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1 Problem

Poynting [5] identified the flux of energy in the electromagnetic fields {E,B} (in a medium
with relative permittivity ε = 1 and relative permeability μ = 1) with the vector,

S =
c

4π
E× B, (1)

in Gaussian units, where c is the speed of light in vacuum. Thomson [8], Poincaré [15] and
Abraham [18] recognized the additional role of the Poynting vector as being proportional to
the density of linear momentum stored in the electromagnetic field,

pEM =
S

c2
=

E × B

4πc
, (2)

although these arguments most clearly show that the volume integral,

PEM =

∫
pEM dVol, (3)

rather than the integrand (2), has physical significance. This suggests that the density of
angular momentum, and the total angular momentum, stored in the electromagnetic field
can be written as,

lEM = r×pEM = r× E ×B

4πc
, and LEM =

∫
r×pEM dVol =

∫
r× E× B

4πc
Vol . (4)

Show that the Helmholtz decomposition [2] of a vector field F into irrotational and rota-
tional parts,

F = Firr + Frot, (5)

where,
∇× Firr = 0, and ∇ · Frot = 0, (6)

at all points in space, leads to alternative forms for the densities of momentum and angular
momentum in the electromagnetic fields of a system of charges ei of rest masses mi and
velocities vi:

Ptotal = Pmech + PEM =
∑

i

pcanonical, i +

∫
pEM,orbital dVol, (7)

and,

Ltotal = Lmech + LEM =
∑

i

lcanonical, i +

∫
lEM,orbital dVol +

∫
lEM,spin dVol, (8)
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where Pmech =
∑

i pmech,i =
∑

i γi, mivi, γi = 1/
√

1 − v2
i /c

2,

pcanonical,i = γimvi + pEM,canonical, i , pEM,canonical, i =
eiArot(ri)

c
, (9)

pEM,orbital =

∑3
j=1 Erot, j∇Arot, j

4πc
, (10)

Lmech =
∑

i lmech,i, lmech,i = ri × pmech,i, and,

lcanonical, i = r × pcanonical, i , lEM,orbital = r× pEM,orbital, lEM,spin =
Erot × Arot

4πc
, (11)

where Arot is the rotational part of the (gauge-dependent) vector potential A, and Arot(ri)
is the rotational part of the vector potential at charge i due to all other sources.1,2,3

2 Solution

2.1 Some History (Sept. 22, 2021)

2.1.1 Darboux and Poincaré

In 1878, Darboux [4] noted that there is a constant of the motion in the interaction of an
electric charge with a magnetic pole (approximated as the tip of a long, axially magnetized
needle). Poincaré [12, 25, 118] later elaborated on this theme.

The first recognition of the invariant of Darboux and Poincaré as relating to angular
momentum was by Banderet (1946) [44].

2.1.2 Righi and Sadowsky

In 1894, Righi [10] made a (negative) attempt to detect rotation of a plate that absorbed
circularly polarized light.

In 1899, Sadowsky published two articles [13, 14] in an obscure Russian journal, argu-
ing that circularly polarized light carries angular momentum, and reporting a (negative)
experimental search for this (also citing Righi). Sadowsky’s papers were cited in [34, 36].

2.1.3 J.J. Thomson

In 1891, Thomson noted [7] that a sheet of electric displacement D (parallel to the surface)
which moves perpendicular to its surface with velocity v must be accompanied by a sheet
of magnetic field H = v/c × D according to the free-space Maxwell equation ∇ × H =

1It is claimed in eq. (B.26), p. 17, of [60] that Arot (called A⊥ there) is gauge invariant, but it can be
modified by so-called restricted gauge transformations, as discussed in Appendix B.1 below (from [99]).

2The rotational electric field, Erot, is nonzero only in time-dependent situations, according to eq. (37),
so the quantities pEM,orbital, lEM,orbital and lEM,spin are nonzero only in such cases.

3The various total momenta and angular momenta in eqs. (7)-(8) are the volume integrals of the densities
in eqs. (9)-(11).
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(1/c) ∂D/∂t.4 Then, the motion of the energy density of these sheets implies there is also a
momentum density, eqs. (2) and (6) of [7],

p
(Thomson)
EM =

D × H

4πc
. (12)

In 1893, Thomson transcribed much of his 1891 paper into the beginning of Recent Researches
[8], adding the remark (p. 9) that the momentum density (12) is closely related to the
Poynting vector [5, 9],5,6

S =
c

4π
E × H. (13)

In vacuum, the field momentum density is simply,

p
(E−B)
EM =

E × B

4πc
, (14)

which we consider now. Then, the total field momentum of a system is,

P
(E−B)
EM =

∫
E ×B

4πc
dVol. (15)

In 1904, Thomson [116, 20, 21, 22] considered the field momentum, and field angular
momentum,

L
(E−B)
EM =

∫
r × E × B

4πc
dVol, (16)

for various examples, including an electric charge together with a magnetic pole, both at rest.
He computed that the field momentum in zero in the latter example according to eq. (14),
while the field angular momentum is,

L
(E−B)
EM = −ep

c
r̂, (17)

according to eq. (15). That is, Thomson clarified in 1904 that the term −ep r̂/c in Poincaré’s
sixth equation [12] has the physical significance of angular momentum stored in the electro-
magnetic field of the system. However, Thomson did not reference Poincaré in his discussion.

Thomson also discussed the case of an electric charge together with either an Ampèrian
or Gilbertian magnetic dipole m, finding that,

P
(G)
EM = 0, P

(A)
EM =

E × m(A)

c
′ (18)

4Variants of this argument were given by Heaviside in 1891, sec. 45 of [6], and much later in sec. 18-4 of
[48], where it was noted that Faraday’s law, ∇×E = −(1/c) ∂B/∂t, combined with the Maxwell equation for
H implies that v = c in vacuum, which point seems to have been initially overlooked by Thomson, although
noted in sec. 265 of [11].

5The idea that an energy flux vector is the product of energy density and energy flow velocity seems to
be due to Umov [3], based on Euler’s continuity equation [1] for mass flow, ∇ · (ρv) = −∂ρ/∂t.

6Thomson argued, in effect, that the field momentum density (14) is related by pEM = S/c2 = uv/c2

[7, 8]. See also eq. (19), p. 79 of [6], and p. 6 of [30].
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Thomson did not compute the electromagnetic field angular momentum for these cases, but
the result is,

LEM =

∫
r × E× B

4πc
dVol = r × E× m

c
, (19)

for both Ampèrian and Gilbertian magnetic dipoles.
Thomson’s insights, like those of Darboux and Poincaré on this topic, were ahead of their

time, and also went largely unnoticed for many years.

2.1.4 Poynting

In 1909, Poynting [23] suggested that a beam of circularly polarized light carries angular
momentum, but he did not relate this to his energy-flow vector (1).

Related discussions were given in [24, 26, 27, 28, 29].

