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1 Problem

Analyze the electromagnetic fields of a charge q that moves with speed v < c, where c is the
speed of light in vacuum, with velocity v perpendicular to the interface between media of
indices of refraction n1 and n2. The accelerated motion of the bound charge distributions in
these media leads to the phenomenon of transition radiation, first described (but not named)
in sec. 7 of [1] for the case of conducting media.

Use the decomposition of fields into electromagnetic plane waves (with time dependence
e−iωt) advocated by Booker and Clemmow [2, 3, 4],1

Bω(x) = −4π2μ

c

∫ ∫
k± × Jω,k±

kz
eik±·x dkx dky , (2)

Eω(x) =
4π2μ

c kn

∫ ∫
k± × (k± × Jω,k±)

kz
eik±·x dkx dky , (3)

in Gaussian units, where the ± sign holds for z >
< 0, μ is the relative permeability at x, and

k =
ωc

n
, (4)

kz =
√

k2 − k2
x − k2

y =

⎧⎨
⎩

√
k2 − k2

x − k2
y if k2

x + k2
y ≤ k2,

i
√

k2
x + k2

y − k2 if k2
x + k2

y > k2,
(5)

and2

k± =

⎧⎨
⎩

(kx, ky, kz) if z ≥ 0,

(kx, ky,−kz) if z < 0.
(6)

The plane waves are homogeneous when k2
x + k2

y ≤ k2, but they are inhomogeneous (evanes-
cent, and significant only close to the plane z = 0) otherwise. The plane-wave decomposition
(2)-(3) is not spherically symmetric, which is a reminder that all plane waves (and especially
evanescent plane waves = “classical virtual photons”) are convenient mathematical fictions,
rather than entities with crisp physical reality.

1This method builds on the spirit of Weyl’s representation [5] of a scalar spherical wave in terms of scalar
plane waves,

eikr

r
=

i

2π

∫ ∫
ei(kxx+kyy+kz |z|)

kz
dkx dky =

i

2π

∫ ∫
eik±·x

kz
dkx dky, (1)

2The notation k± follows [6].
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2 Solution

We take the charge q to move along the x-axis and the interface between the two media to
be the plane x = 0, with index n′ for x < 0 and n for x > 0. For simplicity, we suppose that
μ = 1 in both media.

The solution parallels that of sec. 2.7 of [4], taking into account the different indices of
refraction in the two half spaces. The extra complexity here is that the Fourier transform
Jω,k of the current density J(x) involves plane waves for which the wave vector k(x > 0) is
different from k′(x < 0). Recall that continuity of a plane wave eix·x at the interface x = 0
requires that

k′
y = ky, k′

z = kz, (7)

and recalling eq. (4),

k′
x =

√
k′2 − k′

y
2 − k′

z
2 =

√
k′

x
2 + k′2 − k2 =

√
k2

x + (n′2 − n2)ω2/c2. (8)

The current density J can be written as

J = qv δ(x − vt) δ(y) δ(z) x̂. (9)

Then, its temporal Fourier transform is,

Jω =
q x̂

2π
δ(y) δ(z)

∫
δ(x− vt)eiωt v dt =

q eiωx/v x̂

2π
δ(y) δ(z). (10)

We will deduce the fields only in the region x > 0, where the plane waves have wave
vector k. Here, the spatial Fourier transform of Jω can be written as

Jω,k =
q x̂

(2π)4

∫ ∫ ∫
eiωx/v δ(y) δ(z) e−ik·xd3x

=
q x̂

(2π)4

(∫ 0

−∞
e−i(k′

x−ω/v)x dx +

∫ ∞

0

e−i(kx−ω/v) x dx

)
. (11)

Now,∫ ∞

0

e−iax dx =

∫ ∞

0

cos ax dx − i

∫ ∞

0

sin ax dx (12)

=

∫ ∞

0

cos ax dx − i

∫ ∞

π/2a

sin ax dx− i

∫ π/2a

0

sin ax dx

= (1 − i)

∫ ∞

0

cos ax dx− i

a
=

1 − i

2

∫ ∞

−∞
cos ax dx − i

a
= π(1 − i)δ(a) − i

a
,

noting that δ(a) =
∫

e−iax dx/2π =
∫

cos ax dx/2π, and similarly,∫ 0

−∞
e−ibx dx =

∫ 0

−∞
cos bx dx − i

∫ 0

−∞
sin bx dx (13)

=

∫ 0

−∞
cos bx dx − i

∫ π/2b

−∞
sin ax + i

∫ π/2b

0

sin ax dx

= (1 + i)

∫ 0

−∞
cos bx dx +

i

b
=

1 + i

2

∫ ∞

−∞
cos bx dx +

i

b
= π(1 + i)δ(b) +

i

b
.

