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The term “hidden momentum” was introduced by Shockley [1] in 1967 to describe the
small amount of net mechanical momentum that must exist in systems “at rest” that have
nonzero electromagnetic field momentum.1 The classic example is a current loop (Ampèrian
magnetic dipole) in an external static electric field (perhaps due to a single electric charge)
[4, 5].2 This example had been considered by J.J. Thomson in 1904 [7, 8, 9], when he deduced
via two different methods that the field momentum is (in Gaussian units),

PEM =
E × m

c
, (1)

where the external electric field E is approximately uniform over the magnetic moment m
(where m = IA/c for a loop of area A with current I), and c is the speed of light in vacuum.3,4

In this note we review Thomson’s various comments on electromagnetic field momentum,
transcribing them from Maxwell’s vector-component notation [11, 12] into contemporary
usage.

1 Radiation Pressure and the Momentum of Light

Apparently, Kepler considered the pointing of comets’ tails away from the Sun as evidence
for radiation pressure of light [18]. After his unification of electricity, magnetism and light
[11], Maxwell argued (sec. 792 of [12]) that the radiation pressure P of light is equal to its
energy density u,

P = u =
D2

4π
=

H2

4π
(2)

for an electromagnetic wave with fields D and H in vacuum, but he did not explicitly
associate this pressure with momentum in the electromagnetic field.5

Building on Faraday’s electrotonic state,6 Maxwell did have a conception of electromag-
netic momentum, computed as [11, 12] (see also [17]),

P
(Maxwell)
EM =

∫
ρA(C)

c
dVol, (3)

1Shockley’s notion was clarified in [2]. For a general definition of “hidden” momentum, see [3].
2For discussion of a recent misunderstanding of this example, see [6].
3This example illustrates that “hidden” momentum is an effect of order 1/c2, and hence can be called

“relativistic”. Thomson worked in the ESU and EMU systems, in which factors of c do not appear in
Maxwell’s equations (nor in eq. (1)), so the “relativistic” aspects of his analyses were often not evident.

4The result (1) next appears in eq. (7.85) of [4], and then in [10], which latter cites Thomson [9] regarding
Gilbertian magnetic monopoles but not for Ampèrian magnetic dipoles.

5Maxwell (and Thomson and Lorentz and most others influenced by the concept of a material aether),
regarded the fields D and H as more “basic” than E and B.

6Art. 60 of [13], Art. 1661 of [14], Arts. 1729 and 1733 of [15], and Art. 3269 of [16].
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where ρ is the electric charge density and A(C) is the vector potential in the Coulomb gauge
(that Maxwell used prior to the explicit recognition of gauge conditions [19]), but the form
(3) seems to associate the momentum with charges rather than with fields. See also sec. 4.

In 1891, J.J. Thomson noted [20] that a sheet of electric displacement D (in the plane
of the sheet) which moves perpendicular to the sheet with velocity v must be accompanied
by a sheet of magnetic field H = v/c × D according to the free-space Maxwell equation
∇ × H = (1/c) ∂D/∂t.7,8 Then, the motion of the energy density of these sheets implies
there is also a momentum density, eqs. (2) and (6) of [20],

p
(Thomson)
EM =

D × H

4πc
. (4)

Also in 1891, Heaviside identified the momentum of the free ether in sec. 26 of [25] as,9

p
(Heaviside)
EM =

D × B

4πc
. (5)

This was a clarification of his discussion in 1886, eq. (7a) of [28], of a magnetoelectric force
D/4πc × ∂B/∂t.10

In 1893, Thomson transcribed much of his 1891 paper into the beginning of Recent
Researches [31], adding the remark (p. 9) that the momentum density (4) is closely related
to the Poynting vector [32, 33],11,12

S =
c

4π
E × H. (6)

The form (4) was also used by Poincaré in 1900 [39], following Lorentz’ convention [40]
that the force on electric charge q be written q(D + v/c×H), and that the Poynting vector
be (c/4π)D × H. In 1903 Abraham [41] argued for,

p
(Abraham)
EM =

E ×H

4πc
=

S

c2
, (7)

and in 1908 Minkowski [42] advocated the form,13,14

p
(Minkowski)
EM =

D × B

4πc
. (8)