2.1.5 Darwin

In 1932, Darwin [32] discussed the quantum theory of light and identified orbital spin and
angular momenta in the Fourier expansion of the quantum wave function of light. He did
not invert the Fourier transform to express the angular momentum in terms of (quantum)
E and B fields.7

Without reference to Darwin, Stewart (2004) [88] deduced that,

LEM =

∫
d3r r × E × B

4πc
= LEM,orbital + LEM,spin, (20)

where,8

LEM,orbital =

∫
d3r

4πc

∫
d3r′

4πc

r × r′

|r − r|3 B(r) · ∂B(r′)
∂t

, (22)

LEM,spin =

∫
d3r

4πc

∫
d3r′

4πc

B(r)

|r − r′| ×
∂B(r′)

∂t
. (23)

While the total field angular momentum can be expressed in terms of a local density, eq. (4),
neither of the total orbital or spin angular momenta can be so written; they are global, not
local entities.

An implication is that the separation of the angular momentum of (classical) electro-
magnetic fields into orbital and spin components not crisp in general — as perhaps is to be
expected since the concept of intrinsic/spin angular momentum is not “classical”.

7A version of Darwin’s argument is given, without attribution, in Appendix VI of [52].
8In 2010, Bialynicki-Birula [106] argued that Darwin’s Fourier decomposition for the total angular mo-

mentum of classical electromagnetic fields inverts to,

LEM,spin =
∫

d3r

4πc
E(r) ×

∫
d3r′

4π

∇′ × B(r′)
|r − r′| . (21)
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2.1.6 Beth

The first direct experimental evidence of the angular momentum of light was obtained in
1934 by Beth [34, 36] (at Princeton University) by observations of small rotations of quartz
plates on absorption of circularly polarized light.9

2.1.7 Vector Spherical Harmonics

Multipoles of electromagnetic fields can be described via so-called vector spherical harmon-
ics,10 typically with two indices, l and m. Versions with three indices, J (total angular
momentum), L (orbital angular momentum) and M , have been described in sec. 7.3, p. 208
of [55].

Vector spherical harmonics have applications to radiation emitted by “point” sources
such as atoms and nuclei. However, they have not found great utility in the description
of the angular momentum of “beams” of light, which are generated by spatially extended
sources (lasers, etc.).

2.1.8 Henriot, Rosenfeld and Humblet

The identification of orbital and spin parts, eqs. (10)-(11), of the electromagnetic angular
momentum was anticipated by Henriot (1936) [37], but may be due to Rosenfeld (1940)
[39, 41], who examined “classical” field theories of particles of various spin.11 For the latter,
see also [38, 40]. The flux of orbital and spin angular momentum was considered by Humblet
(1943) [42]. These considerations are little represented in treatises on classical electrodynam-
ics, but they are well summarized in chap. 1 of [60] (which our secs. 2.3-2.5 largely follow).
See also chap. 9 of [95], and [106].

2.1.9 Cohen-Tannoudji

Our decomposition (10)-(11) is discussed in Complement B1, p. 45 of [60] (1989), which
emphasizes reciprocal (Fourier) space.

However, the statement in sec. 1.B.4(ii), p. 17, that the rotational part Arot (called A⊥
in [60]) of the vector potential A is gauge invariant in misleading. There exists an infinite
set of restricted gauge transformations that change Arot while maintaining the Coulomb-
gauge condition that ∇ · A = 0 (see Appendix B.1 below). Hence, the view that gauge-
invariant quantities are “physical/real” does not apply to Arot, which is better thought of as
“unphysical/unreal” although very useful mathematically.12

9Direct experimental evidence for the momentum/radiation pressure of light was first given by Lebedev
(1901) [16], and nearly simultaneously by Nichols and Hull [17, 19].

10Vector spherical harmonics were perhaps first introduced in [33] (1934), and independently in [35].
Pedagogic discussions include [58, 61] and secs. 9.7-9.8 of [82].

11A version of our eqs. (10)-(11) first appeared as eqs. (93)-(94) of [39].
12The great successes of quantum gauge theories based on 4-vector potentials (where a key feature is that

the potentials can be varied “arbitrarily” with no affect on observable results) leads many people to consider
these potentials to be “physical”, or even “real”. The present author does not subscribe to this view.
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Likewise, the decomposition (10)-(11) gives the impression that LEM,orbital and LEM,spin

can be expressed in terms of local densities. However, these densities are not gauge invariant,
and so are not “physical” in the sense mentioned above.

2.1.10 Allen et al.

While “exact” descriptions of the angular momentum “beams” of light with an axis have
proved elusive, great progress has been made using the so-called paraxial approximation,
starting with the 1992 paper [62]. Here, the so-called Gaussian-Laguerre wavefunctions13

emphasize the total angular momentum, and its component along the beam axis. However,
these functions do not conveniently distinguish between orbital and spin angular momenta.

Subsequent papers which emphasize the Gaussian-Laguerre wavefunctions include [65,
70, 72, 73, 76, 79, 80, 83].14

2.1.11 Orbital and Spin Angular Momenta of Optical Beams

Discussions of the orbital and spin angular momentum of light, which are not simply separa-
ble, generally fall into two camps, that of Darwin (which uses only E and B fields) [63, 66, 67,
68, 69, 74, 75, 77, 81, 84, 85, 88, 89, 90, 92, 93, 96, 101, 102, 104, 108, 106, 107, 119, 120, 123],
and of Rosenfeld (which uses E and Arot) [45, 46, 51, 53, 59, 64, 78, 91, 97, 103, 105, 111,
114, 115, 122].

Of course, neither of these approaches leads to “simple” insights.

2.1.12 Laser Physics vs. Particle Physics

The contrasting points of view as to the orbital and spin angular momenta of light of the
laser- and particle-physics communities has been reviewed by Leader [112, 121], and the
many references therein. See also [113]. Leader favored the decomposition (10)-(11) (which
he mistakenly called gauge invariant), apparently because successful computations can be
made using it (in a particular gauge).

2.2 Helmholtz Decomposition of the Electromagnetic Fields and

the Coulomb Gauge

Helmholtz [2, 99] showed (in a hydrodynamic context) that any vector field, say F, which
vanishes suitably quickly at infinity can be decomposed according to eq. (5), where the
irrotational and rotational (or solenoidal)15 components Firr and Frot obey eq. (6).

13Gaussian-Laguerre wavefunctions were introduced in the Appendix of [47] (1962).
14The author’s derivation of Gaussian-Laguerre beams as approximations to “exact” solutions of the

Helmholtz equation in oblate-spheroidal coordinates is at [86].
15The irrotational and rotational/solenoidal components Firr and Frot are called the longitudinal and

transverse components, F‖ and F⊥ respectively, by some people. The latter nomenclature derives from
plane waves, F = F0e

i(k·r−ωt), to which the proof of Helmholtz decomposition does not formally apply,
but which is readily written as Firr = F‖ = (F · k̂) k̂ and Frot = F⊥ = F − F‖ such that F⊥ · k = 0,
and the irrotational/longitudinal and rotational/solenoidal/transverse components of F are parallel and
perpendicular, respectively, to the wave vector k. However, k̂ is not defined for k = 0, and neglect of this
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Helmholtz also showed that,16

Firr(r) = −∇
∫ ∇′ · F(r′)

4πR
dVol′, and Frot(r) = ∇ ×

∫ ∇′ × F(r′)
4πR

dVol′, (25)

where R = |r − r′|. Time does not appear in eq. (25), which indicates that the vector field
F at some point r (and some time t) can be reconstructed from knowledge of its vector
derivatives, ∇ · F and ∇ × F, over all space (at the same time t).

