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1 Problem

A conducting spherical shell with a circular orifice of half angle θ0 is at electric potential
V0. Show that the difference between the charge densities on the inner and outer surfaces is
independent of position, and estimate the ratio of the electric charge on the inner surface to
that on the outer.

Correct results can be inferred from “elementary” arguments based on superposition,
and more “exact” derivations can be based on Legendre polynomial expansions, Green’s
functions, or the method of inversion.

2 Solution

This mixed boundary value problem is taken from the classic essay by G. Green (1828) [1],
where it was discussed using what are now called Green’s functions. We first present an
“elementary” solution, and then seek confirmation based on an expansion of the potential
in a series of Legendre polynomials, and further confirmation via the methods of Green and
Thomson.

2.1 Elementary Solution via Superposition

We wish to relate the problem of the shell with orifice (which we will also call a spherical
bowl in case angle θ0 is large) to the simpler problem of a complete shell that is at potential
V0 and hence has total charge Q0 = aV0 (in Gaussian units), uniform radial electric field
E0 = Q0/a

2 = V0/a at its outer surface, zero electric field in the interior, and uniform surface
charge density σ0 = Q0/4πa2 = V0/4πa.

Following a well-known argument, to a first approximation the configuration of the shell
with orifice is equivalent to removing a spherical cap from the complete shell, keeping surface
charge density σ0 on that cap. The electric field above and below the spherical cap due to
this charge density is ±2πσ0 = ±E0/2. Subtracting this field from that of the initially
complete sphere, we find the approximate field in the orifice to be E0/2.

The shell with orifice has charge density σ+ on its outer surface and σ− on its inner
surface, with total charges Q± on these surfaces. All of the field lines that emanate from the
charge distribution σ− on the inner surface pass through the orifice of area Aorifice, so the
average electric field at the orifice is the same as if charge Q− were distributed across the
orifice; namely Eorifice ≈ 4πQ−/Aorifice. Equating this to E0/2 = Q0/2a

2, we find,

Q− ≈ Q0
Aorifice

8πa2
≈ Q0

θ2
0

8
≈ aV0

θ2
0

8
, (1)
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where the latter forms hold for a circular orifice of half angle θ0, whose area is Aorifice ≈ πa2θ2
0.

To a first approximation, the charge Q+ on the outer surface of the shell with orifice
remains Q0. Hence, we estimate that,

Q−
Q+

≈ Aorifice

8πa2
≈ θ2

0

8
. (2)

We can write the charge density on the outer surface of the conducting shell with orifice
as σ+ = σ0 + Δσ+, where Δσ+ � σ0 (except for very small values of distance s from the
edge of the orifice where we expect that σ+ varies as 1/

√
s. Similarly, the charge density σ−,

whose integral is Q− � Q0, obeys σ− � σ0 with the possible exception of very small values
of distance s.

The electric fields due the densities σ0, Δσ+ and σ− on the conducting shell with orifice
must sum to zero inside the material of the shell. The electric field due to charge density
σ0 is zero in the interior a complete shell, and remains near zero when that density exists
on the shell except in the orifice. Hence, the electric field inside the conducting material
of the shell due to the charge densities Δσ+ and σ− must sum to zero, or very nearly so.
The usual argument based on Gaussian pillboxes tells us that the electric field just inside
charge density Δσ+ is −4πΔσ+, while that just outside charge density σ− is 4πσ−. Thus,
we conclude that Δσ+ ≈ σ− for all points not close to the edge of the orifice, and we might
suppose this relation holds there as well. Expressing this conclusion as a relation between
the densities σ+ and σ−, we have,

σ+ − σ− = σ0 + Δσ+ − σ− ≈ σ0 =
V0

4πa
. (3)

Assuming eq. (3) to be correct, we can deduce the first correction to the total charge Q+

on the outer surface of the shell with orifice. Namely,

Q+ ≈ Q0 + Q− −Qcap = Q0 − Q− = Q0

(
1 − θ2

0

8

)
, (4)

and hence,
Q+ + Q− ≈ Q0 = aV0. (5)

We infer that if a small hole could be created spontaneously in a conducting spherical shell,
the charge originally at the place of the hole would redistribute itself half on the outer and
half on the inner surface of the shell with orifice. The value of the electric potential of the
shell would not change during this process.

Since the above model does not necessarily reproduce all details of the actual charge
distribution on the shell with orifice, it is useful to confirm the results with alternative
analyses.