2



Thus,

Jω,k =
q x̂

(2π)4

{
π [(1 − i)δ(kx − ω/v) + (1 + i)δ(k′

x − ω/v)] − i

kx − ω/v
+

i

k′
x − ω/v

}
.(14)

Using this in eq. (3), the temporal Fourier components of the magnetic field for x > 0
are given by

Bω(x) = −4π2

c

∫ ∫
Jω,k

k± × x̂

kz

eik±·x dkx dky

= −(1 − i)q

4πc

∫ ∫
δ(kx − ω/v)

±kz ŷ − ky ẑ

kz
ei(kxx+kyy±kz z) dkx dky

−(1 + i)q

4πc

∫ ∫
δ(k′

x − ω/v)
±kz ŷ − ky ẑ

kz
ei(kxx+kyy±kzz) dkx dky (15)

+
iq

4π2c

∫ ∫ (
1

kx − ω/v
− 1

k′
x − ω/v

) ±kz ŷ − ky ẑ

kz
ei(kxx+kyy±kzz) dkx dky

The term in eq. (15) proportional to 1− i is of the form of eq. (49) of [4], and correspond
to the nonradiative field of the moving charge when v < c/n and to its Čerenkov radiation
when v > c/n. Similarly, the term in eq. (15) proportional to 1 + i corresponds to the
nonradiative field of the image charge3 q′ = −q(ε − 1)/(ε + 1) when v < c/n′ and to the
Čerenkov radiation of the charge q when v > c/n′ and the charge was at negative x. The

last term in eq. (15) can have real kz =
√

k2 − k2
x − k2

y =
√

ω2/n2c2 − k2
x − k2

y and therefore

represents an additional form of radiation associated with the moving charge, which exists
because of the transition between the different media at negative and positive x.

The field B is axially symmetric, and azimuthal, with respect to the axis of motion,
which is the x-axis here. The azimuthal field Bω,φ(x) (about the x-axis) at distance r⊥ from
the x-axis can be evaluated as −Bω,φ(x, 0, r⊥) using eq. (15), In particular, the azimuthal
magnetic field of the transition radiation is

BTR,ω,φ =
iq

4π2c

∫ ∫
√

k2
x+k2

y<ω/nc

(
1

kx − ω/v
− 1

k′
x − ω/v

)
ei(kxx+kzr⊥) dkx dky . (16)

where the region of integration is such that kz is real.

2.1 Metal-Vacuum Transition

In the rest of this note we restrict our attention to the case of vacuum for x > 0 and a
perfect conductor for x < 0. This corresponds to n = 1 and n′ = ∞, in which case k′

x = ∞
according to eq. (8).

When the speed of the charge is less than the speed of light c/n in the surrounding
medium, kz is purely imaginary according to eq. (5), and all plane waves in the expansion
(2) are evanescent. No radiation (to “infinity” [21]) is emitted by a charge moving uniformly

3See, for example, [7].
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at sublight speed. Replacing (kx, ky) by polar coordinates (kρ, θ), the magnetic field of the
transition radiation is

BTR,ω,φ =
iq

4π2c

∫ ω/c

0

kρ dkρ

∫ 2π

0

dθ
ei(kρx cos θ+

√
ω2/c2−k2

ρr⊥)

kρ cos θ − ω/v

=
iq

4π2c

∫ ω/c

0

ei
√

ω2/c2−k2
ρr⊥) dkρ

∫ 2π

0

dθ
eikρx cos θ

cos θ − ω/vkρ
(17)

The field B is axially symmetric, and azimuthal, with respect to the axis of motion, which
is the x-axis here. The azimuthal field Bφ(x, t) (about the x-axis) at distance r⊥ from the
x-axis can be evaluated as −By(x, 0, r⊥, t) using eq. (2),