An important historical significance of the Helmholtz decomposition (5) and (24) was
in showing that Maxwell’s equations, which give prescriptions for the derivatives of the
electromagnetic fields E and B, are mathematically sufficient to determine those fields.

In this note we consider only media with relative permittivity ε = 1 and relative perme-
ability μ = 1, so that Maxwell’s equations can be written (in Gaussian units) in terms of the
macroscopic charge and current densities, ρ and J, as,

∇ · E = 4πρ, (26)

∇ × E = −1

c

∂B

∂t
, (27)

∇ · B = 0, (28)

∇ × B =
4π

c
J +

1

c

∂E

∂t
, (29)

where c is the speed of light in vacuum.
It follows from eq. (28) that the magnetic field B is purely rotational in the sense of

Helmholtz,
Brot = B. (30)

In general, the electric field E has both irrotational and rotational components. In Appendix
A it is shown that the irrotational part of E at time t is the static (Coulomb) field that would
exist if the charge density ρ(r, t) had been unchanged for all earlier times,

Eirr(r, t) = E(C) =

∫
ρ(r′, t)R̂

R2
dVol′ =

∑
i

ei
R̂i

R2
i

, (31)

where R = r−r′, and in the microscopic view, ei is the electric charge of particle i. Thus, the
electric field can be purely rotational only if the macroscopic charge density ρ is everywhere
zero; in the microscopic view Eirr = 0 only if all particles are electrically neutral.

can lead to misunderstandings, such as that mentioned in footnote 1.
The author prefers the terms irrotational and rotational to describe the global argument of Helmholtz,

because the terms longitudinal and transverse fields commonly describe only local aspects of vector fields.
16Using the identity that (∇′ ×F(r′))/R = ∇′ × (F/R)+ F×∇′(1/R) = ∇′ × (F/R)+ ∇(1/R)×F, we

can also write,

Frot(r) = ∇ ×
∫

∇′ × F(r′)
4πR

dVol′ + ∇ × ∇ ×
∫

F(r′)
4πR

dVol′ = ∇ × ∇ ×
∫

F(r′)
4πR

dVol′, (24)

for fields F that vanish quickly enough at infinity.
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That the irrotational part of the electric field can be calculated from the instantaneous
charge distribution cautions us that the Helmholtz decomposition (5) does not imply inde-
pendent physical significance for the partial fields Eirr and Erot. In general, only the total
electric field E has the physical significance of propagation at the speed of light.

An explicit expression for the rotational part of the electric field can be given in the
Darwin approximation (Appendix C), in which electrodynamics is considered only to order
1/c2,

Erot = −
∑

i

ei

2c2Ri

[
ai + (ai · R̂i)R̂i +

3(vi · R̂i)
2 − v2

i

Ri
R̂i

]
, (32)

where ai and vi are the acceleration and velocity of particle i.
The electric field E and the magnetic field B can be related to a scalar potential V and

a vector potential A according to,

E = −∇V − 1

c

∂A

∂t
, (33)

B = ∇ × A. (34)

The vector field −∇V is purely longitudinal, but in general the vector potential A has both
longitudinal and transverse components.

The potentials V and A are not unique, but can be redefined in a systematic way such
that the fields E and B are invariant under such redefinition. A particular choice of the
potentials is called a choice of gauge,17 and the relations (28)-(29) are said to be gauge
invariant. The gauge transformation,

A → A + ∇χ, V → V − 1

c

∂χ

∂t
, (35)

leaves the fields E and B unchanged.
If we work in the Coulomb gauge (see Appendix B), where ∇ · A(C) = 0, then A

(C)
irr = 0

and A
(C)
rot = A(C) = A

(C)
rot , so that,

E = −∇V (C) − ∂A(C)

∂t
= −∇V (C) − ∂A

(C)
rot

∂t
= Eirr + Erot, (36)

where,

Eirr = −∇V (C), Erot = −1

c

∂A(C)

∂t
= −1

c

∂A
(C)
rot

∂t
. (37)

If we work in some other gauge with potentials A and V where the vector potential has both
irrotational and rotational parts, A = Airr + Arot, then the decomposition of the electric
field is,18

Eirr = −∇V − 1

c

∂Airr

∂t
, Erot = −1

c

∂Arot

∂t
. (38)

17More precisely, a particular set of potentials is said to satisfy a gauge condition on ∇ ·A, and in general
there exists a restricted set of gauge-transformation functions χ that lead to alternative potentials which also
satisfy the gauge condition.

18Equations (37)-(38) imply that a general Arot can differ from A(C)
rot by a time-independent vector field.
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The decomposition (36)-(38) of the electric field E into irrotational and rotational fields
Eirr and Erot is gauge invariant, but the simplicity of eq. (37) gives a special importance to
the Coulomb gauge. However, one must remain cautious about assigning a direct physical
significance to Arot because it leads to the field Erot which has components that propagate
instantaneously.19

2.3 Total Energy of an Electromagnetic System

The electromagnetic energy UEM of a system of charges can be written as,

UEM =

∫
E2 + B2

8π
dVol. (39)

Using the Parseval-Plancherel identity (96), we can write the electric part of the field energy
as,

UE =

∫
E · E
8π

d3r =

∫
Ẽ� · Ẽ

8π
d3k =

∫
(Ẽ�

irr + Ẽ�
rot) · (Ẽirr + Ẽrot)

8π
d3k

=

∫
Ẽ�

irr · Ẽirr + Ẽ�
rot · Ẽrot

8π
d3k =

∫
E2

irr + E2
rot

8π
d3r ≡ UE,irr + UE,rot. (40)

Since ∇ · Eirr = 4πρ and Eirr = −∇V (C) (Appendix B), the field energy UE,irr can be
transformed in the usual way to the instantaneous Coulomb energy,

UE,irr =

∫ −Eirr · ∇V (C)

8π
dVol =

∫
ρV (C)

2
dVol =

1

2

∑
i�=j

eiV
(C)(ri) =

1

2

∑
i�=j

eiej

Rij
= U (C),

(41)
where V (C)(ri) is the instantaneous Coulomb potential at charge i due to other charges.
Also, since B = Brot, the field energy can be written as,

UEM = U (C) + UE,rot + UB,rot = U (C) + UEM,rot , (42)

where UEM,rot = UE,rot + UB,rot.

2.3.1 Total Energy in the Darwin Approximation

In the Darwin approximation the total energy of a system of particles of rest masses mi and
electric charges ei is given by eq. (112),

U =
∑

i

miv
2
i

2
+

∑
i

3miv
4
i

8c2
+

1

2

∑
i�=j

eiej

Rij
+

1

2

∑
i�=j

eiej

2c2Rij
[vi · vj + (vi · n̂ij)(vj · n̂ij)] . (43)

In this quasistatic approximation the rotational field energies are,

UE,rot = 0, UM,rot =
1

2

∑
i

eivi · Arot(ri)

c
=

1

2

∑
i�=j

eiej

2c2Rij
[vi · vj + (vi · n̂ij)(vj · n̂ij)] , (44)

referring to eqs. (125)-(126), where Arot(ri) is the rotational part of the vector potential at
charge i due to other charges.