2.2 Solution via Legendre Series

By expanding the potential in a Legendre series and applying boundary conditions at the sur-
face of the shell, we find “exact” confirmation of the result (3) and approximate confirmation
of eq. (2).
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We work in a spherical coordinate system (r, θ, ϕ) in which the center of the sphere of
radius a is at the origin, and the +z axis passes through the center of the circular orifice.
Once we have an expression for the azimuthally symmetric potential V (r, θ), we obtain the
electric field as E = −∇V and the surface charge densities σ± as,

σ±(θ) = ±Er(r = a±, θ)

4π
= ∓ 1

4π

∂V (r = a±, θ)

∂r
, (6)

in Gaussian units. The charge density on the outer surface is labeled σ+.
As the potential V (r, θ) is finite at the origin and at large r, an appropriate Legendre-

series expansion is,

V (r < a, θ) =
∑

n

An

(r

a

)n

Pn(cos θ), (7)

V (r > a, θ) =
∑

n

An

(a

r

)n+1

Pn(cos θ), (8)

which is continuous across the conducting spherical shell at r = a. Hence, we obtain the
following series expansions for the charges densities (6),

σ+(θ) =
1

4πa

∑
n

(n + 1)AnPn(cos θ), (9)

σ−(θ) =
1

4πa

∑
n

nAnPn(cos θ). (10)

The potential V0 on the conductor, whose coordinates are (r = a, θ0 ≤ θ ≤ π), provides
a partial boundary condition at r = a,

V0 =
∑

n

AnPn(cos θ < cos θ0), (11)

With this condition we can confirm relation (3) between the charge densities (9) and (10),

σ+ − σ− =
1

4πa

∑
n

AnPn(cos θ < cos θ0) =
V0

4πa
. (12)

Indeed, whatever the shape of the orifice(s) in the conducting shell, condition (11) holds for
the remaining conducting region, and hence relation (12) holds also [2].

The boundary condition for the rest of the spherical shell is that the radial component
Er = −∂V (r = a, θ < θ0)/∂r of the electric field is continuous there, which leads to,

0 =
∑

n

(2n + 1)AnPn(cos θ > cos θ0). (13)

We can combine the partial conditions (11) and (13) into a condition over the whole
range of θ, ∑

n

AnPn(cos θ) =

⎧⎨
⎩ −2

∑
n nAnPn(cos θ) (θ < θ0),

V0 (θ > θ0).
(14)
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For an approximate solution, we keep terms only up to the largest order n for which
Pn(cos θ0) ≈ 1, in which case we can obtain simple analytic results via the usual method of
evaluation of coefficient Am by multiplying the boundary condition by Pm and integrating
over cos θ. Since the Legendre polynomial Pn has n − 1 zeroes over the interval 0 < θ < π,
we must have θ0

<∼ π/n, or n <∼ π/θ0. Thus, we approximate the condition (14) as,

π/θ0∑
n=0

AnPn(cos θ) ≈
⎧⎨
⎩ −2

∑π/θ0

n=0 nAn (θ < θ0),

V0P0 (θ > θ0),
(15)

using P0 = 1. We set An = 0 for n > π/θ0.
To isolate Am for 1 < m < π/θ0 we multiply eq. (15) by Pm and integrate from −1 to 1

with respect to d cos θ to find,

Am =
2m + 1

2

⎛
⎝−2

π/θ0∑
n=0

nAn

∫ 1

cos θ0

Pm d cos θ + V0

∫ cos θ0

−1

P0Pm d cos θ

⎞
⎠

≈ 2m + 1

2

⎛
⎝−2

π/θ0∑
n=0

nAn

∫ 1

cos θ0

d cos θ + V0

∫ 1

−1

P0Pm d cos θ − V0

∫ 1

cos θ0

d cos θ

⎞
⎠

= V0δ0m − 2m + 1

2

⎛
⎝2

π/θ0∑
n=0

nAn + V0

⎞
⎠ (1 − cos θ0)

≈ V0δ0m − (2m + 1)θ2
0

4

⎛
⎝2

π/θ0∑
n=0

nAn + V0

⎞
⎠ , (16)

recalling that Pm ≈ 1 for cos θ > cos θ0. To complete the evaluation of Am we need the sum∑π/θ0

n=0 nAn, which we find from eq. (16) to obey,

π/θ0∑
m=0

mAm = −
π/θ0∑
m=0

m(2m + 1)
θ2

0

4

⎛
⎝2

π/θ0∑
n=0

nAn + V0

⎞
⎠

≈ − π3

6θ0

⎛
⎝2

π/θ0∑
n=0

nAn + V0

⎞
⎠ , (17)

since,
π/θ0∑
m=0

m(2m + 1) ≈
∫ π/θ0

0

x2 dx =
2

3
(π/θ0)

3
. (18)

Solving eq. (17) we have,
π/θ0∑
n=0

nAn ≈ −V0
π3/6θ0

1 + π3/3θ0
, (19)
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and,

2

π/θ0∑
n=0

nAn + V0 ≈ V0

(
1 − π3/3θ0

1 + π3/3θ0

)
= V0

1

1 + π3/3θ0
≈ 3θ0

π3
V0. (20)

