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1 Problem

Show that a thin hemispherical bowl, initially at rest on a frictionless, horizontal surface,
can be tipped over by a horizontal impulse to its rim if the impulse directed to the center of
the bowl, but not if the impulse is (somehow) applied tangentially to the rim.

2 Solution

The bowl will, in general, tip over if a point on its rim touches the horizontal surface during
the motion after the impulse, at which time a diameter of the bowl would be vertical.

2.1 Impulse toward the Center of the Bowl

For time t > 0, after the horizontal impulse P = p x̂ at time t = 0, the only forces (ignoring
friction) on the bowl are vertical: gravity and the normal force of the horizontal surface on
the bowl. Hence, the horizontal velocity of the center of mass is constant for t > 0, and has
value,

vx,cm =
P

m
, (1)

for a bowl of mass m and radius a, as sketched in the figure above.
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We now consider the limiting case that the bowl rotates until a diameter is vertical at
some time T > 0, and the vertical velocity of the center of mass approaches zero at this
time, after which the bowl tips over. Then, the translational kinetic energy of the bowl at
time T is the same as at time t = 0+, just after the impulse, while the rotational kinetic
energy has dropped to zero and the gravitational potential energy of the bowl has increased
by mg |zcm(0)|. This is possible if,

KErot(0
+) =

Iy,cm(0)ω2
y(0

+)

2
= mg |zcm(0)| . (2)

The angular velocity ω(0+) just after the impulse is related to the angular momentum
Lcm(0+) about the center of mass, imparted by the impulse P,

Lx,cm(0+) = 0 = Ix,cm(0)ωx(0
+), Ly,cm(0+) = P |zcm(0)| = Iy,cm(0)ωy(0

+),

Lz,cm(0+) = 0 = Iz,cm(0)ωz(0
+), (3)

where Ij,cm is the (principal) moment of inertia of the shell about an axis parallel to coordinate
axis j and through the center of mass. Hence,

ω(0+) =

(
0,

P |zcm(0)|
Iy,cm(0)

, 0

)
. (4)

We now need the values of zcm(0) and Iy,cm(0).
The shell has area 2πa2, so the surface mass density is σ = m/2πa2. The z-coordinate

of the center of mass at time t = 0 is related by,

zcm m =

∫
z dm =

∫ 1

0

(−a cos θ) (2πa2σ d cos θ) = −ma

∫ 1

0

cos θ d cos θ = −ma

2
, (5)

and thus,
zcm(0) = −a

2
. (6)

The moment of inertia Iy,cm(0) (= Ix,cm(0) by symmetry) is related to the moment of
inertia about the center C of the shell by the parallel axis theorem, Iy,C(0) = Iy,cm(0) +
m z2

cm(0), while Iy,C(0) for a hemispherical shell has the same form as that for a complete
spherical shell,

Iy,C(0) = m
(〈

r2
x

〉
+

〈
r2
z

〉)
=

2

3
m

(〈
r2
x

〉
+

〈
r2
y

〉
+

〈
r2
z

〉)
=

2

3
ma2, (7)

Iy,cm(0) = Iy,C(0) − m z2
cm(0) =

2

3
ma2 − m

a2

4
=

5ma2

12
. (8)

We note also that,

Iz,C(0) = m
(〈

r2
x

〉
+

〈
r2
y

〉)
= Iy,C =

2

3
m

(〈
r2
x

〉
+

〈
r2
y

〉
+

〈
r2
z

〉)
=

2

3
ma2

= Iy,C(0) = Iz,cm(0). (9)
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We now have that,

ωy(0
+) =

Pa/2
5
12

ma2
=

6P

5ma
, KErot(0

+) =
1

2

5ma2

12

(
6P

5ma

)2

=
3P 2

10m
, (10)

so the minimum impulse that will tip the bowl over is,

Pmin = m

√
5ga

3
. (11)

2.1.1 Velocity of the Point of Contact

As a “sidelight,” we can compute the velocity vA(0+) of the point A of contact of the bowl
with the horizontal surface just after the impulse.