7This example was illustrated more clearly by Feynman in Sec. 18-4 of [23], who considered a sheet of
uniform charge density that is suddenly given a velocity in the plane of the sheet. Then, Faraday’s law,
∇×E = −(1/c) ∂B/∂t, combined with the Maxwell equation for H implies that the velocity of propagation
of the fields E and B (or D and H) away from the charged sheet is v = c in vacuum, which point seems to
have been initially overlooked by Thomson, although noted by him in Sec. 265 of [24].

8A variant of Thomson’s argument was given by Heaviside in 1891, Sec. 45 of [21].
9See also p. 557 of [26] and p. 495 of [27].

10Heaviside also mentioned this concept in 1889 on pp. 399-330 of [30].
11Thomson argued, in effect, that the field momentum density (4) is related by pEM = S/c2 = uv/c2

[20, 31]. See also eq. (19), p. 79 of [22], and p. 6 of [34]. The energy flow velocity defined by v = S/u cannot
exceed c; see, for example, sec. 2.1.4 of [35] and sec. 4.3 of [36].

12The idea that an energy flux vector is the product of energy density and energy flow velocity seems to
be due to Umov [37], based on Euler’s continuity equation [38] for mass flow, ∇ · (ρv) = −∂ρ/∂t.

13Minkowski, like Poynting [32], Heaviside [33] and Abraham [41], wrote the Poynting vector as E × H.
See eq. (75) of [42].

14For some remarks on the “perpetual” Abraham-Minkowski debate see [43].
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Thomson did not relate the momentum density (4) to the radiation pressure P of light,
eq. (2), until 1904 (p. 355 of [8]) when he noted that P = F/A = c pEM = D2/4π = H2/4π
for fields moving with speed c in vacuum, for which D = H. He also gave an argument
(p. 348 of [8]) that the forms (3) and (4) for field momentum are equivalent once the sources
of the fields are taken into account.15

2 Magnetic Pole plus Electric Charge

Thomson’s 1904 paper [8] begins with considerations of a (Gilbertian) magnetic (mono)pole
p and electric charge q, both at rest.16

2.1 Field Momentum

Suppose the electric charge q is at the origin, and the magnetic pole p at distance R away
along the positive z-axis, as shown in the figure below. Then, the (Abraham) field-momentum
density is, in spherical coordinates (r, θ φ),

pEM =
E× H

4πc
=

pq sinα

4πc r2r′2
φ̂ =

pqR sin θ

4πc r2r′3
φ̂ , (9)

noting that H = p/r′2 for the magnetic pole, and that sin α/R = sin θ/r′ by the sine law.

15Possibly, Thomson delayed publishing the relation of radiation pressure to his expression (4) until he
could demonstrate its equivalence to Maxwell’s form (3). For other demonstrations of this equivalence, see
Appendix B of [3], and [44].

16The motion of an electric charge with respect to a much heavier magnetic pole lies on the surface of a
cone, as discussed in [45, 46].
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The electromagnetic momentum (9) circulates azimuthally, such that the total electro-
magnetic momentum PEM is zero,

PEM =

∫
pEM dVol = 0. (10)

Further, the total electromagnetic-field momentum for any configuration of static magnetic
poles and electric charges is zero, being the sum of the momenta of all pairs of such particles.
Hence, Thomson demonstrated the notable fact that Electromagnetic field momentum
can be nonzero only if electric charges, or Gilbertian magnetic poles (should
they exist), are in motion.17

2.2 Field Angular Momentum

Thomson also considered the angular momentum in the electromagnetic fields of the pole
plus charge,

LEM =

∫
r × pEM dVol = −pqR

4πc

∫
r sin θ

r2r′3
dVol θ̂. (11)

This has only a nonzero z-component,

LEM,z =
pqR

2c

∫ 1

−1

sin2 θ d cos θ

∫ ∞

0

r dr

(r2 − 2rR cos θ + R2)3/2

=
pqR

2c

∫ 1

−1

sin2 θ d cos θ
1 + cos θ

R sin2 θ
=

pq

c
, (12)

using Dwight 380.013. The angular momentum vector LEM points from the electric charge
q to the magnetic pole p.