In sum, we approximate the Fourier coefficients as,

An ≈
⎧⎨
⎩ V0δ0n − (2n+1)3θ3

0

4π3 V0 (n < π/θ0),

0 (n > π/θ0).
(21)

The potential on the axis θ = 0 inside the spherical shell is,

V (r < a, 0) =

π/θ0∑
n=0

An

(r

a

)n

Pn(1) ≈ V0

⎛
⎝1 −

π/θ0∑
0

(2n + 1)3θ3
0

4π3

(r

a

)n

⎞
⎠ , (22)

which drops from V0 at the center of the sphere to,

V (a, 0) ≈ V0

⎛
⎝1 −

π/θ0∑
0

(2n + 1)3θ3
0

4π3

⎞
⎠ ≈ V0

(
1 − 3θ0

4π

)
(23)

at the center of the circular orifice. The equipotential surfaces, which would be spherical in
the absence of the orifice, are deflected towards the orifice, and in some cases the deflection
forms a “bubble” that passes through the orifice into the interior of the spherical shell. Very
similar behavior occurs for the case of a circular hole in a conducting plane, as illustrated in
Fig. 3.14 of [3]. Associated with this behavior is the presence of some charge on the interior
surface of the spherical shell.

The charge density σ− on the inner surface of the spherical shell follows from eq. (10),

σ− ≈ 1

4πa

π/θ0∑
n=0

nAnPn(cos θ) ≈ V0

4πa

π/θ0∑
n=0

n
(2n + 1)3θ3

0

4π3
Pn(cos θ). (24)

Although there is no physical charge in the region θ < θ0, eq. (24) is formally defined there,

and
∫ 1

−1
σ− d cos θ = 0. This permits the charge Q− on the inner surface of the spherical

shell with a circular orifice of area Aorifice ≈ πa2θ2
0 to be calculated as,

Q− =

∫ cos θ0

−1

2πa2σ− d cos θ = 2πa2

∫ 1

−1

σ− d cos θ − 2πa2

∫ 1

cos θ0

σ− d cos θ

≈ V0

4πa

π/θ0∑
n=0

n
(2n + 1)3θ3

0

4π3
Aorifice ≈ V0

8πa
Aorifice ≈ aV0

θ2
0

8
. (25)

We see that the result Q− ≈ V0Aorifice/8πa holds for a small orifice of any shape [2].
The charge density σ+ on the outer surface to that on the inner surface by eq. (12), so

the charge Q+ on the outer surface is given by,

Q+ = Q− +

∫ cos θ0

−1

2πa2 V0

4πa
d cos θ

≈ aV0

(
θ2

0

8
+

1 + cos θ0

2

)
≈ aV0

(
θ2

0

8
+ 1 − θ2

0

4

)
≈ aV0

(
1 − θ2

0

8

)
. (26)
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The total charge on the spherical shell is,

Q+ + Q− ≈ aV0, (27)

which is the same as the charge on a complete conducting sphere of radius a at potential V0.
The ratio of the charge on the inner surface to that on the outer surface is,

Q−
Q+

≈ Aorifice

2Asphere
≈ θ2

0

8
. (28)

The approximate result (28) confirms eq. (2), but is based on the truncated set of Fourier
coefficients (21). Hence, additional confirmation is still desirable.

2.3 Solution via Green’s Functions

Green [1] introduced what are now called Green’s functions to provide a (then) new derivation
of Poisson’s integral for a sphere of radius a, namely that the potential at an interior point
(b, θ, φ) is given in terms of the potential on the surface S as,

V (r, θ, φ) =
a2 − b2

4πa

∫
V (r′ = a, θ′, φ′)

R3
dS ′, (29)

where R is the distance from the interior point to area element on the surface [4]. He then
considered the case of a shell at potential V0 with a circular orifice of half angle θ0 � 1, and
imagined the effect of the orifice is the same as the superposition of the spherical cap of half
angle θ0 on a complete shell and a conducting disk of radius aθ0 of charge opposite to that
of the cap. After some very clever analysis he found the charge densities σ+ and σ− to be
related by eq. (3), with σ− given by,

σ−(θ) ≈ V0

4π2a

( √
2θ0/2√

1 − cos θ
− tan−1

√
2θ0/2√

1 − cos θ

)
. (30)

The total charge Q− on the inner surface is therefore,

Q− =

∫ cos θ0

−1

2πa2σ− d cos θ

=
aV0

2π

∫ cos θ0

−1

( √
2θ0/2√

1 − cos θ
− tan−1

√
2θ0/2√

1 − cos θ

)
d cos θ

=
aV0

2π

∫ 1

θ0/2

(
x− tan−1 x

) θ2
0

x3
dx

=
aV0θ

2
0

2π

[
−1

x
+

1

2

(
1 +

1

x2

)
tan−1 x +

1

2x

]1

θ0/2

≈ aV0θ
2
0

2π

(
π

4
− 1

2

)
=

aV0θ
2
0

8

(
1 − 2

π

)
≈ aV0θ

2
0

22
. (31)

6



As we will see in the following section, the “exact” form for σ−, which in effect includes
terms to all orders in θ0, changes the factor

√
1 − cos θ to

√
cos θ0 − cos θ. This has the effect

of shifting the upper limit of the x integration from 1 to ∞, which in turn changes the factor
π/4−1/2 to π/4. It is surprising that higher-order terms could change the result by a factor
of 3, which shows the delicacy of Green’s approximations.