Bφ = −By(x, 0, r⊥, t) = −2Re

∫ ∞

0

Bω,y(x, 0, r⊥) e−iωt dω

=
qμ

πc2
Re

∫
dly

∫ ∞

0

ω dω eiωx/ve−(ωr⊥/c)
√

c2/v2−n2+l2ye−iωt where ly = cky/ω

=
qμ

πr2
⊥

Re

∫
dly[

ic(x− vt)/r⊥v −
√

c2/v2 − n2 + l2y

]2

=
qμ

πr2
⊥

∫ −[c(x− vt)/r⊥v]2 + c2/v2 − n2 + l2y{
[c(x − vt)/r⊥v]2 + c2/v2 − n2 + l2y

}2 dly

=
qμ

πr2
⊥

2πi
d

dly

−[c(x− vt)/r⊥v]2 + c2/v2 − n2 + l2y[
ly + i

√
[c(x − vt)/r⊥v]2 + c2/v2 − n2

]2

∣∣∣∣∣∣∣
ly=i

√
[c(x−vt)/r⊥v]2+c2/v2−n2

=
qμv

c

(1 − n2v2/c2)r⊥
[(x− vt)2 + (1 − n2v2/c2)r2

⊥]
3/2

, (18)

where the integral in ly was evaluated by completing the contour at +∞. This is the usual
result for the magnetic field of a charge moving at constant, sublight speed.

For completeness, we also calculate the axially symmetric electric field E(x, 0, r⊥, t) in
the x-z plane. Comparing eqs. (2) and eq. (3), we infer that

Ez(x, 0, r⊥, t) = − c

εμv
By(x, 0, r⊥, t) =

q

ε

(1 − n2v2/c2)r⊥

[(x − vt)2 + (1 − n2v2/c2)r2
⊥]

3/2
. (19)

The y-component of Faraday’s law tells us that

∂Ex(x, 0, r⊥, t)

∂r⊥
=

∂Ez(x, 0, r⊥, t)

∂x
−1

c

∂By(x, 0, r⊥, t)

∂t
= −3q

ε

(1 − n2v2/c2)2(x − vt)r⊥
[(x − vt)2 + (1 − n2v2/c2)r2

⊥]
3/2

,

(20)
which integrates to

Ex(x, 0, r⊥, t) =
q

ε

(1 − n2v2/c2)(x − vt)

[(x − vt)2 + (1 − n2v2/c2)r2
⊥]

3/2
. (21)
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Thus, the electric field is radial with respect to the position of the charge, (x− vt, 0, 0), and
is related to the magnetic field by

E =
nv

c
× B. (22)

2.1.1 Čerenkov Radiation: c/n < v < c

When a charge q moves with speed v greater than that of light, c/n, in a medium (but
with v < c, of course), the plane-wave expansion (2) contains both homogeneous and inho-
mogeneous waves, and radiation is therefore emitted. This is sometimes considered to be
paradoxical in that the charge is not obviously accelerating. However, the radiation exists
only when the charge moves through a medium with index of refraction greater than 1, in
which case the charges in the medium are accelerated by the passing charge q, and we can say
that is the medium, rather than the charge itself, which emits the radiation. Of course, the
radiated energy must come from the charge itself, so there must be a (small) back reaction
of the medium on the passing charge, which decelerates the latter.

The temporal expansion of the magnetic field is, from eq. (2),

Bω(x) = −qμeiωx/v

2πc

∫ ±kz ŷ − ky ẑ

kz
ei(kyy±kzz) dky , (23)

where

kx =
ω

v
=

ck

nv
and kz =

√
k2(1 − c2/n2v2) − k2

y. (24)

For plane waves in the x-y plane, kz = 0 and ky = k
√

1 − c2/n2v2 = kx(nv/c)
√

1 − c2/n2v2 =

kx

√
n2v2/c2 − 1, which is real, so these waves are homogeneous, and carry energy away from

the charge q. Similarly, for plane waves in the x-z plane, ky = 0 and kz = kx

√
n2v2/c2 − 1.

The wave vector k for the homogeneous waves (radiation field) does not have a continuous
angular distribution, but always makes angle θC to the y-z plane, where

tan θC =
kx

ky(kz = 0)
=

kx

kz(ky = 0)
=

1√
n2v2/c2 − 1

, (25)

so that

cos θC =
1√

1 + tan2 θC

=
c

nv
. (26)

The angle θC is the famous Čerenkov angle.

