description, and with the notation defined
in Fig. 1, the points P and O are instanta-
neously at rest in the disk, and the motion is
therefore instantaneously one of rotation
about line PO with angular velocity ,
say. The angular momentum of the disk is
therefore h = Awe(1), where A=1Md is the
moment of inertia of the disk of mass M
about its diameter; e(f) is a unit vector
in the direction PO; e,, e, are unit vectors
in the directions Oz, OC, respectively (see
Fig. 1). In a frame of reference rotat-
ing with angular velocity £2,= (e, the disk
rotates about its axis OC with angular
velocity 0,=0e,; hence the
rolling condition is 2,={cosa. The
absolute angular velocity of the disk is thus
w=(escosa—e,), and so

Figure 2 Euler's disk is a chrome-

plated steel disk with one edge machined to a smooth radius. If it
were not for friction and vibration, the disk would spin for ever.
Photo courtesy of Tangent Toys. See http://www.tangenttoy.com/.

NATURE | VOL 404 | 20 APRIL 2000 | www.nature.com

H.K. Moffatt
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Figure 1 A heavy disk rolls on a horizontal table. The point of
rolling contact P moves on a circle with angular velocity £2. Owing
to dissipative effects, the angle « decreases to zero within a finite
time and (2 increases in proportion to a~ "2,

w=we=—sina.

Euler’s equation for the motion of a
rigid body is here given by dh/dt=
0O /\h=G, where G = Mguae,/\e is the grav-
itational torque relative to P (/\ indicates
the vector product). This immediately gives
the result 2’sine=4g/a, or, when «a is
small,

Da=4gla (1)
The energy of the motion E is the sum
of the kinetic energy +Aw’=%Mgasina,
and the potential energy Mgasina, so

E =3Mgasina=3Mgaa (2)
In the classical theory, «, {2 and E are all
constant, and the motion continues indefi-
nitely. As observed above, this is utterly
unrealistic.

Let us then consider one of the obvious
mechanisms of energy dissipation, namely
that associated with the viscosity u
of the surrounding air. When
« is small, the dominant
contribution to the
viscous dissipation
comes from the

layer of air
between  the
disk and the
table, which is
subjected  to
strong shear
when (2 is large.
We may estimate
the rate of dissipation
of energy in this layer as
follows. Let (r,6) be polar
coordinates with origin at O. For
small «, the gap h(r,6,f) between the
disk and the table is given by
h(r,0,t) = a(a+ rcosd), where ¢p=6— .
We now concede that a is a slowly varying

72 © 2000 Macmillan Magazines Ltd
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brief communications

“uler’s disk and its finite-time singularity

Air viscosity makes the rolling speed of a disk go up as its energy goes down.

function of time t: we assume that l&l << (2,
and make the ‘adiabatic’ assumption that
equation (1) continues to hold. Because the
air moves a distance of order a in a time
217/£), the horizontal velocity uy, in the layer
has order of magnitude r{2sin¢; and as this
velocity satisfies the no-slip condition on
z=0 and on z=h (= O(aa)), the vertical
shear lduy, /02l is of the order (r£2/aa)lsindl.
The rate of viscous dissipation of energy @
is given by integrating w(duy/dz)” over the
volume V of the layer of air: this easily gives
= mruga’/e’, using equation (1). The fact
that @ - % as a - 0 should be noted.

The energy E now satisfies dE/dt= — @
(neglecting all other dissipation mecha-
nisms). Hence, with E given by equation
(2), it follows that

3Mgada/dt= — muga’/a’ (3)
This integrates to give
a’ =27 (t,— B/t (4)

where t,=M/ua, and f, is a constant
of integration determined by the initial
condition: if a=«, when =0, then
t,=(ay/2m)t,. What is striking here is that,
according to equation (4), a does indeed go
to zero at the finite time t=t, The corre-
sponding behaviour of Q2 is Q= (t,— 1) ™",
which is certainly singular as -