For completeness, we review Green’s derivation of eq. (30).
We write the total charge density σ at radius r = a as,

σ(θ) = σ+ + σ− = σ0 + Δσ, (32)

where σ0 = V0/4πa relates the uniform charge distribution σ0 on a complete shell that is at
potential V0, which is also the potential of the conducting shell with orifice. In that orifice,
the total charge distribution vanishes, so Δσ(θ < θ0) = −σ0.

The potential V (r, θ, ϕ) in the interior of the shell due to charge distribution (32) can be
written as,

V (r, θ, ϕ) = V0 + ΔV, (33)

Thus, the potential ΔV is due to the charge distribution Δσ. Since the potential of the shell
with orifice is V0, we obtain the partial boundary condition that ΔV (r = a, θ > θ0) = 0.

To complete a solution, we need to determine the charge distribution Δσ that is in-
duced on a grounded, conducting shell with orifice of half angle θ0 due to a uniform charge
distribution −σ0 on the spherical cap of the orifice.

This solution could be readily implemented if we knew the charge distribution induced
on a grounded, conducting shell with orifice by a unit charge at an arbitrary point on the
spherical cap of the orifice. While this approach is now associated with the name of Green,
he did not in fact use this approach in 1828, and it was W. Thomson who first used this
method to provide a solution valid for any angle θ0, as described in to following section.

Rather, the approach of Green in his Essay [1] was to consider that part of the potential
ΔV due to the uniform charge distribution Δσ = −σ0 on the spherical cap (r = a, θ, θ0) to
be equivalent to that of a uniform flat disk of radius aθ0 � a which carries charge density
−σ0. By the usual argument using a Gaussian pillbox, the charge density on that disk is
related to the electric field and the potential by,

− ∂ΔV (r = a−)

∂r
= ΔEr(r = a−) = 2πσ0. (34)

Thus we have a mixed boundary value problem, with knowledge of the potential over
part of the boundary and knowledge of the normal derivative of the potential.

We can apply Poisson’s integral (29) to the potential ΔV , in which case we learn that,

ΔV (r, θ, φ) =
a2 − b2

4πa

∫
cap

ΔV (r′ = a, θ′, φ′)
R3

dS ′, (35)

since ΔV = 0 on the conducting shell.
(More to come...)
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2.4 Solution by Inversion for a Spherical Bowl

Apparently, W. Thomson (Lord Kelvin) first deduced the surface charge distribution on a
conducting spherical shell with a circular orifice of any size (henceforth called a spherical
bowl) in 1847, using his method of inversion [5] starting from the charge density (38) on
the surface of a thin conducting disk, but he published the result only in 1872 [6]. In his
discussion of Thomson’s calculation [7], Maxwell seemed unaware of Green’s prior work.
Thomson’s solution by inversion for the spherical bowl is also discussed by Jeans [8].

In the notation of the present paper, Thomson found the charge density σ− on the inner
surface of the spherical bowl to be,

σ−(θ) =
V0

4π2a

(√
1 − cos θ0

cos θ0 − cos θ
− tan−1

√
1 − cos θ0

cos θ0 − cos θ

)
. (36)

We see that Green’s result (30) is the small-angle limit of eq. (36).
The total charge Q− on the inner surface follows from eq. (36) as,

Q− =

∫ cos θ0

−1

2πa2σ− d cos θ

=
aV0

2π

∫ cos θ0

−1

(√
1 − cos θ0

cos θ0 − cos θ
− tan−1

√
1 − cos θ0

cos θ0 − cos θ

)
d cos θ

=
aV0

2π

∫ ∞

√
1−cos θ0/

√
1+cos θ0

(
x − tan−1 x

) 4 sin2(θ0/2)

x3
dx

=
2aV0 sin2(θ0/2)

π

[
−1

x
+

1

2

(
1 +

1

x2

)
tan−1 x +

1

2x

]∞
√

1−cos θ0/
√

1+cos θ0

=
aV0

2π

[
π sin2(θ0/2) + sin θ0 − θ0

]
≈ aV0θ

2
0

8
, (37)

where the approximation holds for small θ0. This derivation is the firmest evidence we offer
in support of the “elementary” result (2).

