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1 Problem

Discuss the motion of an unbalanced tire that rolls without slipping on a horizontal surface,
subject to conservation of energy.

In what sense(s) can this system be said to contain “hidden momentum”?

2 Solution

2.1 The Motion

We consider the tire to be a hoop of radius a and mass M that is unbalanced due to an
additional mass m at some fixed point on the rim, as shown in the figure below.

Taking the origin of an x-y coordinate system to be at a point of contact of the tire
with the road when mass m is at its lowest position, when the point of contact is at x the
geometric center of the tire has horizontal velocity v and the center of mass of the unbalanced
tire has rotated through angle θ = x/a. The angular velocity ω of the tire is,

ω = θ̇ =
v

a
. (1)

The mass m has coordinates,

xm = x − a sin θ, ym = a − a cos θ, (2)

and velocity

ẋm = v − a ω cos θ = (1 − cos θ)v, ẏm = a ω sin θ = sin θv, v2
m = 2(1 − cos θ)v2. (3)

The conserved energy E of the system is,

E = Mga + mga(1 − cos θ) + Mv2 +
mv2

m

2
= Mga + mga(1 − cos θ) + [M + (1 − cos θ)m]v2. (4)
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Setting this equal to the initial energy E0 = Mga+Mv2
0 , the velocity of the geometric center

of the tire is related by

v2(θ) =
Mv2

0 − mga(1 − cos θ)

M + (1 − cos θ)m
. (5)

The tire has continuous rolling motion only if v2
0 > 2mga/M ; otherwise the motion is

oscillatory. In any case, the geometric center of the tire does not move at constant speed for
nonzero m.

For small mass m � M and rolling motion,

v2 ≈ v2
0

[
1 − m

M

(
1 +

ga

v2
0

)
(1 − cos θ)

]
. (6)

2.2 Hidden Momentum

An observer of the motion of the unbalanced tire finds this to be somewhat odd compared
to that of a balanced tire. The observer might say that there is some “hidden” aspect of the
tire that leads to its peculiar behavior.

If the observer can’t see the perturbing mass m, then it is “hidden” to him, and he might
say that the momentum and energy associated with mass m are therefore “hidden”. We
consider such an observer to be rather inobservant, and we don’t pursue his possible thought
process any further.

A view expressed in [1] is that an observer who is aware of both masses M and m, and
able to compute both momenta,

PM = Mv x̂, and Pm = m(ẋm x̂ + ẏm ŷ) = mv[(1− cos θ) x̂ + sin θ ŷ], (7)

might consider the quantity,

P − mtotalvgeometric center = PM + Pm − (M + m)v x̂ = mv(− cosθ x̂ + sin θ ŷ) (8)

to be a kind of “hidden momentum”. The author’s view is that if one is aware of mass m
and its effect on the motion of the system, one should not say that this effect is “hidden”.

In 1967, Shockley [2] gave the term “hidden momentum” a particular meaning in elec-
trodynamics. The issues here can be traced back to the debate between Ampère and Biot as
to the force law between two current elements dI1 = I1dl1 and dI2 = I2dl2. Ampère [3, 4, 5]
argued that the force on element 1 due to element 2 is (in Gaussian units),

dFon 1 =
3(dI1 · r̂)(dI2 · r̂) − 2(dI1 · dI2)

c2r2
r̂ (Ampere), (9)

while Biot and Savart [6] claimed that,1

dFon 1 =
dI1 × B2

c
, where B2 =

dI2 × r̂

cr2
(Biot-Savart). (10)

1Biot and Savart were not very explicit as to the forms (10), which are stated more clearly in [5, 7].
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Ampére showed that the two forms for dFon 1 are equivalent when computing the force of
one closed current loop on another, and argued that his form was superior in that it satisfied
Newton’s 3rd law. However, Ampère’s form (9) does not factorize, in contrast to eq. (10) of
Biot and Savart, such that the latter is compatible with a field theory of magnetism whereas
the former is less obviously so. This led to awkwardness throughout most of the 1800’s
in which advocates of electromagnetic field theory avoided discussion of current elements
(moving electric charges) except in closed circuits.