Of course, such a singularity cannot be
realized in practice: nature abhors a singu-
larity, and some physical effect must inter-
vene to prevent its occurrence. Here it is not
difficult to identify this effect: the vertical
acceleration |hl=laal cannot exceed g in
magnitude (as the normal reaction at P
must remain positive). From equation (4),
this implies that the above theory breaks
down at a time 7 before t,, where

T=t,—t=(2a/99)"2u/t)"” (5)

A toy, appropriately called Euler’s
disk?, is commercially available (Fig. 2; Tan-
gent Toys, Sausalito, California). For this
disk, M=400 g, and a=3.75 cm. With
these values and with p=1.78x10"* g
cm”'s, t;=M/ua= 0.8 10° s, and, if we
take @, =0.1(=6°), we find #, =100 s. This
is indeed the order of magnitude (to within
+20%) of the observed settling time in
many repetitions of the spinning of the disk
(with quite variable and ill-controlled initial
conditions), that is, there is no doubt that
dissipation associated with air friction is
sufficient to account for the observed
behaviour. The value of 7 given by equation
(5) is 1077 s for the disk values given above;
that is, the behaviour described by equation
(4) persists until within 107* s of the singu-
larity time #,. At this stage, @=0.5X 10"%,
hy=aa=0.2 mm, =500 Hz (and the
adiabatic approximation is still well

833
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Euler’s Disk

V4

<=0

— — — —
N>

|
|
~

e
w)

Center of disk at rest = 3 is the mstantaneous axis of rotation.

= Angular velocity = & = w3, and L = ;w3 = kma’w3.

. dL
F = mgz, = N:a3><mg2—ﬁ,
- LG50 whee G- 9
dt akw

Also, &b =02+ Wl = (el — Lcosa)l — Qsina3d = w3,

)

= w=—-0sina, wy = {2cosa, (e —
ak sin «

Kirk T. McDONALD NOVEMBER 29, 2000 22
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Euler’s Disk

As a — 0, the velocity of the point of contact becomes large,
= One hears a high-frequency sound.

But, one sees the rotation of the figure on the face of the disk,

whose angular velocity 2 — wy = Q(1 — cosa) — 0.
The total angular velocity w also vanishes as a — 0.
Can vegniact €Xceed the speed of sound?

Does air drag become important as a — 0, {2 — 007

Kirk T. McDONALD NOVEMBER 29, 2000 23
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Euler’s Disk

L . 1 1 3
Energy : U = gmlf + 5133w2 + mgh ~ ima%ﬂ + imaga,
dU 3 D
= Power : P = rr ~ ma’ad + §magd ~ §ma,ga.

Rolling friction?

Inelastic collisions with bumps of spacing ¢, height €0,

mgeo 0O
= —emagf).
d/as) s

= Dissipated power : P=—

General velocity dependent friction : P = —emagQ)’,

3 = 1-2 for rolling friction (Ruina); § = 4 for air drag (Moffatt).

5g9/€(B +2)ak L(o+2) C VY
to —t ) (to — t) |
()(t) appears to have a singularity at a finite time .

= Qt) = (

Can we determine 3 by experiment?
Kirk T. McDONALD NOVEMBER 29, 2000 24



Euler’s Disk

4
_ Tek TDS744A, Sample Rate = 5 kHz
3_
~ 2+
i
- i
0 | | | |
0 2 4 6 8 10
t (sec)
1.0
|
1] | | |
08 - L T 1 ]
> ] u 'r’ | ] 'Ill, 'n T AT
I L4 L
0.7 —
oLl
| Il
0.6 Il
!
0.5 ‘ \ ‘ \ ‘ \ ‘ \
7.20 7.22 7.24 7.26 7.28 7.30

t (sec)

Kirk T. MCDONALD NOVEMBER 29, 2000



Euler’s Disk

800
600 —
N
L 400 -
G -
200 —
0 ‘ I I
0 2 4 6 8
t (sec)
102
] =1
= p=2
4 \B=4
A Straight lines: @ = [C/(7.26 —t)] /(F 2
10 T T roT T TTTT T T T T 1TTT LI B B
107 107 10" 10° 10

7.26 —t (sec)
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Euler’s Disk

1077
G
Straight lines: @ = [C/(7.28 —t)] V(B2
10_3 T \\\\1 T \\\H‘ T T T \\\H‘ T TTTT
103 10 2 10! 10° 10!

7.28 —t (sec)

Ambiguity in determining .