As angle θ0 approaches π, the spherical bowl approaches a thin conducting disk of radius
b = a(π − θ0) � a. In this limit the charge density (36) becomes,

σ−(r) =
V0

2π2
√

b2 − r2
, and Q− =

bV0

2π
, (38)

which is the well-known result for the charge density on one side of a conducting disk, r
being the distance from the center of the disk (see the Appendix for a highly geometric
derivation of eq. (38)). Also in this limit, the charge distribution σ0 = V0/4πa is small
compared to σ−. Hence, the charge distribution on the other side of the thin conducting
disk is σ+ = σ0 + σ− = σ−. As expected, the charge distribution is the same on both sides
of a conducting disk.
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We now present details of a derivation leading to eq. (36), following Thomson [6]. The
starting point is based on the discussion of eqs. (32)-(33), that the difference between the
charge distribution on a conducting spherical bowl and the uniform charge distribution σ0 on
a complete sphere at the same potential is the same as that induced on a grounded spherical
bowl by charge distribution −σ0 on the spherical cap that completes the spherical bowl.

Thomson solved this problem by first finding the charge distribution induced on a grounded
spherical bowl by a unit charge at an arbitrary point on the spherical cap, using his method
of inversion.

We begin with a conducting disk of radius b at potential V0. Then, from eq. (38) and the
geometry shown in Fig. 1, the charge density σdisk on each side of the disk can be written
as,

σdisk =
V0

2π2
√

(b + r)(b − r)
=

V0

2π2
√

EP · PD
=

V0

2π2
√

AP · PB
, (39)

where APB is any chord that passes through point P and ECD is the diameter that contains
P .

Figure 1: Point P on diameter ECD is at distance r from the center of a
circle of radius b. APB is any chord that contains P . Triangles ADP and
BEP are similar since ∠DAP = ∠DAB = (∠BCD)/2 = ∠BED = ∠BEP .
Hence EP/PB = AP/PD, and AP ·PB = EP ·PD = (b+r)(b−r) = b2−r2.

Next, we invert the disk with respect to a sphere of radius s whose center O is not in the
plane of the disk, as shown in Fig. 2. The plane that contains the disk inverts into a sphere
that passes through the center of inversion O, and the disk inverts into a spherical bowl that
occupies part of that sphere. The distance OP from the center of inversion to a point P on
the bowl is related to the distance OP ′ of the inverse point on the disk by,

OP · OP ′ = s2. (40)

The principle of the method of inversion is that if we relate the charge dq = σbowldS
in area element dS about point P on the bowl to charge dq′ = σdisk(V0)dS ′ in element dS ′

about point P ′ on the conducting disk whose potential is V0 according to dq = −dq′(OP/s),
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Figure 2: The inverse of a disk with respect to a sphere of radius s centered
at point O is a spherical bowl that lies on a sphere that contains point O. The
plane OA′B ′ is not necessarily perpendicular to the plane of the disk, and in
general A′B ′ is not a diameter of the disk, but only a chord.

then the charge distribution on the spherical bowl is that for the case that the bowl is a
grounded conductor in the presence of charge sV0 at point O.

Since the conducting disk has the same charge distribution σdisk on both of its sides, the
method of inversion tells us that both the inner and outer surfaces of a grounded, conducting
spherical bowl have the same charge distributions induced by a charge placed anywhere on
the spherical cap that completes the bowl. As the case of a conducting spherical bowl at
potential V0 is the superposition of a complete shell of charge density σ0 = V0/4πa and
a grounded conducting bowl when charge density −σ0 covers the spherical cap, we have
another confirmation of relation (3) that σ+ − σ− = σ0.

Area element dS about point P on the bowl is the inverse of element dS ′ about P ′ on
the disk. Hence,

dS

dS ′ =

(
OP

OP ′

)2

=
(OP )4

s4
, (41)

using eq. (39).
Following the spirit of Green, we desire the charge distribution at point P on each side

of a grounded conducting bowl induced by unit charge at point O, which we obtain from
eqs. (40)-(41) as,

σbowl(P, V = 0, qO = 1) =
dq

dS
= − 1

sV0
dq′

OP

s

s4

dS ′ · (OP )4
= −σdisk(V0)

V0

s2

(OP )3

= − s2

2π2(OP )3
√

A′P ′ · P ′B ′ . (42)

Expression (42) will be more useful if we can replace distances A′P ′ and P ′B ′ measured
on the disk by quantities related to the spherical bowl. Referring to Fig. 2, we see that
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triangles APO and A′P ′O are similar, so that,

A′P ′

AP
=

OA′

OP
=

s2

OA · OP
, (43)

since A and A′ are inverse points with respect to the sphere of radius s about O. Likewise,
similar triangles BPO and B ′P ′O lead to,

P ′B ′

PB
=

OB ′

OP
=

s2

OB · OP
. (44)

Thus,

A′P ′ · P ′B ′ =
OB ′

OP
=

s4

(OP )2

AP · PB

OA · OB
. (45)

If we keep points O and P ′ fixed then point P ′ is fixed also, but we can vary the chord A′P ′B ′

and consequently the location of points A and B as well. Under such variation the ratio
s4/(OP )2 remains constant, and the product A′P ′ · P ′B ′ also remains constant according
to the logic of eq. (39) and Fig. 1. Hence, we obtain the peculiar theorem that the ratio
(AP ·PB)/(OA·OB) is also constant during such variation, which result Thomson attributes
to Liouville.