19See, for example, [109].
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2.4 Total Momentum of an Electromagnetic System

The total momentum associated with electromagnetic fields E and B is,

PEM =

∫
S

c2
dVol =

∫
E ×B

4πc
dVol, (45)

where S = (c/4π)E × B is the Poynting vector. We do not consider the Helmholtz decom-
position of the Poynting vector, but rather a form based on the Helmholtz decomposition of
the electric field,

S = S1 + S2 =
c

4π
Eirr × Brot +

c

4π
Erot × Brot. (46)

Then, using the Parseval-Plancherel identity (96) and eqs. (88), (91) and (93),

PEM,1 =

∫
S1

c2
dVol =

∫
Eirr × Brot

4πc
d3r =

∫
Ẽ�

irr × B̃rot

4πc
d3k

=

∫
ρ̃(k)

4πik̂

k
× ik × Ã

4πc
d3k =

∫
ρ̃(k)[Ã− (Ã · k̂) k̂]

c
d3k

=

∫
ρ̃(k)Ãrot

c
d3k =

∫
ρArot

c
d3r =

∑
i

eiArot(ri)

c
= PEM,canonical , (47)

where Arot(ri) is the rotational part of vector potential at particle i due to all other charges.20,21

Thus, we recognize PEM,1 as the electromagnetic part, PEM,canonical, of the total (gauge-
invariant) canonical momentum of the system,

Pcanonical =
∑

i

(
pi +

eiArot(ri)

c

)
= Pmech + PEM,canonical = Pmech + PEM,1, (48)

where pi = γimivi is the (relativistic) mechanical momentum of particle i. It is often
convenient to consider that the electromagnetic part of the canonical momentum of a charge
is associated with the charge, although it is more correct to consider this term to be an effect
of the interaction between the electromagnetic fields of that charge and the fields of other
charges.

The part of the electromagnetic momentum associated with the rotational part of the
electric field is,

PEM,2 =

∫
Erot ×B

4πc
dVol =

∫
Erot × (∇ ×Arot)

4πc
dVol

=

∫ ∑3
j=1 Erot, j∇Arot, j − (Erot · ∇)Arot

4πc
dVol

20The rotational vector potential Arot is not unique as any gauge transformation with a gauge function
χ that obeys ∇2χ = 0 leads to another rotational vector potential.

21While the vector potential Arot can be nonzero in situations where the electric charge density is ev-
erywhere zero, for PEM,1 = PEM,canonical to be nonzero requires a nonzero charge density, i.e., at least one
charge e not balanced by neighboring charges. Then, the electric field is nonzero, the Poynting vector is
nonzero, and PEM according to eq. (45) is nonzero.
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=

∫ ∑3
j=1 Erot, j∇Arot, j + (∇ · Erot)Arot

4πc
dVol

=

∫ 3∑
j=1

Erot, j∇Arot, j

4πc
dVol ≡

∫
pEM,orbital dVol = PEM,orbital , (49)

where looking ahead to eq (70) we define the momentum density,

pEM,orbital =

3∑
j=1

Erot, j∇Arot, j

4πc
. (50)

The total momentum of the system can now be written as,

Ptotal = Pcanonical + PEM,orbital =
∑

i

(
pi +

eiArot(ri)

c

)
+

∫ 3∑
j=1

Erot, j∇Arot, j

4πc
dVol

= Pmech + PEM = Pmech + PEM,1 + PEM,2. (51)

It is often convenient to consider that the electromagnetic part, eq. (47), of the canonical
momentum of a charge is associated with the charge, although it is more correct to consider
this term to be an effect (“dressing”) of the interaction between the electromagnetic fields
of that charge and the fields of other charges. In the former view, the momentum PEM,2

associated with the rotational part of the electric field is the only momentum that is “purely”
associated with the fields themselves. A pulse of electromagnetic radiation that no longer
overlaps with its source charges and currents can be considered as having a purely rotational
electric field, such that PEM,2 describes all of the momentum of the pulse.

2.4.1 Momentum of a Circularly Polarized Plane Wave

As an example, consider a circularly polarized electromagnetic plane wave defined by the
potentials (which satisfy the conditions for the Coulomb, Gibbs and Lorentz gauges),

A = Arot = A0(x̂ ± iŷ)ei(kz−ωt), V = 0, (52)

for which the electromagnetic fields are,

E = Erot = −1

c

∂Arot

∂t
= ikArot = ikA0(x̂± iŷ)ei(kz−ωt), (53)

and,
B = ∇ × Arot = ik× Arot = k̂ × E, (54)

where k = k ẑ. The time-average density of electromagnetic momentum associated with the
(rotational) electric field is (since no electric charge is associated with the “free” plane wave),

〈pEM,1〉 = 0, 〈pEM,2〉 =
1

2

3∑
j=1

Re(E�
rot, j∇Arot, j)

4πc
=

k2A2
0

4πc
k̂. (55)
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The time-average density of electromagnetic energy is,

〈u〉 =
1

2

|E|2 + |B|2
8π

=
k2A2

0

4π
, (56)

so that,

〈pEM〉 =
c

8π
Re(E� ×B) = 〈pEM,2〉 =

〈u〉
c

k̂, (57)

as expected.

2.4.2 Is There Such a Thing as “Spin Linear Momentum”?

Equations (45), (47) and (49) suggest that densities of momentum stored in an electromag-
netic field can be defined as,

pEM = pEM,canonical + pEM,orbital =
ρArot

c
+

3∑
j=1

Erot, j∇Arot, j

4πc
, (58)

although only the volume integrals of these densities have clear physical significance.
On comparing eqs. (50) and (69), it is suggestive to identify a density of “spin linear

momentum” as,

pEM,spin = −(Erot · ∇)Arot

4πc
. (59)

However, the significance of this identification is questionable, since the volume integral of
pEM,spin is zero. Furthermore, pEM,spin = 0 for a circularly polarized plane wave (52)-(54)
whose characterization as carrying spin angular momentum is a primary motivation for the
entire present analysis. Hence, we will not consider the notion of “spin linear momentum”
further, although this concept has its advocates [101].

2.4.3 Total Momentum in the Darwin Approximation

In the Darwin approximation the total momentum of a system of charges is given by eq. (110),

Ptotal = Pcanonical = Pmech + PEM =
∑

i

mivi +
∑

i

miv
2
i

2c2
vi +

∑
i

eiArot(ri)

c
(60)

In this quasistatic approximation, PEM,2 = 0, and all the electromagnetic momentum of
the system can be associated with charges via the electromagnetic part of their canonical
momenta, which are of order 1/c2 since the vector potential is of order 1/c. Only when
electrodynamic effects are considered at higher orders do they include a nonzero contribu-
tion to the electromagnetic momentum from the rotational part of the electric field. For
example, the (rotational) radiation fields of an oscillating dipole are of order 1/c2, so the
electromagnetic momentum associated with a pulse of radiation is of order 1/c5.