In 1904 the notion of quantizing angular momentum was still years away, and the provoca-
tive result (12), that the angular momentum of a magnetic pole plus electric charge is in-
dependent of their separation, went unremarked until 1931 when Dirac [48] argued that
pq/c = �/2. See also sec. 6.12 of [49].18

3 Magnetic Dipole plus Electric Charge

According to the result of sec. 2.1, a Gilbertian magnetic dipole plus electric charge, all at
rest, has zero total field momentum. Thomson then considered the nontrivial case of an
Ampèrian magnetic dipole plus electric charge in two different models.

17The nonzero field momentum (1) is associated with a “static” current loop, which involves electric
charges in motion. See also [47].

18The field angular momentum (12) had been deduced by Poincaré in 1896 [50, 51], but was not recognized
as such at the time.
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3.1 Ampèrian Magnetic Dipole as a Small Solenoidal Coil

On p. 347 of [8], Thomson noted that the external magnetic field of a Gilbertian magnetic
dipole is the same as that of an Ampèrian dipole, so the field momentum of the latter (in the
presence of an electric charge) is just the momentum associated with the “interior” of the
dipole. If the magnetic dipole is realized by a coil of area A and length l with N turns that
carry current I , then the interior axial field is Hin ≈ (4π/c)NI/l = (4π/c)NIA/Volcoil =
4πm/Volcoil, where the magnetic moment of the coil is m = NIA/c. Hence, the field mo-
mentum inside the coil (and also the total field momentum of the system) is,19

PEM =
E × HinVolcoil

4πc
=

E ×m

c
, (13)

as in eq. (1), where E is the electric field of charge q at the magnetic dipole m.

3.2 Field Momentum via Maxwell’s Relation (3)

An Ampèrian magnetic dipole is not necessarily well described as a small solenoid, so Thom-
son gave a second derivation of the field momentum for a magnetic dipole plus electric charge
in sec. 285 of [9].20 This was based on Maxwell’s relation (3) for the field momentum, noting
that the vector potential (in the Coulomb gauge) of an Ampèrian magnetic dipole m at the
origin is,21

A(C) =
m× r̂

r2
. (14)

Then, the field momentum of the magnetic dipole plus electric charge q is,

PEM =

∫
ρA(C)

c
dVol =

m × qr̂

cr2
=

E × m

c
, (15)

noting that the electric field E at the magnetic dipole m is −q r̂/r2, as r̂ points from m to
q.

3.3 Comments

On p. 347 of [8] Thomson deduced that the field momentum of an electric charge plus a small
solenoid (magnetic dipole) is due to the electromagnetic fields inside the small solenoid, with
value E×m/c. He also considered while the momentum in the fields outside the solenoid is
zero, it consists of a piece E×m/c associated with the charge, and another piece −E×m/c
associated with the magnet. In this view, the sum of the field momenta associated with the
magnet is zero, and all the field momentum is associated with the electric charge, as is also

19The difference between the magnetic fields of “point” Ampèrian and Gilbertian magnetic dipoles is
4π m δ3(r) (see, for example, sec. 5.6 of [49]), which also leads to eq. (13).

20A brief version of this argument was given on pp. 348-349 of [8], without relating it to the example of
an electric charge plus magnetic dipole which appeared on pp. 347-348.

21See, for example, sec. 44 of [52].
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suggested by the argument of our sec. 3.2.22 On p. 348, Thomson noted that if the Ampèrian
magnetic dipole were a small permanent magnet (in the field of an electric charge), and this
magnet were demagnetized by “tapping”, the electric charge should aquire this momentum
(although in the view that the field momentum is associated with the magnet, that latter
would acquire the momentum).23

Thomson did not comment that it this scenario is correct, it would correspond to an
“electromagnetic spaceship” that can start from rest, and propel itself in some direction
without transfer of momentum to its surroundings.