In any case, we see that eq. (42) for the charge density at point P can also be written as,

σbowl(P, V = 0, qO = 1) = − 1

2π2(OP )2

√
OA · OB√
AP · PB

. (46)

Figure 3: When the center of inversion, O, lies in the plane of the original disk
whose center is C ′, then the inverse of that disk is another disk with center
at C in the same plane. While point C ′ is not the inverse of point C [9], all
other primed points are the inverses of their unprimed partner. When the
chord A′P ′B ′ lies along the line OP ′, triangles OBD and OAE are similar,
and hence OA · OB = OD · OE = (a − b)(a + b) = a2 − b2.

11



This result is remarkable in that it does not depend on the radius s of the sphere of
inversion nor (directly) on the radius of the spherical bowl. In particular, we can take point
O to lie in the plane of the original disk and outside its bounding circle, in which case the
spherical bowl degenerates into another disk (which lies between point O and the original
disk). Hence, charge distribution (46) also holds for the case of a grounded, conducting disk
in the presence of unit charge at point O. We write the distance from point O to the center of
the grounded disk as a, the radius of the disk as b, the distance from the center of the disk to
point P as r, and the distance OP as R. We have seen that the ratio (OA ·OB)/(AP ·PB) is
independent of the choice of chord A′P ′B ′ for fixed points O, P and P ′. We can conveniently
evaluate this ratio of the case that the chord A′P ′B lies along the line OP ′, as shown in
Fig 3. By the argument in the caption of Fig. 1, AP · PB = b2 − r2, and by a very similar
argument OA · OB = a2 − b2. Thus, eq. (46) tells us that the charge distribution induced
on each side of a grounded, conducting circular disk of radius b by unit charge in the plane
of the disk at distance a > b is,

σdisk(r) = − 1

2π2R2

√
a2 − b2

√
b2 − r2

, (47)

where R is the distance between the exterior unit charge and the point of interest on the
disk. This result was first given by Green, p. 181 of [1].

We can now complete the calculation of the charge distribution induced on a grounded,
conducting spherical bowl of radius a by uniform charge distribution −σ0 on the spherical
cap that completes the bowl. We will calculate the distribution σ−(θ) on the inner surface
of the bowl, and obtain the distribution σ+ on the outer surface via relation (3). Integrating
eq.(46) over points O = (a, θ′ < θ0, ϕ

′) on the spherical cap, for point P = (a, θ > θ0, 0) we
have,

σ−(θ > θ0, V = 0, σcap = −σ0) =

∫ 1

cos θ0

a2 d cos θ′
∫ 2π

0

dϕ′ σ0

2π2(OP )2

√
OA · OB√
AP · PB

. (48)

Points A, B, O and P in the integrand of eq. (48) all lie in the same plane, but according to
the theorem of Liouville proved above, we are free to chose for this any plane that contains
points O and P . Points A and B are then the intersection of this plane with the rim of the
spherical bowl. Thomson suggests that we always choose the plane ABOP to contain the
“south pole” S of the bowl, i.e., the intersection of the axis of the bowl with its surface, as
shown in Fig. 4.

We introduce angles α and β as shown in Fig. 4 so that the lengths of lines AS, PS, AP
and PB are related by,

AS = 2d sin α, (49)

PS = 2d sin β, (50)

AP = 2d sin(α − β), (51)

PB = 2d sin(α + β). (52)

Using the identity sin(α − β) sin)α + β) = sin2 α − sin2 β, we find that,

AP · PB = (AS)2 − (PS)2 = 2a2(cos θ0 − cos θ), (53)

12



Figure 4: The plane ABOP may be chosen to contain the “south pole” S of
the spherical bowl without changing the result of eq. (46). This plane does
not, in general, contain the center of the spherical bowl, but its intersection
with the bowl is an arc APSB of a circle with radius d ≤ a. The arc AS
subtends angles 2α with respect to the center of arc APSB, arc PS subtends
angle 2β. Then, arc AP subtends angle 2(α−β), and arc PSB subtends angle
2(α + β).

noting also that (AS)2 = 2a2(1 + cos θ0), etc. By a similar construction that emphasizes
point O rather than point P , we also have that,

OA · OB = (OS)2 − (AS)2 = 2a2(cos θ′ − cos θ0). (54)

Forms (53) and (54) are convenient in that their lefthand sides appear to depend on the
azimuthal coordinates of points A, B, O and P , while the righthand sides depend only on
the polar coordinates.