Another result in the Darwin (quasistatic) approximation is based on the simplification
of the wave equation (102) for the vector potential to the static equation,

∇2Arot ≈ −4π

c
Jrot. (61)
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Then [50, 94],

PEM,canonical =

∫
Eirr ×Brot

4πc
dVol = −

∫ ∇V (C) × Brot

4πc
dVol =

∫
V (C)∇ × Brot

4πc
dVol

=

∫
V (C)∇× (∇ × Arot)

4πc
dVol =

∫
V (C)[∇(∇ · Arot) −∇2Arot]

4πc
dVol

≈
∫

V (C)Jrot

c2
dVol, (62)

where V (C) is the instantaneous (Coulomb) potential.

2.4.4 Potential Momentum and “Hidden” Momentum

It is sometimes considered paradoxical that a static electromagnetic system can have nonzero
electromagnetic momentum (45). See, for example, [71].

The present analysis offers the perspective that in static configurations the electric field
is purely irrotational, so the electromagnetic momentum (45) can be rewritten as,

PEM = PEM,canonical =
∑

i

eiArot(ri)

c
. (63)

This momentum is a kind of electrical potential momentum [56, 98] associated with a charge
being at a location with nonzero vector potential (due to other sources). The potential
momentum eA/c of a charge e can be combined with the electrical potential energy eV
of that charge, where V is the scalar potential at the location of the charge (due to other
sources), into a potential energy-momentum 4-vector,

Upotential, μ =

(
eV,

eA

c
c

)
= (eV, eA) = eAμ . (64)

The implication is that if the vector potential drops to zero, the charge takes on a mechanical
momentum (in addition to any initial mechanical momentum) equal to its initial electrical
potential momentum.

However, this effect is obscured in many apparently simple examples because of the fact
[49] that if the center of energy,

rU =

∫
rutotal dVol∫
utotal dVol

, (65)

of a system with total-energy density utotal is at rest, then the total momentum of the system
must be zero. If a static system is at rest (except for the steady currents that generate the
vector potential), its center of energy will also be at rest, and the total momentum of the
system must be zero. Such a system must posses a nonzero mechanical momentum equal
and opposite to the electrical potential momentum (63). If the vector potential drops to zero
in such a way that the center of energy remains at rest, then the mechanical momentum of
the system drops to zero as well. In such cases the electrical potential momentum and the
mechanical momentum are “hidden” [110].
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2.5 Total Angular Momentum of an Electromagnetic System

The angular momentum of the electromagnetic fields of a system of charges can be written
in terms of the Poynting vector as,

LEM =

∫
r × S

c2
dVol =

∫
r × (E × B)

4πc
dVol, (66)

As for the linear momentum of the fields, it is of interest to consider separately the contri-
bution associated with the irrotational and rotational parts of the electric field.

The part of the electromagnetic angular momentum associated with Eirr = −∇V (C), for
which ∇ · Erot = 4πρ, is,

LEM,1 =

∫
r × (Eirr × B)

4πc
dVol =

∫
r × [Eirr × (∇ × Arot)]

4πc
dVol

=

∫ ∑3
j=1 Eirr, j(r ×∇)Arot, j − r × (Eirr · ∇)Arot

4πc
dVol

=

∫ ∑3
j=1 Eirr, j(r ×∇)Arot, j − (Eirr · ∇)(r × Arot) + Eirr × Arot

4πc
dVol

=

∫ ∑3
j=1 Eirr, j(r ×∇)Arot, j − (Eirr · ∇)(r × Arot) + Eirr × Arot

4πc
dVol

=

∫ ∑3
j=1 Eirr, j(r ×∇)Arot, j + (∇ · Eirr)(r × Arot) + Eirr × Arot

4πc
dVol

=

∫ −∑3
j=1(∇jV

(C))(r × ∇)Arot, j + 4πρ (r × Arot) − (∇V (C)) ×Arot

4πc
dVol

=

∫ ∑3
j=1 V (C)∇j(r ×∇)Arot, j + 4πρ (r ×Arot) + V (C)(∇ × Arot)

4πc
dVol

=

∫
V (C)(r ×∇)(∇ · Arot) − V (C)(∇ × Arot) + 4πρ (r × Arot) + V (C)(∇ × Arot)

4πc
dVol

=

∫
r × ρ Arot

c
dVol =

∑
i

ri × eiArot(ri)

c
=

∑
i

ri × PEM,canonical,i ≡ LEM,canonical . (67)

assuming the various surface integrals that result from integrations by parts vanish for fields
the fall off sufficiently quickly at infinity. The sum of LEM,1 = LEM,canonical and the mechanical
angular momentum of the system is,

Lmech + LEM,canonical =
∑

i

ri ×
(
pi +

eiArot(ri)

c

)
= Lcanonical , (68)

which is the canonical angular momentum of the particles of the system.
Turning to the electromagnetic angular momentum associated with the rotational part

of the electric field, for which ∇ ·Erot = 0, we have,

LEM,2 =

∫
r × (Erot × B)

4πc
dVol =

∫
r × [Erot × (∇ × Arot)]

4πc
dVol
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=

∫ ∑3
j=1 Erot, j(r ×∇)Arot, j − r × (Erot · ∇)Arot

4πc
dVol

=

∫ ∑3
j=1 Erot, j(r ×∇)Arot, j − (Erot · ∇)(r × Arot) + Erot × Arot

4πc
dVol

=

∫ ∑3
j=1 Erot, j(r ×∇)Arot, j − (Erot · ∇)(r × Arot) + Erot × Arot

4πc
dVol

=

∫ ∑3
j=1 Erot, j(r ×∇)Arot, j + (∇ · Erot)(r × Arot) + Erot × Arot

4πc
dVol

=

∫
r ×

∑3
j=1 Erot, j∇Arot, j

4πc
dVol +

∫
Erot ×Arot

4πc
dVol

≡ LEM,orbital + LEM,spin , (69)

where the orbital angular momentum,

LEM,orbital =

∫
lEM,orbital dVol, lEM,orbital = r×

∑3
j=1 Erot, j∇Arot, j

4πc
= r×pEM,orbital , (70)

depends on the choice of origin, while,

LEM,spin =

∫
lEM,spin dVol, lEM,spin =

Erot × Arot

4πc
(71)

is independent of the choice of origin and is therefore an intrinsic property of the fields,
which we call the spin angular momentum.

2.5.1 Angular Momentum of a Circularly Polarized Plane Wave

As an example, consider a circularly polarized electromagnetic plane wave, eqs. (52)-(54).
The time-average density of spin angular momentum is, according to eq. (11),

〈lEM,spin〉 =
1

2

Re(E�
rot × Arot)

4πc
=

Re(−ikA0 (x̂ ∓ iŷ) × iA0 (x̂ ± iŷ)

8πc
= ±kA2

0

4πc
k̂. (72)

Thus,

〈lEM,spin〉 = ±〈u〉
ω

k̂, (73)

in terms of the time-average density 〈u〉 = k2A2
0/4π, of electromagnetic energy, which is

consistent with the quantum behavior of spin-1 photons.
The time-average density of orbital angular momentum is, according to eqs. (10)-(11),

〈lEM,orbital〉 = r× 1

2

∑
j

Re(E�
rot, j∇Arot, j)

4πc
= r×〈pEM,2〉 = r×〈pEM〉 = r×

〈
E× B

4πc

〉
, (74)

recalling eq. (55) for a plane wave. This suggests that the angular momentum integrals obey
〈LEM,orbital〉 = 〈LEM〉, with the implication that 〈LEM,spin〉 = 0, in seeming contradiction
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with eq. (73). Of course, since the fields of an ideal plane wave do not vanish at infinity, the
forms (10)-(11) do not necessarily apply to it.