He did not remark on the ambiguity as to whether the charge or the magnet is set is
motion by the disappearance of the field momentum, nor that the resolution of this ambiguity
is that the total momentum of the system must be zero (when it is “at rest”) [2], such that
there exists a “hidden” mechanical momentum in the system equal and opposite to the field
momentum. Then, if the field momentum vanishes the “hidden” mechanical momentum
does also, and the total momentum of the system remains zero.24

That this “hidden” momentum is of order 1/c2,25 and so is a “relativistic” effect, was
beyond the scope of discussions in 1904.26

4 Field Momentum of a Moving Charged Particle

In 1881, Thomson (as a 25-year-old graduate student) noted [56] that the magnetic field
energy of a uniform sphere of radius a with electric charge q and velocity v � c has the

22The field momentum can be computed by a third method, apparently first noted by Furry [10] (see also
Appendix B of [3]), PEM =

∫
V (C)J dVol/c2, where V (C) is the scalar potential in the Coulomb gauge and

J is the electric current density. This form is not particularly efficient in deducing eq. (1), but it reinforces
the impression that the field momentum is associated with the magnetic dipole.

23Thomson’s discussion was the origin of the Feynman cylinder paradox [59, 60].
24For Thomson’s particular example, the magnetic moment drops to zero while the static electric field of

the charge is unchanged. In this case, the “overt” mechanical momentum of the dipole changes according
to dpm,overt/dt = −ṁ ×E/c (see, for example, sec. IV of [53], the last line on p. 53 of [54]) and sec. 2.5 of
[55]), so the final “overt” momentum of the dipole is pm,overt = m × E/c which equals the initial “hidden”
mechanical momentum of the magnetic dipole in the electric field [10]. Meanwhile, the falling magnetic
moments leads to an induced electric field at the charge q, such that the force on the charge is F = qEind =
−q∂A/∂ct = −q ṁ × r/cr3 = ṁ × E/c = −dpm,overt/dt. The final (“overt”) momentum of the charge is
pq = −m × E/c = −pm,overt, so the final, total momentum of the system is also zero.

25As noted after eq. (1), a loop of area A that carries current I has magnetic moment m = IA/c, so the
field momentum (15) is an effect of order 1/c2.

26For comments on the character of this “hidden” momentum, see [5].
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value,27,28,29

UM =
1

2c

∫
J · A dVol =

2q2

15a

v2

c2
=

2UEv2

3c2

(
=

q2

3a

v2

c2
for a spherical shell

)
, (16)

where UE =
∫

(E2/8π) dVol. Thomson then interpreted the coefficient of v2/2 in the energy
UM as mass due to the electromagnetic field,

mEM =
4

3

UE

c2
, (17)

launching a debate as to how much of particle mass is due to fields that continues to this
day.30,31

In 1893 (sec. 16 of [31]), Thomson used his expression (4) to compute the field momentum
of a uniformly moving charged shell. The derivation is again more compact if we use B =
v/c × E,

PEM =

∫
E × B

4πc
dVol =

∫
E× (v ×E)

4πc2
dVol =

v

c2

∫
E2(1 − cos2 θ)

4π
dVol =

4UE

3c2
v

= mE v, (18)

with the electromagnetic mass mE as in eq. (17).

5 Field Momentum of a Pair of Moving Charged

Particles

Thomson was aware that changes in the field momentum should be considered when dis-
cussing electromagnetic forces in nonstatic situations (sec. 281 of [9]), and discussed the case
of a pair of moving charged particles in pp. 349-354 of [8]. If these charges are regarded
as short, isolated current elements, their forces on one another are not equal and opposite,

27Thomson’s derivation involved setting ∇·A = 0 (i.e., use of the Coulomb gauge), as favored by Maxwell
(sec. 98 of [11] and sec. 617 of [12]). Fitzgerald commented on this procedure in [57], and later came to favor
the Lorenz gauge [58] in which the potentials do not have instantaneous components. See also pp. 115-118
of [61], and sec. IIC of [19].

