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1 Problem

Suppose that a particle of electric charge ¢ follows a trajectory r(t) in a known, static
magnetic field B(r). For what conditions could a different particle follow the same trajectory,
but with velocity opposite to that of the original particle.

Consider also special cases in which the magnetic field obeys a spatial symmetry.

2 Solution

The equation of motion for the charged particle is (in SI units, and ignoring forces other
than that due to the magnetic field),

F = Tk x B, (1)
where v = dr/dt is the particle’s velocity, p = ymv = mv/y/1 —v?/c? is its momentum,
m is its rest mass and c is the speed of light in vacuum. If the velocity v were reversed
at some time, the sign of the Lorentz force (1) would be reversed, and the particle would
not retrace its earlier trajectory. However, the electromagnetic interaction is time-reversal
invariant, so if the velocities of all particles in the Universe were reversed, the magnetic field
would change sign, as well as the velocity of the test particle, and the trajectory of the latter
would be unchanged.

In the rest of this note we consider scenarios in which the magnetic field is not changed.

In this case, an antiparticle of mass m, charge —q, but with its velocity reversed with
respect to the original particle would “backtrack” along the original trajectory.!:?

2.1 Retracking When the Magnetic Field Has a Mirror Symmetry

We now discuss a peculiar result that holds when the magnetic field has a mirror symmetry
about, say, the y-z plane,

B,(—z,y,2) = —By(x,y,2), By(—x,y,2) = By(z,y,2), B.(—z,y,2)=B.(x,y,2). (2)

In particular, this symmetry holds for an axially symmetric field,
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B = Bp(p7 Z) P + Bz(p>z) z = Bp(p> Z);X + Bp(p> Z);y + Bz(p; Z) z, (3)

! As remarked by Feynman [1], an antiparticle moving forward in time is equivalent to a particle moving
backwards in time.

2Touschek (1960) was perhaps the first to realize that counterpropagating beams of electrons and
positrons could circulate in a single (storage) ring of magnets [2].



where p = /2% 4+ y2. Then, the Lorentz force (1) obeys,

% - Usz(x> Y, Z) - Usz(x> Y, Z) = _[(_Uy)BZ(_'T> Y, Z) - (_UZ)By(_'T> Y, Z)]> (4)
% = v, B.(x,y,2) —v.B.(x,y, 2) = (—v,) Bo(—2,y,2) — 0. B.(—2,y, 2), (5)
% = v, By(x,y,2) — vy By(2,y,2) = v, By(—x,y, 2) — (—vy) Bz (—2,y, 2)]. (6)

This has the implication that if the charge ¢ is subject to the transformation at some time t,
T — —, y— Y, z— z, Vg — Uy, Uy — —y, VU, — —U,, (7)

then the Lorentz force transforms according to,
F, — —F,, F, — F,, F, — F,. (8)

The trajectory of the transformed charge is then the mirror image in the y-z plane of the
original trajectory.

And if at some later time, the transformation (7) is applied to the previously transformed
particle, it will then again lie on the original trajectory, and as time advances it will retrace
a portion of the original trajectory. We might call this procedure “retracking” rather than
“backtracking”.

This double transformation is not practical in the laboratory, but it is suitable for use in
a computer simulation of an earlier portion of a particle’s trajectory (without reversing the
charge or the magnetic field or the direction of time). Thanks to Xiaoping Ding for pointing
out this intricate result.

Note that “retracking” could also be accomplished by two transformations, at different
times, in which the charge ¢ and the velocity v of the particle are reversed, but its position
is not changed.

References

[1] R.P. Feynman, Theory of Positrons, Phys. Rev. 76, 749 (1949),
http://kirkmcd.princeton.edu/examples/QED/feynman_pr_76_749_49.pdf

[2] L. Bonolis and G. Pancheri, Bruno Touschek: particle physicist and father of the eTe™
collider, Eur. Phys. J. H 36, 1 (2011),
http://kirkmcd.princeton.edu/examples/accel/bonolis_epjh_36_1_11.pdf