Thus, the only remaining azimuthal dependence of the integrand of eq. (48) is that due
to length OP , which can be expressed as,

(OP )2 = 2a2(1 − cos γ) = 2a2(1 − cos θ cos θ′ − sin θ sin θ′ cosϕ′), (55)

where γ is the angle subtended by arc OP with respect to the center of the spherical bowl.
Combining eqs. (48) and (53)-(55), we have,

σ−(θ) =
V0

16π3a

∫ 1

cos θ0

d cos θ′

√
cos θ′ − cos θ0

cos θ0 − cos θ

∫ 2π

0

dϕ′ 1

1 − cos θ cos θ′ − sin θ sin θ′ cosϕ′

=
V0

16π3a

∫ 1

cos θ0

d cos θ′

√
cos θ′ − cos θ0

cos θ0 − cos θ

2π√
(1 − cos θ cos θ′)2 − sin2 θ sin2 θ′

=
V0

8π2a
√

cos θ0 − cos θ

∫ 1

cos θ0

d cos θ′
√

cos θ′ − cos θ0

cos θ′ − cos θ

=
V0

8π2a
√

cos θ0 − cos θ

∫ √
1−cos θ0

0

2x2 dx

x2 + cos θ0 − cos θ
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=
V0

4π2a
√

cos θ0 − cos θ

[
x −

√
cos θ0 − cos θ tan−1 x√

cos θ0 − cos θ

]√1−cos θ0

0

=
V0

4π2a

( √
1 − cos θ0√

cos θ0 − cos θ
− tan−1

√
1 − cos θ0

cos θ0 − cos θ

)
, (56)

using Dwight 858.536 to go from the first line to the second, and Dwight 122.1 to go from
the 4th line to the 5th.

Thomson [6] also gave an extension of eq. (46) in which the unit charge is not necessarily
on the cap of the spherical bowl.

2.5 Solution in Toroidal Coordinates

The problem of a charged, conducting spherical bowl can also be solved in toroidal coordi-
nates [10].

A Appendix: Charge Distribution on a Conducting

Ellipsoid and on a Conducting Circular Disk

The charge distribution (38) on a thin, conducting disk can be deduced in a variety of ways.
We record here a highly geometric derivation following Thomson (pp. 7 and 178-179 of [6]).

The starting point is the “elementary” result that the electric field is zero in the interior
of a spherical shell of any thickness that has a uniform volume charge density between the
inner and outer surfaces of the shell. A well-known geometric argument (due to Newton,
p. 218 of [11]) for this is illustrated in Fig. 5.

The electric field at point r in the interior of the shell due to a lamina of thickness δ and
area A1 centered on point r1 that lies within a narrow cone whose vertex is point 0 is given
by,

E1 =
ρdVol1
R2

01

R̂01, (57)

where ρ is the volume charge density, dVol1 = A1δ, R01 = r0−r1, and the center of the sphere
is taken to be at the origin. Likewise, the electric field from a lamina of area A2 centered
on point r2 defined by the intercept with the shell of the same narrow cone extended in the
opposite direction (forming a bicone) is given by,

E2 =
ρdVol2
R2

02

R̂02, (58)

In the limit of bicones with small half angle, the two parts of the bicone as truncated by the
shell are similar, so that,

A1

R2
01

=
A2

R2
02

,
dVol1
R2

01

=
dVol2
R2

02

, (59)

and, of course, R̂02 = −R̂01. Hence, E1 + E2 = 0. Since this construction can be applied to
all points in the material of the spherical shell, and for all pairs of surface elements subtended
by (narrow) bicones, the total electric field in the interior of the shell is zero.
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Figure 5: For any point r0 in the interior of a uniformly charged shell of charge,
the axis of a narrow bicone intercepts the inner surface of the shell at points r1

and r2. The corresponding areas on the inner surface of the shell intercepted
by the bicone are A1 and A2. In the limit of small areas, A1/R

2
01 = A2/R

2
02.

We now reconsider the above argument after arbitrary scale transformations have been
applied to the rectangular coordinate axes,

x → k1x, y → k2y, z → k3z. (60)

A spherical shell of radius s is thereby transformed into an ellipsoid,

x2

s2
+

y2

s2
+

z2

s2
= 1 → x2

s2/k2
1

+
y2

s2/k2
2

+
z2

s2/k2
3

= 1. (61)

As parameter s is varied, one obtains a set of similar ellipsoids, centered on the origin.
A small volume element obeys the transformation,

dVol = dxdydz → k1k2k3dxdydz = k1k2k3dVol. (62)

The three points 0, 1, and 2 in Fig. 5 lie along a line, so that,

R01 = r0 − r1 = CR02 = C(r0 − r2), (63)

where C is a (negative) constant. This relation is invariant under the scale transformation
(60), so that, together with eq. (62), the relation,

dVol1
R2

01

=
dVol2
R2

02

, (64)

is also invariant. Hence, if the ellipsoidal shell, which is the transform of the spherical shell
of Fig. 5, contains a uniform volume charge density, the relation E1 + E2 = 0 remains true
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at the vertex of any bicone in the interior of the shell, which implies that the total electric
field is zero there.