28The result (16) is more readily obtained on noting that for v � c the electric field E of the moving charge
is the instantaneous static field, while (for any constant speed) the magnetic field is B = v/c×E (eq. (29) of
[30]; see also p. 20 of [7]), such that UM =

∫
(B2/8π) dVol = (v2/c2)

∫
[E2(1− cos2 θ)/8π] dVol = 2v2UE/3c2.

29The result (16) was verified to hold for any v < c by Heaviside in 1889 [30], which analysis was
subsequently noted as implying that the moving sphere is, Fitzgerald-Lorentz contracted [62].

30In the author’s view, Thomson’s 1881 paper [56] marks the beginning of elementary-particle physics
(at least in the English-speaking community), a topic avoided by the generations of Ampère and Maxwell
(although kept alive in Germany by Weber and his followers, as reviewed, for example, in [63]). An early use
of what is now called the Lorentz force law for a charged particle appears in sec. 5 of this paper (although
this law was used in Weber’s electrodynamics, and appears heavily disguised in sec. 599 of Maxwell’s Treatise
[12]; see also [64]).

31The discrepancy between eq. (17) and Einstein’s U = mc2 [65] is called the “4/3 problem”. Some of
the many commentaries on this “perpetual” problem include [66, 67, 68, 69, 70, 71].

7



which led Ampère [72, 73] to argue that isolated current elements (i.e., free moving charges)
cannot exist.

Thomson deduced that the field momentum of the charges q1 and q2, assumed to be in
uniform motion with velocities v1 and v2, is,

PEM =
q1q2

2c2R
[v1 + v2 + (v1 · R̂ + v2 · R̂) R̂], (19)

where R points from charge 1 to charge 2. However, Thomson did not explicitly verify that,

dPEM

dt
= −dPmech

dt
= −(F12 + F21), (20)

such that Ptotal = Pmech + PEM is constant, as was confirmed much later [74].32

Thomson did write down (p. 352 of [8]) the energy of the two charged particles as (after
some simplification),

U =
1

2
m1v

2
1 +

1

2
m2v

2
2 +

q1q2

R
+

q1q2

2c2R
[v1 · v2 + (v1 · R̂)(v2 · R̂)], (21)

which is the so-called Darwin HamiltonianH [76] except for the absence of quartic corrections
associated with “relativistic mass”, m = mrest/

√
1 − v2/c2.33

References

[1] W. Shockley and R.P. James, “Try Simplest Cases” Discovery of “Hidden Momentum”
Forces on “Magnetic Currents”, Phys. Rev. Lett. 18, 876 (1967),
http://kirkmcd.princeton.edu/examples/EM/shockley_prl_18_876_67.pdf

[2] S. Coleman and J.H. Van Vleck, Origin of “Hidden Momentum” Forces on Magnets,
Phys. Rev. 171, 1370 (1968), http://kirkmcd.princeton.edu/examples/EM/coleman_pr_171_1370_68.pdf

[3] K.T. McDonald, On the Definition of “Hidden” Momentum (July 9, 2012),
http://kirkmcd.princeton.edu/examples/hiddendef.pdf

[4] P. Penfield, Jr and H.A. Haus, Electrodynamics of Moving Media (MIT, 1967), p. 215,
http://kirkmcd.princeton.edu/examples/EM/penfield_haus_chap7.pdf

[5] K.T. McDonald, “Hidden” Momentum in a Current Loop (June 30, 2012),
http://kirkmcd.princeton.edu/examples/penfield.pdf

[6] K.T. McDonald, Mansuripur’s Paradox (May 2, 2012),
http://kirkmcd.princeton.edu/examples/mansuripur.pdf

[7] J.J. Thomson, Electricity and Matter (Charles Scribner’s Sons, 1904), pp. 25-35,
http://kirkmcd.princeton.edu/examples/EM/thomson_electricity_matter_04.pdf

32For a closely related example, see [75].
33Note that PEM,i = ∂HEM/∂vi leads to eq. (19) with PEM,1 = (q1q2/2c2R)[v2 + (v2 · R̂) R̂], etc.