When exactly one cycle is left, tg — t = 27 /Q(t).

=2 = Q= (C/2m)"?x=580Hz, t;—1t~0.0115s
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Euler’s Disk

. . . . df? 5.4 .
Avoid use of ¢y via the relation r o €277, (Chatterjee)
(
dS)/dt calculated via second differences, = greater error.
10° 5

Straight lines: dQ/dt ~Q B8 *3

dq/ dt

LA

I ;”

103
Q (Hz)

Results are not definitive, but it appears that Pgisipated = 02 as

for rolling friction.

It is not excluded that during the last few cycles Phissipated = 04

but such an effect is not very prominent.
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Analytical dynamics

Numismatic
gyrations
The familiar shuddering motions of

spinning coins as they come to rest are

not at all intuitive. Moffatt’s analysis
(Nature 404, 833—-834; 2000) identifies air
viscosity as the causative factor in coin jitter,
so we tested this hypothesis by studying
coins spinning in a vacuum. We discovered
that the presence of air has little effect on
the final motions of the coins, indicating
that slippage and friction between the coin’s
edge and the supporting surface might
cause the vibrations that accompany the
end of the spin.

Casual observation of various objects
spun on a tabletop indicates that compres-
sion of trapped air does not qualitatively
affect the complex motions of spinning
disks. We noted that a ring-shaped bell-jar
lid, a short cylinder or the lid of a shoe-pol-
ish can — tested with either the rim or the
flat side down — show a comparable
behaviour: they spin on edge, topple over,
then wobble to a shuddering halt. The
universality of this motion is surprising in
light of the air-viscosity mechanism pro-
posed by Moffatt. As rings do not trap air
the way solid disks do, these objects should
generate shear forces of different magni-
tudes. The similar kinetic behaviour of
these objects appears to contradict a deci-
sive role for air viscosity.

The Dutch 2.5-guilder coin has magnet-
ic properties that allow it to be spun with a
precise frequency on a magnetic stirrer. We
placed the coin in a glass desiccator that had
a slightly concave bottom, brought it to a
spin of approximately 10 Hz, and observed
the motions of the slowing coin after the
desiccator was lifted carefully from the
stirring platform. The desiccator could be
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evacuated to less than 1 mtorr of air
pressure.

Coins in vacuo spun on average for 12.5 s;
coins in air spun on average for 10.5 s (aver-
age of 10 observations each). This differ-
ence in time can be attributed to a
difference in the time the coin was spinning
upright on its edge. The time from the
onset of tumbling to standstill did not differ
markedly and was about 4 s under both
conditions. With or without air, the coin
displayed the same characteristic final
motions. We conclude that the presence or
absence of air may have some effect on the
upright duration of the spin, but has little
effect on the final whirling motions that
bring coins to rest. In contrast, Moffatt’s
analysis would predict a very long wobbling
time for a coin in a vacuum.

We propose an alternative explanation
for the jerking motions with which coins
lose their spin. A coin toppling from rota-
tion on edge preserves its rotational energy
so that the axis of rotation changes from the
plane of the coin to one perpendicular to
the coin. The coin now must wobble on its
edge. As Moffatt indicates, the friction is
minimal when the point of contact between
the supporting surface and the wobbling
coin describes a circle with radius Rcos(a)
(see his Fig. 1). But the coin is not free to
choose any rotation speed. The gravitation-
al force supplies a moment that interacts
with the spin moment and the wobble
moment. As a result, the coin is subject to
precessing forces that rub the coin’s edge in
a jerking motion against the tabletop. We
believe that this sliding friction temporarily
lifts the coin, moving the point of contact
between edge and supporting surface in a
rapid staccato. It is this friction that brings
the coin to a final rest.

