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1 Problem

Show that it is also possible to (re)define the scalar potential V of electrodynamics to have
no time dependence, such that the time-varying part of the electric field is entirely due to
the vector potential A.

2 Solution

In electrostatics the electric field E can be related to a (static) scalar potential V according
to,

E = −∇V0, (1)

and inversely,

Va − Vb = −
∫ a

b

E · dl (2)

expresses the fact that a unique voltage difference Va − Vb can be defined for any pair of
points a and b independent of the path of integration between them. The static electric field
is said to be conservative, and eqs. (1)-(2) are equivalent to the vector-calculus relation,

∇ × E = 0. (3)

In electrodynamics Faraday discovered (as later interpreted by Maxwell) that eq. (3)
must be generalized to,

∇ × E = −∂B

∂t
, (4)

in SI units, which implies that time-dependent magnetic fields B lead to additional electric
fields beyond those associated with the scalar potential V . The nonexistence (so far as we
know) of isolated magnetic charges (monopoles) implies that,

∇ · B = 0, (5)

and hence that the magnetic field can be related to a vector potential A according to,

B = ∇ × A. (6)

Using eq. (6) in (4), we can write,

∇ ×
(
E +

∂A

∂t

)
= 0, (7)
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which implies that E + ∂A/∂t can be related to a scalar potential V as −∇V , i.e.,

E = −∇V − ∂A

∂t
. (8)

We restrict our discussion to media for which the dielectric permittivity is ε0 and the
magnetic permeability is μ0. Then, using eq. (8) in the Maxwell equation,

∇ · E =
ρ

ε0
(9)

leads to,

∇2V +
∂

∂t
∇ · A = − ρ

ε0

, (10)

and using eqs. (6) and (8) in the Maxwell equation,

∇ × B = μ0J +
1

c2

∂E

∂t
(11)

leads to,

∇2A − 1

c2

∂2A

∂t2
= −μ0J + ∇

(
∇ · A +

1

c2

∂V

∂t

)
. (12)

Suppose that the charge and current densities ρ and J consist of time-independent terms
plus terms with time dependence e−iωt. That is,

ρ = ρ0 + ρω e−iωt, and J = J0 + Jω e−iωt. (13)

Then, eq. (10) indicates that we can choose that the scalar potential V = V0 +Vω e−iωt obeys
the static relation,

∇2V = −ρ0

ε0
, Vω = 0, (14)

provided the vector potential A = A0 + Aω e−iωt obeys the gauge condition,

∂

∂t
∇ · A = −iω∇ · Aωe−iωt = −ρωe−iωt

ε0

, (15)

i.e.,

∇ · Aω = − iρω

ε0ω
. (16)

We also choose that the time-independent part A0 of the vector potential satisfies the usual
condition of magnetostatics,

∇ · A0 = 0, (17)

in which case eq. (12) shows that the vector potentials obeys the relations,

∇2A0 = −μ0J0, and ∇2Aω + k2Aω = −μ0Jω − i∇ρω

ε0ω
. (18)
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The formal solutions to equations (14) and (18) are,

V (r) =
1

4πε0

∫
ρ0(r

′)
R

dVol′, (19)

A0(r) =
μ0

4π

∫
J0(r

′)
R

dVol′, (20)

and,

Aω(r) =
μ0

4π

∫
Jω(r′)eikR

R
dVol′ +

i

4πε0ω

∫ ∇ρω(r′)eikR

R
dVol′ , (21)

where R = |r − r′|.
While the forms (19)-(21) are not used in practice, they show how it is possible to define

the scalar potential V to be purely static, such that the time-dependent voltage Vω is always
zero.

The conditions (16)-(17) on ∇ ·A are the so-called gauge conditions of the static-voltage
gauge. An interesting review of other gauge conditions is given in [1] (see also [2]). The
static-voltage gauge is called the Coulomb-static gauge in [3].

In electrostatics, one can invert the present problem and set the scalar potential to zero
and derive the electric field from the vector potential A = t∇V , where V would be the scalar
potential when A = 0 [4]. Indeed, even in electrodynamics one can define the scalar potential
to be zero, as first noted by Gibbs [5, 6]; the Gibbs gauge is also called the Hamiltonian or
temporal gauge [7].
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