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1 Problem

[This problem is too complicated to be a good illustration of “hidden” momentum in an “all-
mechanical” system. Instead, see [1]-[6]. In particular, [5] shows that there is no “hidden”
momentum in a compressed rod.

It is the author’s view that an all-mechanical system (whose volume contains no macro-
scopic fields) contains no “hidden” momentum, see sec. 4 of [9]. The approximate stress
tensor considered below seems to be insufficiently accurate for a meaningful calculation of
an oscillating spring.]

The term “hidden” momentum was popularized by Shockley [7] in considerations of an
electromechanical example, and essentially all subsequent use of this term has been for such
examples, where one considers the system to consist of matter plus electromagnetic fields.

Recently, a definition of “hidden” momentum has been proposed [8] (see also [9]) which
can be applied to mechanical systems as well, where a subsystem has a specified volume and
can interact with the rest of the system via contact forces and/or transfer of mass/energy
across its surface (which can be in motion),

Phidden ≡ P− Mvcm −
∮

boundary

(x − xcm) (p− ρvb) · dArea = −
∫

f0

c
(x− xcm) dVol, (1)

where P is the total momentum of the subsystem, M = U/c2 is its total “mass”, U is its total
energy, c is the speed of light in vacuum, xcm is its center of mass/energy, vcm = dxcm/dt,
p is its momentum density, ρ = u/c2 is its “mass” density, u is its energy density, vb is the
velocity (field) of its boundary, and,

fμ =
∂T μν

∂xν
, (2)

is the 4-force density exerted on the subsystem by the rest of the system, with T μν being
the stress-energy-momentum 4-tensor of the subsystem.

Does an isolated, oscillating spring contain “hidden” momentum according to the above
definition? Consider also the subsystem of the spring to one size of its center.

2 Solution

We consider the spring to be a bar of rest mass m, rest length L, cross sectional area A and
Young’s (elastic) modulus E. For simplicity, we assume that Poisson’s ratio is zero for the
bar/spring.

We analyze the system in the lab frame, in which the center of the bar is at rest at the
origin, and the oscillations are in the x-coordinate.
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2.1 The Motion in a Low-Velocity Approximation

The low-velocity equation of motion for the displacement s(x, t) of an element dx of the
spring/bar, centered on x, is,1

F (x + dx) − F (x) = F ′(x) dx =
d

dt

(
ρA dx

ds

dt

)
≡ d

dt
(ρA dx ṡ) ≈ m

dx

L
s̈, (3)

where F (x) is the internal force across the y-z plane through point (x, 0, 0), and ρ is the
effective mass density of the moving element. That is,

s̈ =
L

m
F ′(x). (4)

Due to the internal force F the element dx has stretched by amount,

Δx = s(x + dx) − s(x) = s′(x)dx. (5)

We recall that stretching of an elastic medium can be related to its elastic modulus E as,2

F

A
= E

ΔL

L
. (6)

Considering the entire bar/spring, the modulus E and the spring constant k are related by,

k =
EA

L
. (7)

For the element dx, eq. (6) becomes,

F = EA
Δx

dx
=

kL

dx
Δx = kLs′. (8)

Inserting this in the equation of motion (4) we find the wave equation,

s̈ =
kL2

m
s′′. (9)

We seek standing wave solutions of angular frequency ω,

s = g(x) sinωt. (10)

Inserting this in eq. (9) we find,

g′′ = −m ω2

kL2
g, (11)

which is solved by,

g = a sin

(√
m

k

ω x

L

)
, (12)

1See sec. 2.4 for the next approximation.
2Strictly, eq. (6) holds only when the entire spring is at rest, so this analysis is not valid for ṡ large

compared to the speed of light.
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where a is a constant, noting that the center of mass must remain fixed at x = 0, which
requires the displacements to be antisymmetric in x.

The boundary conditions at the ends of the bar, x = ±L/2, are that the stretch is zero
there,

s′(±L/2, t) = 0, (13)

which implies that, √
m

k

ω

2
=

(2n + 1)π

2
, (14)

for n an integer. We will consider only the lowest mode of oscillation, n = 0, for which the
angular frequency of oscillation is,

ω = π

√
k

m
, (15)

and the standing waveform is,

s(x, t) = a sin
πx

L
sinωt. (16)

The internal force F of eq. (8) is,

F (x, t) = kLs′ = πak cos
πx

L
sinωt, (17)

where positive F implies that the element dx is under tension. The velocity ṡ is,

ṡ(x, t) = a ω sin
πx

L
cos ωt. (18)

2.2 Stress-Energy-Momentum Tensor

As discussed in sec. 2.3.1 of [5], keeping terms of order v2/c2 in the stress tensor of a me-
chanical system leads to inconsistencies, so we restrict the analysis here to order v/c, i.e.,
order ṡ/c and s′/c.