From Chasles’ theorem, the velocity of a point A on a moving/rotating rigid body is
related by,

vA = vcm + ω × R, (12)

where vcm is the velocity of the center of mass of the object, and R is the position vector
from the center of mass to point A.

Just after the impulse, vcm(0+) = (P/m, 0, 0), and R(0) = (0, 0,−a−zcm(0)) = (0, 0,−a/2),

ω(0+) × R(0) =

(
0,

6P

5ma
, 0

)
× (0, 0,−a/2) =

(
−3P

5m
, 0, 0

)
, (13)

and,

vA(0+) =
2P

5m
x̂. (14)

2.2 Impulse Tangent to the Rim

For an impulse tangent to the rim, as sketched above, the resulting angular velocity has both
y− and z-components, and the subsequent motion is complex.

The angular velocity of the bowl just after the impulse is now, recalling that R = a/2,

ω(0+) =

(
0,

Pa/2

Iy,cm(0)
,− Pa

Iz,cm(0)

)
, ω(0+) × R(0) =

(
− Pa/2

Iy,cm(0)
, 0, 0

)
, (15)
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In addition to thinking about energy, it is useful to note another conserved quantity, the
vertical component of angular momentum about the center of mass.

After the impulse, the only forces on the system (neglecting friction) are gravity, and
the (vertical) normal force N due to the horizontal surface, acting at the point of contact.
Hence, the torque about the center of mass, τ = R×N, has no vertical component, and the
angular momentum Lz,cm about the center of mass is constant for t > 0.

Suppose the rim of the bowl touches the horizontal surface at some time T > 0. Then,
recalling eq. (3),

Lz,cm(T ) = Iz,cm(T )ωz(T ) = Lz,cm(0+) = Pa, (16)

We see from the figure that the configuration of the shell when the rim touches the
horizontal surface implies that the moment of inertia Iz,cm(T ) is the same as the initial
moment of inertia Iy,cm(0), namely 5ma2/12. Hence,

ωz(T ) =
Pa

Iy,cm(0)
=

12P

5ma
, (17)

and the rotational kinetic energy about the center of mass at time T is,

KErot(T ) =
∑

k

Ik,cm(T )ω2
k,cm(T )

2
>

Iz,cm(T )ω2
z,cm(T )

2
=

1

2

5ma2

12

(
12P

5ma

)2

=
6P 2

5m
, (18)

where index k labels a principal axis at time T , of which the z-axis is one.
However, the rotational kinetic just after the impulse is, recalling eqs. (8), (9) and (13),

KErot(0
+) =

∑
j

Ij,cm(0)ω2
j,cm(0+)

2
= 0 +

1

2
Iy,cm(0)

(
Pa/2

Iy,cm(0)

)2

+
1

2
Iz,cm(0)

( −Pa

Iz,cm(0)

)2

=
Pa2

8 5
12

ma2
+

Pa2

22
3
ma2

=
21P

20m
< KErot(T ). (19)

Furthermore, since the horizontal velocity of the center of mass is constant for t > 0, the
translational kinetic energy at time T could be greater, but not less, than that at time
t = 0+. Hence, the total kinetic energy required for the rim to touch the horizontal surface
is greater than the kinetic energy at time t = 0+, such that the rim can never actually touch
the surface for any t > 0.
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2.2.1 Velocity of the Point of Contact

For completeness, the velocity of the point of contact with the horizontal surface just after
the impulse is, recalling eqs. (1), (12) and (15),

vA(0+) =

(
P

m
− Pa/2

Iy,cm(0)
, 0, 0

)
=

(
P

m
− P (a/2)(a/2)

5
12

ma2
, 0, 0

)
=

3P

5m
x̂ , (20)

50% larger that for an impulse perpendicular to the rim, eq. (14).
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