In contrast, the (Darwin) prescription, eqs. (22)-(23), for field angular momentum based
only on E and B yields LEM = LEM,spin, with LEM,orbital = 0 for circular polarized plane
waves, as discussed in sec. 4 of [88]. See also [89].

2.5.2 Is There “Really” Such a Thing as Classical Spin Angular Momentum?

Equation (66) suggests the we could define the density of angular momentum in the electro-
magnetic field as,

lEM = r × E × B

4πc
. (75)

Then, eq. (58) suggests that we can replace E×B/4πc by pEM,canonical + pEM,orbital to write,

lEM
?
= r × (pEM,canonical + pEM,orbital). (76)

In contrast, eqs. (67)-(71) suggest that we can also write,

lEM = lEM,canonical + lEM,orbital + lEM,spin = r × (pEM,canonical + pEM,orbital) + lEM,spin

= r × ρArot

c
+ r ×

∑3
j=1 Erot, j∇Arot, j

4πc
+

Erot × Arot

4πc
. (77)

The analysis that has led to the apparent contradiction between eqs. (76) and (77) assumed
that the surface integrals that arise during the various integrations by parts can be neglected.
This assumption is not valid for plane waves, or for monochromatic waves whose time de-
pendence e−iωt implies these waves exist at arbitrarily early and late times. Physical waves
have existed only for a finite time, and hence are bounded in space such that the surface
integrals are indeed negligible. That is, neglect of the integrals on distant surfaces is a good
approximation for physical fields.

Thus, the transformations (47), (49), (67) and (69) do not justify equating the integrand
E×B/4πc with pEM,canonical + pEM,orbital, or equating the integrand r× (E×B)/4πc to the
form r× (pEM,canonical+pEM,orbital)+ lEM,spin. In particular, the argument that led to eq. (76)
does not imply that the volume integral of r × (pEM,canonical + pEM,orbital) equals the total
electromagnetic angular momentum (66) of the system. While care must be taken when
using the densities of momentum and angular momentum introduced here (and elsewhere),
there remains a valid domain of applicability of these concepts, including the “spin” angular
momentum density (71).

A related issue is how we should regard the two forms of angular momentum density
(75) and (77), both of whose volume integrals yield that same total electromagnetic angular
momentum for a bounded system. The form (75) suggests that all electromagnetic angular
momentum is “orbital”, while the form (77) includes the “intrinsic spin” angular momentum
(66).

The situation here is similar to that concerning magnetostatics, where a classical model
of, say, iron atoms is that each has a magnetic moment related to the microscopic current
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density Jatom within the atom,

Matom =
1

2c

∫
atom

(r − ratom) × Jatom dVol =

∫
atom

r × Jatom

2c
dVol +

ratom

2c
×

∫
Jatom dVol

=

∫
atom

r × Jatom

2c
dVol, (78)

which is independent of the choice of origin for steady current distributions Jatom.22 A
ferromagnetic magnetic moment is considered to be an intrinsic property of the atom (and
related to the “spin” angular momentum of the atom). We can calculate the total magnetic
moment of a block of iron as the sum of all atomic moments, which can be transformed into
an integral over the macroscopic current density J,

Mtotal =
∑
atoms

Matom =
1

2c

∫
r ×

∑
atoms

Jatom dVol =

∫
r × J

2c
dVol, (79)

where J is obtained by averaging the atoms currents Jatom over volumes large compared
to an atom but small compared to macroscopic scales. We now can define magnetization
densities in two ways, microscopic and macroscopic:

mmicro =
Matom

Volatom
, and mmacro =

r × J

2c
, (80)

such that,

Mtotal =

∫
mmicro dVol =

∫
mmacro dVol. (81)

However, the microscopic and macroscopic magnetization densities are very different; a uni-
form microscopic density is associated with a macroscopic density that is nonzero only on
the surface of the iron block.

Returning to the case of electromagnetic angular momentum, we can certainly consider
the form (75) to represent the macroscopic density of electromagnetic angular momentum.23

It is appealing to argue that the form (77) corresponds to a more microscopic description, in
which the intrinsic angular momentum of “particles” of the electromagnetic field is described
by the density (71) of “spin” angular momentum. Such an interpretation is not entirely
justified by the usual premises of classical electrodynamics, but it is more acceptable from a
quantum perspective.24,25

22Noting that ∇ · (xiJ) = J · ∇xi = Ji, we have that
∫

Ji dVol =
∫ ∇ · (xiJ) dVol =

∮
(xiJ) · dArea = 0

for any current distribution that is bounded in space.
23Comparison with the case of a uniformly magnetized block of iron suggests that the macroscopic angular

momentum of an electromagnetic field with uniform “spin” angular momentum resides on the surface of the
field. In the case of a circularly polarized plane wave, the “surface” is at infinity, such that the macroscopic
description omits the angular momentum by the neglect of the surface integrals.

24It is noteworthy that the formalism of “spin” electromagnetic field angular momentum arose in the
context of classical field theories [38, 39] of particles with “spin”.

25For recent comments on this theme, see [115].
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2.5.3 Comments (Oct. 1, 2021)

Despite the computational appeal of the decomposition (11) of the angular momentum of
the electromagnetic field into “orbital” and “spin” components expressible as local densities
in a particular gauge, this decomposition should not be regarded as “physical”. Rather,
the gauge-invariant decomposition (22)-(23), following Darwin [32], can be regarded as the
“physical” representation of the two types of electromagnetic angular momentum. It re-
mains that Darwin’s decomposition does not provide a vision of these angular-momentum
components as having local spatial densities (unlike the total electromagnetic angular mo-
mentum described by eq. (4)); rather, the “orbital” and “spin” angular momenta of the
electromagnetic field are global concepts.

A Appendix: Fourier Transforms

The Fourier transform of a vector field F(r) in ordinary 3-space is the vector field F̃(k) in
k-space defined by,

F̃(k) =
1

(2π)3/2

∫
F(r)e−ik·r d3r, (82)

and the corresponding Fourier integral representation of F is,

F(r) =
1

(2π)3/2

∫
F̃(k)ei,k·r d3k. (83)

We symbolize the relations (82)-(83) by,

F(r) ↔ F(k). (84)

For example,
1

r
↔ 1

(2π)3/2

4π

k2
, and

r̂

r2
↔ 1

(2π)3/2

−4πi k̂

k
, (85)

where â is the unit vector a/a.
The curl and divergence of the field F have Fourier transforms,

∇ 
 F =
1

(2π)3/2

∫
∇ 
 (F̃(k)eik·r) d3k =

1

(2π)3/2

∫
ik 
 F̃ d3k, (86)

where 
 represents either operation · or ×, which implies the relations,

∇ × F ↔ ik× F̃, ∇ ·F ↔ ik · F̃, (87)

For example,
B = ∇ × A ↔ B̃ = ik × Ã. (88)

Then, from eq. (6) the Fourier transforms F̃irr and F̃rot of the irrotational and rotational
parts, Firr and Frot of a vector field F obey,

k× F̃irr = 0, k · F̃rot = 0, F̃irr · F̃rot = 0, (89)
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which together with the relation,

