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1 Problem

Although a tire pump is a “simple” device, making a satisfactory, simple thermodynamic
model of its behavior is challenging.

Suppose the tire has volume V that remains constant as its (absolute) pressure is increased
by the tire pump from P0 ≥ PA, where PA = atmospheric pressure, to a final pressure P
at the ambient (absolute) temperature T0. The process of pumping may be assumed to be
adiabatic, so the pressure and temperature in the tire reach maximum values of Pmax and
Tmax before the tire cools slowly back to temperature T0 and the pressure drops to the desired
pressure P . You may assume that air is a diatomic ideal gas.

First discuss how a tire pump at a gas station works, before turning to the slightly more
complicated case of a hand pump.

At a gas station, a compressor first compresses a lot of air to some desired pressure
PC and stores this in a tank. Before this air is injected into a tire, it comes back to room
temperature T0. You may ignore the details of the thermodynamics of the compressor. Then,
we connect the storage tank to the tire via a “one-way” valve. So long as the pressure in the
tank is greater than the pressure in the tire, air flows from the tank into the tire.

The simple model is that the pressure in the compressor’s tank stays constant during
this process.

2 Solution

The tire of volume V must end up with n = PV/RT0 moles of air (assumed to be an ideal
gas) to be at pressure P at ambient temp T0, where R is the gas constant.

Suppose the tire has pressure P0 to start with. Then it already contains n0 = n(P0/P ) =
P0V/RT0 moles of air. So, we must add n′ = n−n0 moles from the tank into the tire, which
we can also express as,

n′ = n
P − P0

P
. (1)

2.1 The Tire Is Pumped by a Compressor

The volume V ′ of these n′ moles in the tank at pressure PC and temperature T0 is,

V ′ =
n′RT0

PC
= nRT0

P − P0

PPC
. (2)

As air flows from the tank into the tire through the “one-way” valve, the tank does work
WC at constant (by assumption) pressure PC given by,

WC = PCV ′ = nRT0
P − P0

P
(3)
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on the n′ moles of air. This work appears as internal energy of the air that is injected into
the tire.

Given the assumption that air is an ideal gas, the motion of air through the “one-way”
valve into the tire is a free expansion, and no work is done in the latter process. So, the
internal energy U of the air in the tire rises by amount WC (assuming that the air transfer
is adiabatic).

Therefore, the temperature of the air in the tire rises to Tmax = T0+ΔT , where nCV ΔT =
ΔU = WC . Here, CV = 5R/2 is the molar specific heat of air at constant volume. Thus,

ΔT =
WC

nCV
=

RT0

CV

P − P0

P
=

2

5

(
1 − P0

P

)
T0, (4)

and,

Tmax = T0 + ΔT =

[
1 +

2

5

(
1 − P0

P

)]
T0. (5)

As a result, the pressure in the tire rises temporarily to,

Pmax =
nRTmax

V
=

Tmax

T0
P =

[
1 +

2

5

(
1 − P0

P

)]
P. (6)

After a while, the air cools down to temperature T0, and the pressure will be the desired
value P .

However, the filling process won’t work if Pmax > PC .
Example: P0 = 1 atm, P = 3 atm (these are absolute pressures, not“gauge” pressures),

and T0 = 300K = 23C. Then, Pmax = 1.2.7P = 3.8 atm, and Tmax = 1.27T = 380K = 107C.
The pressure in the compressor must be greater than 3.8 atm (2.8 atm gauge pressure) to
be able to pump the tire up to 3 atm (2 atm gauge pressure) quickly.

2.2 The Tire Is Pumped by a Hand Pump

Now we turn to the case of a hand pump, which has a working volume Vp that is small
compared to the volume V of the tire.

The number np of moles or air delivered in each stroke of the pump is,

np =
PAVp

RT0
� n, (7)

where PA = atmospheric pressure. So, a large number N of strokes of the hand pump will
be required,

N =
n′

np
=

P − P0

PA

V

Vp
, (8)

recalling eq. (1), and each stroke will make only a tiny difference in the pressure of the tire.
At the beginning of the ith stroke, the tire has pressure Pi−1, where for i = 1, P0 = initial

pressure in the tire.
My model is that during the ith stroke the pressure in the pump increases until it reaches

pressure Pi, the pressure in the tire at the end of the stoke, after which the pump pressure
is held constant at this value while the air in the pump is transferred into the tire.
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I will again assume that all this happens quickly (i.e., adiabatically).
We need to know the volume V ′

p of air in the pump when it first reaches pressure Pi. For,

this, we use the law of adiabatic compression of an ideal gas: PV γ = PV 7/5 = constant,
where γ = CP /CV = (7R/2)/(5R/2) = 7/5 for air. Thus,

V ′
p = Vp

(
PA

Pi

)5/7

. (9)

The temperature of the air in the pump has now risen to,

T ′ = T0

PiV
′
p

PAVp
= T0

(
Pi

PA

)2/7

. (10)

The temperature rise of the air in the pump is,

ΔT ′ = T ′ − T0 = T0

[(
Pi

PA

)2/7

− 1

]
. (11)

To accomplish this, we must have done work W ′ equal to the increase in the internal energy
of the air in the pump, namely,

W ′ = npCV ΔT ′ =
PAVp

RT0

5R

2
T0

[(
Pi

PA

)2/7

− 1

]
=

5

2
PAVp

[(
Pi

PA

)2/7

− 1

]
. (12)