In the rest frame (the � frame) of an element dx of the bar/spring the stress-energy-
momentum tensor has the form,

T �μν =

⎛
⎜⎜⎜⎜⎜⎜⎝

ρ�c2 0

−F/A 0 0

0 0 0 0

0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (19)

where the effective mass density ρ� is normalized to the unstretched volume A dx, and in-
cludes a contribution from the elastic energy of the stretched segment (whose spring constant
is kL/dx, recalling eq. (8)),

ρ� =
m

AL
+

1

c2

1

A dx

1

2

kL

dx
Δx2 =

m

AL
+

kLs′2

2Ac2
, (20)
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recalling eq. (5).
In the lab frame the segment has velocity ṡ with Lorentz factor,

γ(x) =
1√

1 − ṡ2/c2
, (21)

and the Lorentz transformation from the � frame of the segment to the lab frame is,

Lμν(x) =

⎛
⎜⎜⎜⎜⎜⎜⎝

γ γṡ/c 0 0

γṡ/c γ 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (22)

Hence, the stress-energy-momentum tensor in the lab frame is,

T μν = (LT�L)μν =

⎛
⎜⎜⎜⎜⎜⎜⎝

γ2(ρ�c2 − ṡF/Ac2) γ2ṡ(ρ�c2 − F/A)/c 0 0

γ2ṡ(ρ� − F/A)/c γ2(ṡ2ρ� − F/A) 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (23)

As a check, we evaluate the 4-force density (2) in the interior of the compresses rod,
where it should be zero.

f0 = ∂0T
00 + ∂iT

0i =
∂T 00

∂ct
+

∂T 0x

∂x
= −γ2s̈F

Ac3
+ γ2ṡ′

(
ρ�c − F

Ac

)

=
γ2a ω2F

Ac3
sin

πx

L
sinωt +

πγ2a ω

L

(
ρ�c − F

Ac

)
cos

πx

L
cos ωt (24)

2.3 “Hidden” Momentum

2.3.1 Entire Spring

The momentum density p in the oscillating bar/spring is, recalling eqs. (10) and (20),

p =
T 0x

c
x̂ = γ2ṡ

(
ρ� − F

Ac2

)
x̂ ≈

(
1 +

ṡ2

c2

)
ṡ

(
m

AL
+

kLs′2

2Ac2
− kLs′

Ac2

)
x̂

≈ m

AL
ṡ

(
1 − kL2s′

mc2

)
x̂, (25)

where in this section we neglect terms higher than second order in s and its derivatives. The
total momentum P is,

P = A

∫ L/2

−L/2

p dx = 0, (26)
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as ṡ is antisymmetric in x while s′ is symmetric, such that p is antisymmetric. Of course,
the position xcm and the velocity vcm of the center of mass/energy are zero in the lab frame.
If we take the boundary of the bar/spring to be its physical surface, then the velocity of the
bounding surfaces corresponding to x = ±L/2 is vb = ṡ x̂. Then, the boundary integral in
the first form of “hidden” momentum in eq. (1) is,

∮
boundary

(x − xcm) (p− ρvb) · dArea

=
AL

2
[px(L/2) + px(−L/2) − ρ(L/2)ṡ(L/2) − ρ(−L/2)ṡ(−L/2)] x̂ = 0, (27)

and hence the “hidden” momentum is zero,

Phidden = P− Mvcm −
∮

boundary

(x − xcm) (p− ρvb) · dArea = 0. (28)

2.3.2 The Spring for x > 0

Consider now the subsystem consisting of the bar/spring at x > 0.
The total momentum P is,

P(x > 0) = A

∫ L/2

0

dxp ≈ m

L

∫ L/2

0

dx ṡ

(
1 − kL2s′

mc2

)
x̂

=
m

L

∫ L/2

0

dx

(
aω cos ωt sin

πx

L
− πa2ωkL

4mc2
sin 2ωt sin

2πx

L

)
x̂

=
m a ω

π
cos ωt− a2 ωkL

8c2
sin 2ωt. (29)

recalling eq. (25). The mass density ρ is, recalling eq. (20),

ρ =
T 00

c2
≈ γ2ρ� ≈ m

AL

(
1 +

ṡ2

c2

)
+

kLs′2

2Ac2
=

m

AL

(
1 +

ṡ2

c2
+

kL2s′2

2mc2

)
, (30)

so,

M = A

∫ L/2

0

dx ρ ≈ m

L

∫ L/2

0

dx

(
1 +

ṡ2

c2
+

kL2s′2

2mc2

)