F = Firr + Frot ↔ F̃ = F̃irr + F̃rot (90)

imply that,
F̃irr = (F̃ · k̂) k̂ = F̃‖, F̃rot = F̃− F̃irr = F̃⊥. (91)

As an example, the Maxwell equation (26) has the Fourier transform,

ik · Ẽ = 4πρ̃(k), (92)

where ρ̃(k) is the transform of ρ(r), so the irrotational part of Ẽ is,

Ẽirr = ρ̃(k)
−4πi k̂

k
, (93)

which is the product of two Fourier transforms, F̃ = ρ̃(k) and G̃ = −4πi k̂/k. In general, the
product F̃ (k)G̃(k) of the Fourier transforms of scalar fields F (r) and G(r) has the inverse
transform,

1

(2π)3/2

∫
F (r′)G(r − r′) d3r′, (94)

which is not F (r)G(r) but their spatial convolution. Using eqs. (93)-(94) together with
eq. (85), we find the irrotational part of the electric field to be,

Eirr =

∫
ρ(r′)R̂

R2
d3r′ = E(C), (95)

where R = r − r′. Thus, the irrotational part of the electric field E at time t is the
instantaneous Coulomb field E(C) of the electric charge density ρ(r, t), i.e., its “static” part,
as would hold if the present charge density had never been different in the past.

We also note the Parseval-Plancherel identity for two scalar fields F (r) and G(r) with
Fourier transforms F̃ (k) and G̃(k):∫

F �(r)G(r) d3r =

∫
F̃ �(k)G̃(k) d3k. (96)

B Appendix: Coulomb Gauge

The vector potential in the Coulomb gauge is chosen to be purely rotational/transverse,

∇ · A(C) = 0, so that, A(C) = Arot (Coulomb). (97)

We restrict our discussion to media for which the relative permittivity is ε = 1 and the
relative permeability is μ = 1. Then, using eq. (28) in the Maxwell equation ∇ · E = 4π,
the scalar potential V in any gauge obeys,

∇2V +
∂

∂t
∇ · A = −4πρ, (98)
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and the Maxwell equation ∇× B = (4π/c)J + ∂E/∂ct leads to,

∇2A− 1

c2

∂2A

∂t2
= −4π

c
J + ∇

(
∇ · A +

1

c

∂V

∂t

)
(99)

for the vector potential in any gauge.
Thus, in the Coulomb gauge, eq. (98) becomes Poisson’s equation,

∇2V (C) = −4πρ, (100)

which has the formal solution,

V (C)(r, t) =

∫
ρ(r′, t)

R
dVol′ (Coulomb), (101)

where R = |r − r′|, in which changes in the charge distribution ρ instantaneously affect the
potential V (C) at any distance.

In the Coulomb gauge, eq. (99) becomes, using the continuity equation, ∇·J+∂ρ/∂t = 0,

∇2A(C) − 1

c2

∂2A(C)

∂t2
= −4π

c
J +

∇
c

∂V (C)

∂t
= −4π

c
J − 4π

c
∇

∫ ∇′ · J(r′, t)
4πR

dVol′

= −4π

c
(J − Jirr) = −4π

c
Jrot, (102)

using eqs. (25), (101) and the continuity equation, ∇ ·J = −∂ρ/∂t. Thus, a formal solution
for the (retarded, rotational) vector potential in the Coulomb gauge is,26

A
(C)
rot (r, t) = A(C)(r, t) =

1

c

∫
Jrot(r

′, t′ = t − R/c)

R
dVol′ (Coulomb), (104)

where the rotational part of the current density is given by,

Jrot(r, t) =
1

4π
∇ ×

∫ ∇′ × J(r′, t)
R

dVol′ =
1

4π
∇ × ∇×

∫
J(r′, t)

R
dVol′, (105)

which goes to zero at large distance if the current density lies within a bounded volume.

26In case of steady currents, ∇ · J = 0, Jrot = J, and a formal solution is,

A(C)(r) =
1
c

∫
J(r′)

R
dVol′ (Coulomb, static). (103)

Other forms of the Coulomb-gauge vector potential are possible, via the restricted gauge transformation
A′ = A + ∇χ, where the gauge-transformation function obeys Laplace’s equation,∇χ = 0. However, the
uniqueness theorem for solutions to Laplace’s equation with Neumann boundary conditions (see sec. 1.9 of
[82]), the only possible χ for which ∇χ = 0 at large distances is the trivial case χ = 0. Hence, any alternative
Coulomb-gauge vector potential does not go to zero everywhere at infinity, and the static form (103) plays
a somewhat special role.
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B.1 Alternative Forms of the Coulomb-Gauge Potentials

While the potentials (101) and (104) can be considered to be the standard forms for the
Coulomb gauge, they are not the only possible ones.

If the gauge-transformation function χ obeys Laplace’s equation, ∇2χ = 0, then the
vector potential of the gauge transformation A(C) → A(C) +∇χ, V (C) → V (C) − ∂χ/∂t, also
satisfies the Coulomb-gauge condition (97).27

In quasistatic examples of charge and current densities within a bounded volume, and
where radiation can be ignored, the standard potentials (101) and (104) go to zero at large
distances. Then, all of the alternative Coulomb-gauge potentials, generated by a gauge
function χ that obeys Laplace’s equation do not go to zero at infinity in all directions. This
follows from the uniqueness theorem for solutions to Laplace’s equation with either Dirichlet
or Neumann boundary conditions (see, for example sec. 1.9 of [82]), since the trivial case
χ = 0 has both χ and its derivatives equal to zero (at large distances). So, when one adds
the constraint that the Coulomb-gauge potentials must vanish at infinity, then the standard
forms (101) and (104) are the only such solutions (if indeed they vanish at infinity).28

Of course, only for electro- and/or magnetostatic examples (or for those inside a bounded
perfectly conducting surface) can there be potentials that vanish at infinity, so for all exam-
ples involving “radiation to infinity” (“real photons”), we must accept the nonuniqueness of
Coulomb-gauge potentials.

C Appendix: Darwin’s Approximation

The Lagrangian for a charge e of mass m that moves with velocity v in an external electro-
magnetic field that is described by (Coulomb-gauge) potentials V (C) and A(C) can be written
(see, for example, sec. 16 of [54]),

L = −mc2
√

1 − v2/c2 − eV (C) + e
v

c
· A(C). (106)

Darwin [31] worked in the Coulomb gauge, and kept term only to order v2/c2. Then, the
scalar and vector potentials due to a charge e that has velocity v can be taken as (see sec. 65
of [54] or sec. 12.6 of [82]),

V (C) =
e

R
, A(C) =

e[v + (v · n̂)n̂]

2cR
, (107)

27For example, the gauge functions χ = ±Bxy/2 lead from the axially symmetric vector potential, A(C) =
BR2 φ̂/2ρ, of a uniform magnetic field B ẑ inside an axially symmetric current distribution on a cylinder of
radius R about the z-axis, to the so-called “Landau” potentials, which are nonzero at ρ =

√
x2 + y2 = ∞.