This proof is based on the premise that the ellipsoidal shell is bounded by two similar
ellipsoids, and that the volume charge density in the shell is uniform.

If we let the outer ellipsoid of the shell approach the inner one, always remaining similar
to the latter, we reach a configuration that is equivalent to a thin, conducting ellipsoid, since
in both cases the electric field is zero in the interior. Hence, the surface charge distribution
on a thin, conducting ellipsoid must the same as the projection onto its surface of a uniform
charge distribution between that surface and a similar, but slightly larger ellipsoidal surface.

The charge σ per unit area on the surface of a thin, conducting ellipsoid is therefore
proportional to the thickness, which we write as δd, of the ellipsoidal shell formed by that
surface and a similar, but slightly larger ellipsoid,

σ = ρδd, (65)

where constant ρ is to be determined from a knowledge of the total charge Q on the con-
ducting ellipsoid.

The thickness δd of a thin ellipsoidal shell at some point on its inner surface is the distance
between the plane that is tangent to the inner surface at the specified point, and the plane
that is tangent to the outer surface at the point similar to the specified point. These planes
are parallel since the ellipsoids are parallel. In particular, if the semimajor axes of the inner
ellipsoid are called a, b, and c, then those of the outer ellipsoid can be written a + δa, b + δb
and c+δc. Let the (perpendicular) distance from the plane tangent to the specified point on
the inner ellipsoid to its center be called d, and the corresponding distance from the outer
tangent plane be d+ δd, so that δd is the desired thickness of the shell at the specified point.
Then, the condition of similarity is that,

δa

a
=

δb

b
=

δc

c
=

δd

d
. (66)

Since the volume of an ellipsoid with semimajor axes a, b, and c is 4πabc/3, the volume
of the ellipsoidal shell is 4π(a+δa)(b+δb)(c+δc)/3−4πabc/3 = 4πabc(δd/d), using eq. (66).
As the constant ρ has an interpretation as the uniform charge density within the material
of the ellipsoidal shell, we find that the total charge Q on the conducting ellipsoid is related
by,

Q = ρVolshell =
4πabc

d
ρδd, (67)

and hence,

σ = ρδd =
Qd

4πabc
. (68)

It remains to find an expression for the distance d to the tangent plane. If we write the
equation for the ellipsoid in the form,

f(x, y, z) =
x2

a2
+

y2

b2
+

z2

c2
− 1 = 0, (69)
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then the gradient of f is perpendicular to the tangent plane. Thus, the vector d from the
center of the ellipsoid to the tangent plane is proportional to ∇f . That is,

d ∝ ∇f = 2
( x

a2
,

y

b2
,

z

c2

)
. (70)

The unit vector d̂ is therefore,

d̂ =

(
x
a2 , y

b2
, z

c2

)
√

x2

a4 + y2

b4
+ z2

c4

. (71)

The magnitude d of the vector d is related to the vector r = (x, y, z) of the specified point
on the ellipse by,

d = r · d̂ =
x2

a2 + y2

b2
+ z2

c2√
x2

a4 + y2

b4
+ z2

c4

=
1√

x2

a4 + y2

b4
+ z2

c4

. (72)

At length, we have found the charge density on the surface of a conducting ellipsoid to
be,

σellipsoid =
Q

4πabc
√

x2

a4 + y2

b4
+ z2

c4

, (73)

where Q is the total charge.
The case of a thin, conducting elliptical disk in the x-y plane can be obtained from

eq. (73) by letting c go to zero. For this, we note that eq. (69) for a general ellipsoid permits
us to write,

c

√
x2

a4
+

y2

b4
+

z2

c4
=

√
c2

(
x2

a4
+

y2

b4

)
+ 1 − x2

a2
− y2

b2
→
√

1 − x2

a2
− y2

b2
. (74)

The charge density on each side of a conducting elliptical disk is therefore,

σelliptical disk =
Q

4πab
√

1 − x2

a2 + y2

b2

. (75)

The charge density on each side of a conducting circular disk of radius b follows immedi-
ately as,

σcircular disk =
Q

4πb
√

b2 − r2
, (76)

where r2 = x2 + y2. Such a disk has potential V0, which can be found by calculating the
potential at the center of the disk according to,

V0 = V (r = 0, z = 0) =

∫ b

0

2σ(r)

r
2πr dr =

Q

b

∫ b

0

dr√
b2 − r2

=
πQ

2b
. (77)

Hence, a conducting disk of radius b at potential V0 has charge density,

σcircular disk =
V0

2π2
√

b2 − r2
(78)

on each side, which is the result quoted in eq. (38).
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