Next, we push the hot gas of volume V ′
p into the tire at constant pressure Pi. This

requires that we do additional work,

W ′′ = PiV
′
P = PiVp

(
PA

Pi

)5/7

= PAVp

(
Pi

PA

)2/7

. (13)

So, the total work required to accomplish the ith stroke is,

Wi = W ′ + W ′′ = PAVp

[
7

2

(
Pi

PA

)2/7

− 5

2

]
. (14)

Not only is the energy Wi added to that of the gas in the tire during the ith stroke, but
also the initial energy Up = CV npRT0 = (5/2)PAVp of the gas in the pump. Thus, the total
energy added to the gas during the ith stroke is,

ΔUi = Wi +
5

2
PAVp =

7

2
PAVp

(
Pi

PA

)2/7

=
7

2
P

5/7
A P

2/7
i Vp. (15)

The internal energy U of volume V of air at pressure P is related by,

U = CV nRT = CV PV =
5

2
PV, (16)
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so the change in pressure ΔPi in the tire during the ith stroke is related by,

ΔPi =
2

5

ΔUi

V
=

7

5
P

5/7
A P

2/7
i

Vp

V
. (17)

As ΔPi is small, we treat eq. (17) as a differential equation,

dP (i)

P 2/7
=

7

5
P

5/7
A

Vp

V
di, (18)

which integrates to,

P 5/7 =

(
P

5/7
0 + P

5/7
A

Vp

V
i

)
, (19)

or

P (i) =

(
P

5/7
0 + P

5/7
A

Vp

V
i

)7/5

. (20)

After the N strokes needed, according to eq. (8), to fill the tire so that it has pressure P
when it returns to temperature T0, the maximum pressure in the tire is,

Pmax =

(
P

5/7
0 + P

5/7
A

P − P0

PA

)7/5

= P0

[
1 +

(
PA

P0

)5/7
P − P0

PA

]7/5

, (21)

which is independent of the volume Vp of the hand pump. The maximum temperature of
the air in the tire is,

Tmax =
Pmax

P
T0, (22)

The final internal energy of the air in the tire (at temperature Tmax) is Uf = (5/2)PmaxV ,
while the initial internal energy of the air in the tire plus the N volumes Vp of pumped air
is U0 = (5/2)(P0V + NPAVp). Hence, the total work done while pumping is,1

W = Uf − U0 =
5

2
(PmaxV − P0V − NPAVp)

=
5

2
P0V

⎧⎨
⎩

[
1 +

(
PA

P0

)5/7
P − P0

PA

]7/5

− P

P0

⎫⎬
⎭ . (23)

Example: PA = P0 = 1 atm, P = 3 atm, V = 0.1 m3, Vp = 0.001 m3, and T0 = 300K.
Then, N = 200 strokes, Pmax = 4.65 atm, Tmax = 465K = 192C, and W ≈ 41, 000 J. To
pump up the tire in 10 minutes requires ≈ 68 W of power delivered into the air of the tire.

An estimate of the efficiency of the engine that provides this power is beyond the scope
of this problem.

1July 20, 2022. Thanks to Kevin Zondervan for spotting several typos in and around eq. (23).
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2.2.1 Entropy Change

The free expansion during filling of the tire, and the cooling at constant volume after filling,
are both irreversible processes, so we expect that the entropy of the system has increased.

In classical thermodynamics, the entropy S of an ideal gas can be calculated only up to
an additive constant. Namely, n moles of gas at temperature T in a volume V have entropy,

S = nR

(
A + ln

V T CV

n

)
, (24)

where A is an undetermined constant.
In the present example, n = PV/RT0 moles of air end up in the tire of volume V at

pressure P and temperature T0. Initially, this air was also at temperature T , with n0 =
nP0/P moles in volume V at pressure P0, and n′ = n(P −P0)/P moles at pressure PA where
they occupied volume NVp = V (P − P0)/PA, recalling eqs. (1) and (8). Hence, the change
in entropy of the air that ends up inside the tire during the pumping is,

ΔStire = nR ln
V T

5/2
0

n
− n0R ln

V T
5/2
0

n0

− n′R ln
V (P − P0)T

5/2
0

n′PA

= nR ln
1

n
− n0R ln

P

nP0

− n′R ln
P

nPA

= −n0R ln
P

P0

− n′R ln
P

PA

= −nR

(
P0

P
ln

P

P0
+

P − P0

P
ln

P

PA

)
= −nR

(
ln

P

PA
+

P0

P
ln

PA

P0

)
, (25)

which is negative. However, this is not the total entropy change of the Universe, because as
the tire cooled from temperature Tmax back to T0, heat ΔQ, given by,

ΔQ = CV nR(Tmax − T0) =
5

2
nRT0

(
Pmax

P
− 1

)
, (26)

was transferred into the environment at temperature T0, so the entropy of the environment
increased by ΔQ/T0. Thus, the total entropy change of the Universe during the pumping is,

ΔS = nR

⎧⎨
⎩5

2

P0

P

[
1 +

(
PA

P0

)5/7
P − P0

PA

]7/5

− 5

2
− ln

P

PA

− P0

P
ln

PA

P0

⎫⎬
⎭ . (27)

For the example with P0 = P1 = 1 atm and P = 3 atm, ΔS = 0.28nR.
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