See also sec. 2.1 of [117].
28It is claimed in eq. (B.26), p. 17, of [60] that Arot (called A⊥ there) is gauge invariant, since the Fourier

transform of the gauge transformation A → A′ = A + ∇χ is A′
k = Ak + ikχk. This makes it appear

that the term ikχk contributes only to the irrotational part of A′, since the Fourier transform of Airr is
Ak,irr = (k̂ · Ak) k̂ (as in eq. (B.14a) of [60]), such that A′

rot = Arot. However, k̂ is undefined for k = 0,
such that the Fourier component Ak=0 is entirely rotational. Then, if ∇2χ = 0, its Fourier transform is
0 = −k2χk = ik · (ikχk), such that ikχk can be nonzero for k = 0, in which case ∇χ contributes to A′

rot

and this differs from Arot.
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where n̂ is directed from the charge to the observer, whose (present) distance is R.
Combining equations (106) and (107) for a collections of charged particles, and keeping

terms only to order v2/c2, we arrive at the Darwin Lagrangian,

L =
∑

i

miv
2
i

2
+

∑
i

miv
4
i

8c2
−

∑
i>j

eiej

Rij
+

∑
i>j

eiej

2c2Rij
[vi · vj + (vi · n̂ij)(vj · n̂ij)] , (108)

where we ignore the constant sum of the rest energies of the particles.
The Lagrangian (108) does not depend explicitly on time, so the corresponding Hamil-

tonian,

H =
∑

i

pi · vi − L

=
∑

i

p2
i

2mi
−

∑
i

p4
i

8m3
i c

2
+

∑
i>j

eiej

Rij
−

∑
i>j

eiej

2mimjc2Rij
[pi · pj + (pi · n̂ij)(pj · n̂ij)] , (109)

is the conserved energy of the system, where,

pi =
∂L
∂vi

= mivi +
miv

2
i

2c2
vi +

∑
j �=i

eiej

2c2Rij
[vj + n̂ij(vj · n̂ij)]

= = mivi +
miv

2
i

2c2
vi +

eiA
(C)(ri)

c
(110)

is the canonical momentum of particle i, and,

A(C)(ri) =
∑
j �=i

eiej

2c2Rij
[vj + n̂ij(vj · n̂ij)] (111)

is the vector potential at charge i due to the other charges. Hence, the energy/Hamiltonian
is,

U =
∑

i

miv
2
i

2
+

∑
i

3miv
4
i

8c2
+

∑
i>j

eiej

Rij
+

∑
i>j

eiej

2c2Rij
[vi · vj + (vi · n̂ij)(vj · n̂ij)] , (112)

as first derived by Darwin [31].
The part of this Hamiltonian/energy associated with electromagnetic interactions is,

UEM =
1

2

∑
i�=j

eiej

Rij
+

1

2

∑
i�=j

eiej

2c2Rij
[vi · vj + (vi · n̂ij)(vj · n̂ij)]

=
1

2

∑
i

ei

(
V (C)(ri) +

vi · A(C)(ri)

c

)
, (113)

where,

V (C)(ri) =
∑
j �=i

ej

Rij
(114)

is the electric scalar potential at charge i due to other charges.29

29The integral form of eq. (113),

UEM =
1
2

∫ (
ρV (C) +

J ·A(C)

c

)
dVol, (115)
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C.1 Direct Calculation of the Interaction Electromagnetic Energy

in the Darwin Approximation

The interaction electromagnetic energy associated with a set {i} of charges ei can be written,

UEM =
∑
i>j

∫
Ei · Ej + Bi · Bj

4π
dVol. (116)

The electric and magnetic fields of a charge e at distance R from an observer follow in
the Darwin approximation from the potentials (110),

E = −∇V (C) − ∂A(C)

∂ct
=

e

R2
n̂ − e

2c2R

[
a + (a · n̂)n̂ +

3(v · n̂)2 − v2

R
n̂

]
≡ E(C) + Erot, (117)

B = ∇ ×A(C) =
ev × n̂

cR2
, (118)

where a = dv/dt is the (present) acceleration of the charge,30 and,

E(C) =
e

R2
n̂ , Erot = − e

2c2R

[
a + (a · n̂)n̂ +

3(v · n̂)2 − v2

R
n̂

]
. (119)

See [43] for applications of these relations to considerations of electromagnetic momentum
rather than energy.

The potentials (107) are in the Coulomb gauge, so that ∇ · A(C) = 0, and hence,

∇ · Erot = 0. (120)

The electric part of the energy (112) can be written,

UE =
∑
i>j

eiej

∫
n̂i · n̂j

4πR2
i R

2
j

dVol +
∑
i>j

∫ (
ein̂i · E′

j

4πR2
i

+
ejn̂j · E′

i

4πR2
j

)
dVol + O

(
1

c4

)
. (121)

It is well known (see, for example, the Appendix of [87]), that,∫
n̂i · n̂j

4πR2
i R

2
j

dVol =
1

Rij
. (122)

For the second integral in eq. (117), we integrate by parts to find,31∫
n̂i · Erot, j

R2
i

dVol = −
∫

Erot, j · ∇
(

1

Ri

)
dVol =

∫
1

Ri
∇ ·Erot, j dVol = 0. (124)

shows the possibly surprising result that the electromagnetic energy in the Darwin approximation has the
form of that for a system of quasistatic charge and current densities ρ and J (which implies use of the
Coulomb gauge; see, for example, sec. 5.16 of [82] or secs. 31 and 33 of [57]).

30Sec. 65 of [54] shows that in the Darwin approximation the Liénard-Wiechert potentials (Lorenz gauge)
reduce to V (L) = e/R + (e/2c2)∂2R/∂t2 and A(L) = ev/cR, from which eqs. (113)-(115) also follow.

31The surface integral resulting from the integration by parts in eq. (124) vanishes as follows:∫
Erot, j

Ri
· dArea = −

∫
[aj + (aj · n̂)n̂]

2c2RiRj
· dArea +

∫
(· · ·)
RiR2

j

· dArea → −
∫

aj · n̂
c2

dΩ = 0. (123)
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Thus, the electric part of the interaction energy is,

UE =
∑
i>j

eiei

Rij
, (125)

which holds for charges of any velocity when we work in the Coulomb gauge.
The magnetic part of the energy (112) is,

UM =
∑
i>j

∫
Bi · Bj

4π
dVol =

∑
i>j

∫
Bi · ∇ × A

(C)
j

4π
dVol =

∑
i>j

∫
A

(C)
j · ∇× Bi

4π
dVol

=
∑
i>j

eivi · A(C)
j (ri)

c
=

∑
i>j

eiej

2c2Rij
[vi · vj + (vi · n̂ij)(vj · n̂ij)] , (126)

where we note that B · ∇ × A = εlmnBl∂An/∂xm, so that integration by parts leads to
−εlmnAnBm∂Bl/∂xm = εnmlAn∂Bl/∂xm = A ·∇×B (and not to −A ·∇×B), and that,32

∇ ×Bi =
4π

c
Ji +

∂Ei

∂ct
=

4πeivi

c
δ(r − ri) −∇∂V

(C)
i

∂ct
− ∂2A

(C)
i

∂(ct)2
. (128)

Thus, we again find the interaction electromagnetic energy UEM = UE + UM to be given by
eq. (110).
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