Since k± · Eω,k± = 0, the electric field points only in a single direction, namely at the
Čerenkov angle θC to the negative x-axis (and the magnetic field circles about the x-axis).
This field configuration was first depicted by Heaviside [18].
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The temporal Fourier expansion of the electric field follows from eq. (3) as

Eω(x) =
q eiωx/v

2πεv

∫ −kx(n
2v2/c2 − 1) x̂ + ky ŷ ± kz ẑ

kz
ei(kyy±kz z) dky . (27)

The electric field in, say, the x-z plane for z > 0 consists of plane waves with ky = 0, so we
have that

E(x, 0, z > 0, t) = 2Re

∫ ∞

0

Eω(x, 0, z > 0) e−iωt dω

=
q

πεv
Re

∫ ∞

0

[− tan θC(n2v2/c2 − 1) x̂ + ẑ] eiω[(x+z/ tan θC)/v−t] dω

= −2q

εv
[tan θC(n2v2/c2 − 1) x̂ − ẑ] δ

(
x + z/ tan θC

v
− t

)
. (28)

At time t = 0 the electric field in the x-z plane for z > 0 is nonzero only along the line
z = −x tan θC , as shown in the figure. By a similar argument the magnetic field in the z-z
plane is nonzero only along this line. The electric and magnetic fields are is azimuthally
symmetric, so the fields are nonzero only on the Čerenkov cone. The present argument
predicts infinite fields on this cone, whereas in reality the index n exceeds unity for only a
finite range of frequency, and the fields extend slightly outside the cone, and are finite.

To deduce the frequency spectrum of the radiated power, we first note that the total
energy d2U that crosses an area element dArea, integrated over all time, is

d2U =

∫ ∞

−∞
S · dArea dt =

c

4πμ
dArea ·

∫ ∞

−∞
E × B dt

=
c

4πμ
dArea ·

∫ ∞

−∞

∫ ∞

−∞
Eω ×B e−iωt dω dt

=
c

2μ
dArea ·

∫ ∞

−∞
Eω × B�

ω dω =
c

μ
dArea · Re

∫ ∞

0

Eω ×B�
ω dω, (29)

since Eω(−ω) = E�
ω(ω) and Bω(−ω) = B�

ω(ω). Equal amounts of energy cross any plane at
z > 0 or at z < 0, so the total energy radiated is twice that which crosses a plane at z > 0,

U =
2c

μ

∫ ∫
dx dy ẑ · Re

∫ ∞

0

(Eω × B�
ω)z>0 dω. (30)

The energy radiated per unit frequency interval and per unit path length of the charge’s
motion along the x-axis is independent of x. Since Bx = 0, we have

d2U

dω dx
=

2c

μ

∫
dy Re(Eω,xB

�
ω,y)z>0

=
2c

μ

q

2πεv

qμ

2πc
Re

∫ ∫ ∫
kx(n2v2/c2 − 1)

kz

ei(kyy+kzz)e−i(k′
yy+k′

z
�z) dy dky dk′

y

=
2c

μ

qω

2πεv2

qμ

2πc
(n2v2/c2 − 1)Re

∫ ∫
2πδ(ky − k′

y)
ei(kz−k′

z
�)z)

kz
dky dk′

y
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=
q2ω

πεv2
(n2v2/c2 − 1)Re

∫
e−2Im(kz)z

kz
dky

=
q2ωn2

πεc2
(1 − c2/n2v2)

∫ (ωn/c)
√

1−c2/n2v2

−(ωn/c)
√

1−c2/n2v2

dky√
(ω2n2/c2)(1 − c2/n2v2) − k2

y

=
q2μω

c2

(
1 − c2

n2v2

)
, (31)

where we note that in the fourth line the integrand is real only when kz is real. Equation
(31) is the standard result for the energy spectrum of Čerenkov radiation [1], which has the
surprising feature (of little practical import) that a magnetic medium of index n emits μ
times as much Čerenkov radiation as does a dielectric medium of the same index. As usual,
we note that the index n can be greater than unity for only a finite range of frequencies, so
that the total power radiated over all frequencies is finite.

The x-component of the electric field at the charge is, using eq. (27),

Ex(vt, 0, 0, t) = 2Re

∫ ∞

0

Eω,x(vt, 0, 0) e−iωtdω (32)

= −
∫ ∞

0

dω
qω

πεv2
(n2v2/c2 − 1)Re

∫
1

kz

dky = −
∫ ∞

0

dω
qμω

c2

(
1 − c2

n2v2

)
.

This is a peculiar result in that we might have expected the electric field to diverge at the
charge.4 The field (32) acts opposite to the direction of the charge’s velocity and decelerates
it. The work done by the electron per unit path length is −qEx, whose Fourier component
at frequency ω equals the energy radiated per unit path length. That is, the work done by
the electron on the Čerenkov field is transformed into the Čerenkov radiation.

For additional discussion of the relation of radiation by moving charges to the plane-wave
decomposition of their fields, see [23].
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