The role of surface friction can be readi-
ly confirmed with the toy that inspired
Moffatt’s analysis. When placed on a table
rather than on its slippery platform, Euler’s
disk rapidly comes to rest, illustrating the
influence of the roughness of the support-
ing surface on the spinning time. Air viscos-
ity may play a role in stopping ‘theoretical’
coins. Real-world coins, thrown on a table,
do not need a finite-time singularity to con-
trol their spin. Edges rubbing against the
tabletop explain the rapid dissipation of
monetary momentum.

Ger van den Engh*, Peter Nelsont,
Jared Roachi

*Institute for Systems Biology, Seattle,
Washington 98105, USA

e-mail: engh@biotech.washington.edu
fDepartment of Bioengineering, University of
Washington, Seattle, Washington 98195, USA
+University of Utah, Salt Lake City,

Utah 84132, USA

Moffatt replies — It is true that there are a
number of possible dissipative mechanisms
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for the rolling disk in addition to viscous
dissipation in the surrounding air: vibra-
tion of the supporting surface, rolling fric-
tion due to plastic deformation at the point
of rolling contact, and, as suggested by van
den Engh et al., dissipation due to slipping
rather than rolling. The ‘adiabatic’ equation
that T used, relating the precessional angu-
lar velocity (2 to the angle e, is valid only
under the rolling condition, and experi-
ments indicate that this condition is indeed
satisfied for the ‘toy’ Euler’s disk rolling on
a flat, smooth horizontal glass plate placed
on a firm table (V. A. Vladimirov, personal
communication). I believe therefore that
slipping does not occur in this case.

The problem really is to identify the
dominant dissipative mechanism, for a
given disk and a given surface, and then to
evaluate the associated rate of dissipation of
energy as a function of the angle « (which
is proportional to the energy). If this rate of
dissipation of energy turns out to be pro-
portional to a power of «, where the expo-
nent of this power, A say, is less than one,
then, under the adiabatic approximation, a
finite-time singularity (for which
becomes infinite) will occur.

The air-viscosity mechanism I described
yields A= —2 (note that air viscosity is rel-
atively insensitive to pressure, so that par-
tial evacuation of the vessel in which the
disk experiment is conducted should have
only a small effect). An improved theory
that takes account of oscillatory Stokes lay-
ers on the disk and supporting surface (L.
Bildsten, personal communication) yields
A= —5/4.1f ‘rolling’ friction is assumed to
dissipate energy at a rate proportional to (2,
then A= —1/2. Careful experiments under
a variety of conditions should distinguish
between these various possibilities.

I chose to focus on viscous dissipation
because that is the only mechanism for
which a fundamental (rather than empiri-
cal) description is available, namely that
based on the Navier—Stokes equations of
fluid dynamics. The fact that the air-viscos-
ity mechanism exhibits the strongest singu-
larity as « tends to zero suggests that this
mechanism will always dominate when « is
sufficiently small. For larger o and smaller
disks (such as the 2.5-guilder coin), rolling
friction is an equally plausible candidate
(A. Ruina, personal communication), but
determination of the associated rate of dis-
sipation of energy (in terms of the physical
properties of the disk and the surface)
involves solution of the equations of (possi-
bly plastic) deformation in both solids at
the moving point of rolling contact, a diffi-
cult problem, which, so far as I am aware,
still awaits definitive analysis.

H. K. Moffatt

Isaac Newton Institute for Mathematical Sciences,
20 Clarkson Road, Cambridge CB3 0OEH, UK
e-mail: hkm2@newton.cam.ac.uk
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The Globe of Death

There exist stable, horizontal orbits entirely above the equator on

the inside of the Globe of Death.

In some motorcycle acts, the globe splits apart at the equator with

one or more bikes moving inside the upper hemisphere.
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The Globe of Death
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Coda

“It is not that the phenomena, though familiar and often
interesting, are held to be specially important, but it was regarded
rather as a point of honour to shew how the mathematical
formulation could be effected, even if the solution should prove to
be impracticable, or difficult of interpretation.”

— Horace Lamb, Higher Mechanics (1920),

Sec. 66, “Rolling of a Solid on a Fixed Surface”.

Kirk T. McDONALD NOVEMBER 29, 2000 32