8



[8] J.J. Thomson, On Momentum in the Electric Field, Phil. Mag. 8, 331 (1904),
http://kirkmcd.princeton.edu/examples/EM/thomson_pm_8_331_04.pdf

[9] J.J. Thomson, Elements of the Mathematical Theory of Electricity and Magnetism, 3rd

ed. (Cambridge U. Press, 1904), http://kirkmcd.princeton.edu/examples/EM/thomson_EM_3rd_ed_04.pdf

[10] W.H. Furry, Examples of Momentum Distributions in the Electromagnetic Field and in
Matter, Am. J. Phys. 37, 621 (1969),
http://kirkmcd.princeton.edu/examples/EM/furry_ajp_37_621_69.pdf

[11] J.C. Maxwell, A Dynamical Theory of the Electromagnetic Field, Phil. Trans. Roy. Soc.
London 155, 459 (1865), http://kirkmcd.princeton.edu/examples/EM/maxwell_ptrsl_155_459_65.pdf

[12] J.C. Maxwell, A Treatise on Electricity and Magnetism, Vol. 2, 3rd ed. (Clarendon Press,
1892), Arts. 618 and 792, http://kirkmcd.princeton.edu/examples/EM/maxwell_treatise_v2_92.pdf

[13] M. Faraday, Experimental Researches in Electricity, Phil. Trans. Roy. Soc. London 122,
125 (1832), kirkmcd.princeton.edu/examples/EM/faraday_ptrsl_122_163_32.pdf

[14] M. Faraday, Experimental Researches in Electricity.—Thirteenth Series, Phil. Trans.
Roy. Soc. London 128, 125 (1838),
http://kirkmcd.princeton.edu/examples/EM/faraday_ptrsl_128_125_38.pdf

[15] M. Faraday, Experimental Researches in Electricity.—Fourteenth Series, Phil. Trans.
Roy. Soc. London 128, 265 (1838),
http://kirkmcd.princeton.edu/examples/EM/faraday_ptrsl_128_265_38.pdf

[16] M. Faraday, On the Physical Character of the Lines of Magnetic Force, Phil. Mag. 3,
401 (1852), kirkmcd.princeton.edu/examples/EM/faraday_pm_3_401_52.pdf

[17] K.T. McDonald, Four Expressions for Electromagnetic Field Momentum ((April 10,
2006), http://kirkmcd.princeton.edu/examples/pem_forms.pdf

[18] E.F. Nichols and G.F. Hull, The Pressure Due to Radiation, Phys. Rev. 17, 26 (1903),
http://kirkmcd.princeton.edu/examples/EM/nichols_pr_17_26_03.pdf

[19] J.D. Jackson and L.B. Okun, Historical roots of gauge invariance, Rev. Mod. Phys. 73,
663 (2001), http://kirkmcd.princeton.edu/examples/EM/jackson_rmp_73_663_01.pdf

[20] J.J. Thomson, On the Illustration of the Properties of the Electric Field by Means of
Tubes of Electrostatic Induction, Phil. Mag. 31, 149 (1891),
http://kirkmcd.princeton.edu/examples/EM/thomson_pm_31_149_91.pdf

[21] O. Heaviside, Electromagnetic Theory–VII, Electrician 26, 663 (1891),
http://kirkmcd.princeton.edu/examples/EM/heaviside_electrician_27_493_91.pdf

See also pp. 42-43 of [22].

