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1 Problem

What force F is required to lift an inextensible string at constant acceleration a from a table,
if effects of motion of the string on the table can be ignored.

Discuss also the cases of a constant upward force F , and of free fall of the string onto
the table.

This example was first considered by Buquoy (1815) [1], in one of the earliest analyses of
a variable-mass problem. See also [2]. However, the only reference to Buquoy in the 1800’s
may be that of Poisson (1819) [3].

2 Solution

For a string of mass λ per unit length whose upper end is at height h above the table, the
total (vertical) force on the portion of the string above the table is F − λgh, where F is the
force on the upper end of the string. In this, we have ignored any possible force of the table
on the string that has been lifted. The momentum of the string is p = λhḣ, such that,

Ftot = F − λgh = ṗ = λhḧ + λḣ2, F = λh(g + ḧ) + λḣ2. (1)

For constant acceleration a beginning at t = 0 when h = h0 and ḣ = v0, we have for t > 0
that,

ḣ = v0 + at, h = h0 + v0t +
at2

2
, F = λ

[(
h0 + v0t +

at2

2

)
(a + g) + (v0 + at)2

]
. (2)

A nonzero initial velocity v0 implies that a large impulse was applied at t = 0; in this
scenario the force required to lift the string at this constant velocity for t > 0 would be
F = λ[g(h0 + v0t) + v2

0].

A delicacy in the above argument concerns the tension T in the string just above the
table. This must be nonzero, since this is the force that accelerates length ḣ dt of the string
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from rest on the table to vertical velocity ḣ during time dt. The change in momentum during
time dt of this segment of the string is dp = λḣ2 dt, which implies that T = λḣ2.

If we suppose that there exists an equal and opposite force on the string, due to the
string on the table, then in eq. (1) the total force on the portion of the string off the table
would be F − λgh− T , which would imply that F = λh(g + ḧ) + 2λḣ2. However, this would
be “double counting” of the term λḣ2, and eqs. (1)-(2) are correct as is.

Moral: it is delicate to use Newton’s third law in variable-mass problems.1

An elaboration of the present example is discussed in sec. 4 of [4], in which the upper
end of the string is attached to a mass that is suspended from a ceiling by a spring.

2.1 Constant Upward Force

The equation of motion follows from eq. (1) as,

dhḣ

dt
=

F

λ
− gh, hḣ

d hḣ

dt
=

F

λ
hḣ − gh2ḣ, (3)

which integrates to,

1

2
(hḣ)2 =

F

λ

h2

2
− gh3

3
, ḣ2 =

F

λ
− 2gh

3
, (4)

supposing that h = 0 = ḣ at time t = 0. Note that if F is small enough, the increasing
weight of the string off the table will reduce the upward velocity to zero when h = 3F/2gλ.
If this h is less than the length l of the string, i.e., F < 2gλ/3, the string falls back onto the
table (as will be confirmed after eq. (6) below).

Supposing that F is larger than this, eq. (4) leads to,

t =

∫ h

0

dh√
F/λ − 2gh/3

=
3

g

(√
F

λ
−
√

F

λ
− 2gh

3

)
, h =

√
F

λ
t − gt2

6
, (5)

up to time

t =
3

g

√
F

λ

(
1 −

√
1 − 2gλl

3F

)
, (6)

1This point has been emphasized in [5, 6], and is illustrated in the author’s examples [7, 8].
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when the string is lifted completely off the table.
However, if F < 2gλ/3, the string reaches a maximum height hmax = 3F/2gλ at time

t = 3
√

F/λ /g, after which it falls freely back onto the table. The time of the free fall is

Δt =
√

2hmax/g =
√

3F/λ /g, and the motion of the strings lasts only for a total time

(3 +
√

3)
√

F/λ /g.

2.2 Free Fall of the String onto the Table

If the lower end of a freely falling string reaches the table with velocity v, the potion of the
string not yet on the table continues to fall freely for additional time (v/g)(

√
1 + 2gl/v2−1),

after which the string is at rest on the table. For v = 0, the additional fall time is
√

2l/g,
while for large v it is just l/v.

The above argument supposes that as the string strikes the table the kinetic energy of
the string is absorbed by the table and/or the portion of the string on the table. Another
possible view is that no such energy transfer occurs. If so, then the falling portion of the
string has kinetic energy equal to the change in gravitational potential energy as the string
falls. As a consequence, the kinetic energy of the falling string is finite as the length of
that portion of the string goes to zero, with the implication that the velocity of the “tip” of
the falling string diverges, and exceeds the speed of sound. This whip-like behaviour would
imply that a “sonic boom” occurs as the string falls. However, such “sonic booms” are not
observed in the lab.2

A variant of this problem is to ask what is the force/pressure of the chain on the table,
particularly at the moment when the chain is first entirely on the table.3
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