=
m

L

∫ L/2

0

dx

(
1 +

a2 ω2

c2
cos2 ωt sin2 πx

L
+

π2a2k

2mc2
sin2 ωt cos2 πx

L

)

=
m

2
+

π2a2k

4c2
cos2 ωt +

π2a2k

8c2
sin2 ωt =

m

2
+

π2a2k

8c2
+

π2a2k

8c2
cos2 ωt, (31)

and,

Ṁ ≈ −π2a2kω

8c2
sin 2ωt. (32)
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We can also calculate,

Mxcm = A

∫ L/2

0

dx (x + s)ρ ≈ m

L

∫ L/2

0

dx

[
x

(
1 +

ṡ2

c2
+

kL2s′2

2mc2

)
− ṡ

]

=
m

L

∫ L/2

0

dx

[
x

(
1 +

a2ω2

c2
cos2 ωt sin2 πx

L
+

π2a2k

2mc2
sin2 ωt cos2 πx

L

)
− a ω cos ωt sin

πx

L

]

=
mL

4
− a ω m

π
cosωt (33)

recalling eq. (18) for ṡ. Then,

Mẋcm =
d(Mxcm)

dt
− Ṁ

M
Mxcm, (34)

where from eq. (33),

d(Mxcm)

dt
≈ m

L

∫ L/2

0

x

(
2ṡs̈

c2
+

kL2s′ṡ′

mc2

)
− a ω2m

π
cosωt. (35)

The boundary integral is,
∮

boundary

(x − xcm) (p − ρvb) · dArea

=
AL

2
[px(L/2) − ρ(L/2)ṡ(L/2) − px(0) − ρ(0)ṡ(0)] x̂

≈ AL

2

[
m

AL
ṡ

(
1 − kL2s′

mc2

)
− m

AL
ṡ

]
L/2

x̂

= −kL2ṡs′

2c2

∣∣∣∣
L/2

x̂ = 0. (36)

Combining these results, the x-component of the “hidden” momentum in the bar/spring for
x > 0 is,

Px,hidden(x > 0) = Px − Mẋcm −
∮

boundary

(x − xcm) (p − ρvb) · dArea (37)

≈ m

L

∫ L/2

0

−ṡ
KL2s′

mc2
dx − m

L

∫ L/2

0

(x + s)

(
2ṡs̈

c2
+

KL2s′ṡ′

mc2

)
+

Ṁ

M
Mxcm.

The first integral is zero since ṡs′ ∝ sin 2πx/L. In the second integral,

2ṡs̈

c2
+

kL2s′ṡ′

mc2
=

a2ω3 sin 2ωt

2c2

(
3 sin2 πx

L
− 1

)
, (38)

so, noting that,

∫ L/2

0

x
(
3 sin2 πx

L
− 1

)
dx =

L2

16
,

∫ L/2

0

sin
πx

L

(
3 sin2 πx

L
− 1

)
dx =

L

π
, (39)
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we have,

Px,hidden(x > 0) ≈ −ma2ω3 sin 2ωt

2c2

(
L

16
+

a cosωt

π

)
+

Ṁ

M
Mxcm. (40)

Possibly the “hidden” momentum would be zero at order 1/c2 if we used the relativistic
form of the oscillation.

2.4 Relativistic Oscillation at Order 1/c2

“Hidden” momentum in electromechanical examples is always of order 1/c2, so we consider
the oscillations of the bar/spring at this order.

The relativistic version of the equation of motion (9) is,

γKL2s′′ =
d

dt
γm�ṡ = γ̇m�ṡ + γm�s̈ = γm�s̈

(
1 +

2γ2ṡ2

c2

)
≈ m�s̈

(
1 +

5ṡ2

2c2

)
, (41)

where,

γ =
1√

1 − ṡ2/c2
, (42)

and the approximation holds at order 1/c2. We seek a perturbative solution of the form,

s = s0 + s1 + . . . , (43)

where s0 satisfies the nonrelativistic equation of motion (9) and is given by eq. (16). Then,
s1 is of order 1/c2, obeys the boundary condition that s′1(±L/2) = 0, and vanishes at x = 0
(being a term in the lowest mode of oscillation). Using eq. (43) in eq. (37) for the “hidden”
momentum at x > 0, the first integral is again zero, while the terms in the second integral
due to s1 are of order 1/c4.

Thus, the nonzero “hidden” momentum (40) remains valid at order 1/c2, and provides
an example of “hidden” momentum in a subsystem of an all-mechanical system.
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