A consistent vision of electrodynamics of current elements/moving charges requires un-
derstanding of some kind of “hidden momentum” that restores compatibility with Newton’s
laws of motion. This vision was supplied by Poynting [8] and Poincaré [9] who argued that
the electromagnetic field supports both flow of energy and storage of momentum, where (in
vacuum) the density pEM of momentum stored in the electromagnetic field is,

pEM =
S

c2
=

E × B

4πc
, (11)

and S is the Poynting vector that describes the flow of energy. The electromagnetic field
momentum,

PEM =

∫
pEM dVol, (12)

is the “hidden momentum” that makes the Biot-Savart force law consistent with Newton’s
3rd law.2

Shockley’s contribution [2] was to note that there exist nominally static situations in
which the electromagnetic momentum (12) is nonzero while there is no obvious equal and
opposite mechanical momentum, as seems to be required by the center-of-energy theorem.3

For Shockley, the electromagnetic momentum was “obvious”, and he characterized the equal
and opposite mechanical momentum as “hidden”. This specialized usage of the term “hidden
momentum” is somewhat unfortunate, and has proven to be controversial for many readers.
An unbalanced tire, considered as a purely mechanical system, cannot have “hidden momen-
tum” in the sense of Shockley, as for him there must first be electromagnetic momentum
before there can be “hidden momentum”.

It is possible to define the term “hidden momentum” without mention of electromag-
netism in such a way that the more general definition includes the “hidden momentum” of
Shockley as a special case. Inspired by a suggestion by D. Vanzella [12], we define [13],

Phidden ≡ P− Mvcm −
∮

boundary

(x − xcm) (p− ρvb) · dArea = −
∫

f0

c
(x− xcm) dVol, (13)

where P is the total momentum of the subsystem, M = U/c2 is its total “mass”, U is its total
energy, c is the speed of light in vacuum, xcm is its center of mass/energy, vcm = dxcm/dt,
p is its momentum density, ρ = u/c2 is its “mass” density, u is its energy density, vb is the
velocity (field) of its boundary, and

fμ =
∂T μν

∂xν
, (14)

2For an explicit verification of this, see [10].
3See, for example, [11].
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is the 4-force density exerted on the subsystem by the rest of the system, with T μν being
the stress-energy-momentum 4-tensor of the subsystem.4,5

According to the last form of eq. (13), “hidden momentum” can only exist in a subsystem
that has a volume interaction with another subsystem, which implies that it exists only in
field theories. In this sense, definition (13) participates in the spirit of the debate of Ampére
and Biot-Savart (while the definition (8) does not).

In closing, we apply definition (13) to the present example, taking the subsystem to be
only the rolling, unbalanced tire. The tire makes contact with the road (another subsystem),
and the velocity of the tire is zero at the point of contact (for rolling without slipping), so
that the boundary integral in eq. (13) is zero. Then,

Phidden = P− Mtotalvcm. (15)

The center of mass of the unbalanced tire is at distance b from the geometric center of the
tire, where,

b

a
=

m

M + m
, (16)

and has coordinates,

xcm = x − b sin θ, ycm = a − b cos θ, (17)

and velocity

ẋcm = v − b ω cos θ =

(
1 − b

a
cos θ

)
v =

(
1 − m

M + m
cos θ

)
v, (18)

ẏcm = b ω sin θ =
b

a
sin θ v =

m

M + m
sin θ v. (19)

The “hidden momentum” of the unbalanced tire according to eq. (15) is,

Phidden,x = PM,x + Pm,x − (M + m)ẋcm

= Mv + m(1 − cos θ)v − (M + m)

(
1 − m

M + m
cos θ

)
v = 0, (20)

Phidden,y = PM,y + Pm,y − (M + m)ẏcm = mv sin θ − (M + m)
m

M + m
v sin θ = 0. (21)

That is, there is no “hidden momentum” in an unbalanced tire in the sense of the general
definition (13), which follows from the use of this term by Shockley.

4With this definition of “hidden momentum”, both the electromagnetic field momentum and the equal
and opposite mechanical momentum in Shockley’s example are described as “hidden”.

5As discussed in sec. 3 of [13], we do not advocate replacing vcm by vgeometric center in definition (13).
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