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1 Problem

A “turnstile” antenna [1, 2] consists of a pair of linear dipole antennas oriented at 90° to
each other, and driven 90° out of phase, as shown in Fig. 1.
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Figure 1: A “turnstile” antenna. From [2].

The linear antennas could be either dipoles as shown in the figure, or simply monopoles.
If a pair of loops antennas is used instead, the configuration is called an “eggbeater” antenna.

Consider the case that the length of the linear antennas is small compared to a wavelength,
so that it suffices to characterize each antenna by its electric dipole plyze_”“’t, where the
magnitudes p; and py are equal but their phases differ by 90°, the directions of the two
moment differs by 90°, i.e., p1 - p2 = 0, and w is the angular frequency.

Discuss the angular momentum of the fields of a turnstile antenna.

2 Solution

We consider a basic turnstile antenna whose component antennas lie in the z-y plane at a

common point. Then, we can write the total electric dipole moment of the antenna system

as,!
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where pg is a real constant.

In Gaussian units (and in vacuum) these fields can be written as (see, for example, sec. 9.1
of [3]),
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where I = r/r is the unit vector from the center of the dipole to the observer, ¢ is the speed
of light, and k& = w/c. The time-average Poynting vector is, in spherical coordinates (r, 0, ¢),
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The time average density of field momentum is (S) /c?, so the time-average density of field
angular momentum is,

We now restrict our attention to the far zone where the electromagnetic fields are,
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whose components in spherical coordinates are,
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noting that r xx = sinqﬁé—l—cos@cosqﬁ(}ﬁ, andrxy = — cosqﬁé—i—cos@sinqﬁc}ﬁ. In the plane of
the antenna, 0 = 90°, the electric field has no # component, and hence no z component; the
turnstile radiation in the horizontal plane is horizontally polarized. In the vertical direction,
0 = 0° or 180°, the radiation is circularly polarized. For intermediate angles 6 the radiation
is elliptically polarized.
The magnitudes of the fields are,
2
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so the time-averaged radiation pattern is,

d(P) c® 5 cpok’
= B =7r° (Starr) =
ds2 8T ™ (Starr) 8T

(1 + cos?0). (11)



The intensity of the radiation varies by a factor of 2 over the sphere. Compared to other
simple antennas, this pattern is remarkably isotropic. The radiated power is greatest for
0 = 0 or 180° in which directions the polarization is purely circular. The total time-average
radiated power is,
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This density flows radially outward at the speed of light, and we can speak of the rate of
radiation of angular momentum in the far zone as,
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where p is the radial unit vector in cylindrical coordinates (p, ¢, z). Integrating over solid
angle, we find that,
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which seems consistent with the notion that photons have angular momentum J = h = U/w.

2.1 Orbital and Spin Angular Momentum

The formalism that 1 = rx S/c? implies that the density (and flow) of angular momentum has
no radial component. However, we say that the fields along the z-axis are circularly polarized
(and elliptically polarized in general). This suggests that there should be a description in
which we can identify an angular momentum with a radial component for the fields along
the z-axis.

A decomposition has been given in [4, 5] whereby the total field angular momentum can
be written in three terms,
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where A, is the (gauge-invariant) rotational part of the (gauge-dependent) vector potential
A. That is, A, is the vector potential in the Coulomb gauge.

PEM,orbital =
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2If the dipole moment pg were purely real, as for a small linear antenna, no angular momentum would
be radiated.

3The canonical momentum Peanonical, i 1S nonzero only at the positions of charges e;, and does not
contribute to angular momentum in the far zone.



The electric field is related to the Coulomb-gauge potentials by,
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where the approximation hold in the far zone, noting that —VV () is the instantaneous

electric dipole field, which falls off as 1/r®. Then, in the far zone we have that the time-
average spin-angular-momentum density, according to eq. (17), is,
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noting that z = cos fr —sin# 6. This is an appealing result, in that the spin angular momen-
tum is full strength along the z-axis and vanishing in the x-y plane where the polarization
is linear.

The time-average orbital-angular-momentum density in the far zone is, according to
egs. (17)-(18),
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We expect that this angular momentum density to vary as 1/r*, so we must evaluate
(PEM orbital) to order 1/73, which requires keeping terms in E and A, to order 1/r%.
However, neither (lg,,) of eq. (13) nor (Igm orbital) has a radial component, so that (Igaspin)+

(IeM orbita) does not equal (lg,y).
That is, while the notion of a classical “spin” angular momentum is appealing as a

precursor to a quantum analysis, it is not fully consistent in a classical-only view.
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