[22] O. Heaviside, Electromagnetic Theory, Vol. 1 (Electrician Publishing Co., 1893),
http://kirkmcd.princeton.edu/examples/EM/heaviside_electromagnetic_theory_1.pdf

9



[23] R.P. Feynman, R.B. Leighton and M. Sands, The Feynman Lectures on Physics, Vol. 2
(Addison-Wesley, 1963), http://www.feynmanlectures.caltech.edu/II_17.html#Ch17-S4

http://www.feynmanlectures.caltech.edu/II_18.html#Ch18-S2

[24] J.J. Thomson, Elements of the Mathematical Theory of Electricity and Magnetism
(Cambridge U. Press, 1895), http://kirkmcd.princeton.edu/examples/EM/thomson_EM_1st_ed_95.pdf

[25] O. Heaviside, On the Forces, Stresses and Fluxes of Energy in the Electromagnetic
Field, Phil. Trans. Roy. Soc. London 183, 423 (1892),
http://kirkmcd.princeton.edu/examples/EM/heaviside_ptrsla_183_423_92.pdf

[26] O. Heaviside, Electrical Papers, Vol. 2 (Macmillan, 1894),
http://kirkmcd.princeton.edu/examples/EM/heaviside_electrical_papers_2.pdf

[27] O. Heaviside, Electromagnetic Theory–XV, Electrician 27, 493 (1891),
http://kirkmcd.princeton.edu/examples/EM/heaviside_electrician_27_493_91.pdf

See also pp. 107-108 of [22].

[28] O. Heaviside, Electromagnetic Induction and Its Propagation, Electrician 16, 186
(1886), http://kirkmcd.princeton.edu/examples/EM/heaviside_electrician_16_186_86.pdf
See also p. 545-548 of [29].

[29] O. Heaviside, Electrical Papers, Vol. 1 (Macmillan, 1894),
http://kirkmcd.princeton.edu/examples/EM/heaviside_electrical_papers_1.pdf

[30] O. Heaviside, On the Electromagnetic Effects due to the Motion of Electrification
through a Dielectric, Phil. Mag. 27, 324 (1889),
http://kirkmcd.princeton.edu/examples/EM/heaviside_pm_27_324_89.pdf

[31] J.J. Thomson, Recent Researches in Electricity and Magnetism (Clarendon Press, 1893),
http://kirkmcd.princeton.edu/examples/EM/thomson_recent_researches_in_electricity.pdf

[32] J.H. Poynting, On the Transfer of Energy in the Electromagnetic Field, Phil. Trans.
Roy. Soc. London 175, 343 (1884),
http://kirkmcd.princeton.edu/examples/EM/poynting_ptrsl_175_343_84.pdf

[33] O. Heaviside, Electromagnetic Induction and Its Propagation, Electrician 14, 178
(1885), http://kirkmcd.princeton.edu/examples/EM/heaviside_electrician_14_178_85.pdf
See also p. 438 of [29].

[34] H. Bateman, The Mathematical Analysis of Electrical and Optical Wave Motion, (Cam-
bridge U. Press, 1915), http://kirkmcd.princeton.edu/examples/EM/bateman_wave_motion_15.pdf

[35] K.T. McDonald, Momentum in a DC Circuit (May 26, 2006),
http://kirkmcd.princeton.edu/examples/loop.pdf

[36] K.T. McDonald, Flow of Energy and Momentum in the Near Zone of a Hertzian Dipole
(Apr. 11, 2007), http://kirkmcd.princeton.edu/examples/hertzian_momentum.pdf

10



[37] N. Umow, Ableitung der Bewegungsgleichungen der Energie in continuirlichen Körpern,
Zeit. Math. Phys. 19, 418 (1874),
http://kirkmcd.princeton.edu/examples/EM/umow_zmp_19_97,418_74.pdf

http://kirkmcd.princeton.edu/examples/EM/umov_theorem.pdf
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[66] H. Poincaré, Sur la Dynamique de l’Électron, Compte Rendus 140, 1504-1508 (1905);
Rendiconti del Circolo Matematico di Palermo 21, 129 (1906),
http://kirkmcd.princeton.edu/examples/EM/poincare_rcmp_21_129_06.pdf

for a translation, see H.M. Schwartz, Poincaré’s Rendiconti Paper on Relativity, Parts
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