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1 Problem

Deduce the approximate form of the current in a center-fed linear dipole antenna of half
height h when excited by a voltage source V0 eiωt across the antenna terminals, whose gap
width d is small compared to h. From this, give an expression for the impedance of the
antenna (whose real part is the so-called radiation resistance).

You may assume that the antenna conductors have radius a small compared to the height
h, and that they are perfect conductors.

2 Solution

This problem continues the use of techniques (discussed in [1]) that are inspired by Pock-
lington [2], who extended the insights of Lorenz [3] and Hertz [4], that electromagnetic fields
can be deduced from the retarded vector potential, by consideration of the boundary con-
dition that the tangential component of the electric field must vanish at the surface of a
good/perfect conductor. Furthermore, Pocklington noted that to a first approximation for
conductors that are thin wires, the vector potential at the surface of a wire depends only on
the current in the wire at that point. Pocklington deduced an integral equation for the cur-
rents in the conductors, which is the basis of numerical electromagnetic codes such as NEC4
[14]. Semi-analytic analyses are more often based on variants of Pocklington’s equation, as
developed by L.V. King [5], E. Hallén [6] and R.W.P. King [7]-[10]. See also [15], on which
this solution is based. A different analytic method, based on expansion of the fields of a
biconical antenna in modes, has been pursued by Schelkunoff [11].1

As for the case of a receiving antenna [1], we suppose the antenna is excited by a specified
input electric field Ein. For a transmitting antenna this is taken to be the internal field,

Ein =

⎧⎨
⎩

V0

d
eiωt ẑ (ρ < a, φ, |z| < d/2),

0 (elsewhere),
(1)

of an rf generator that is located in the gap of width d between the terminals of the antenna,
whose conductors of radius a lie along the z axis of a cylindrical coordinate system (ρ, φ, z)
with its origin at the center of the antenna. This internal field is the negative of the (response)
field in the gap in the more realistic case that the rf generator is located some distance from
the antenna and connected to it via a transmission line. The incident electric field is zero
outside of the gap at the antenna terminals. In particular, it is zero elsewhere on the
conductors of the antenna.

1As more powerful computers have become available, the so called finite-difference time domain (FDTD)
method has become more practical for antenna modeling. See, for example, [12, 13].
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The input electromagnetic field excites an oscillating current distribution J(r, t) = J(r) eiωt

in the conductors of the receiving antenna. If this current distribution is known, then the
retarded vector potential A(r, t) = A(r) eiωt of the response fields can be calculated as,

A(r, t) =
μ0

4π

∫
J(r′, t′ = t−R/c)

R dVol′ =
μ0

4π

∫
J(r′)

e−ikR

R dVol′ eiωt = A(r) eiωt, (2)

where R = |r − r′|, c is the speed of light, ω is the angular frequency, k = ω/c is the wave
number, and the medium outside the conductors is vacuum (with permittivity μ0). In the
present example the conductors are thin wires along the z axis, and we suppose that the
current density J(r) is independent of azimuth in a cylindrical coordinate system (ρ, φ, z)
and is well approximated by a current I(z), which is symmetric in z,

I(−z) = I(z), (3)

for a symmetric, center-fed linear dipole antenna. Then, the vector potential has only a z
component,

Az(r) =
μ0

4π

∫
I(z′)

e−ikR(z,z′)

R(z, z′)
dz′. (4)

We work in the Lorenz gauge [3], where,

∇ · A +
1

c2

∂V

∂t
= 0, (5)

so the scalar potential V (r, t) = V (r) eiωt of the response fields is related to the vector
potential according to,

V (r) =
ic

k

∂Az(r)

∂z
≡ ic

k
∂zAz(r). (6)

The response fields E(r, t) = E(r) eiωt and B(r, t) = B(r) eiωt can then be calculated from
the vector potential Az(r) as,

E(r) = −∇V (r) − iωA(r) = − ic

k
[∂2

rzAz(r) ρ̂ + (∂2
z + k2)Az(r) ẑ], (7)

B(r) = ∇× A(r) = −∂ρAz(r) φ̂. (8)

2.1 The Thin-Wire Approximation

The key relation between the input electric field Ein and the response field E is that the
tangential component of the total electric field Ein + E must vanish at the surface of the
conductors. In the thin-wire approximation, the only tangential component of interest is the
z component, and for wire radius a much less that the antenna half height h, the constraint
is essentially on the electric field on the z axis,

Ez(0, 0, z) = −Ein = 0 (d/2 < |z| < h), (9)

since the input field (1) vanishes outside the gap between the terminals of the antenna. We
also know that the response field is the negative of the input field inside the (narrow) gap,
so we can write,

Ez(0, 0, z) ≈ −V0δ(z) (|z| < h). (10)
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From eq. (7), we obtain a differential equation for the vector potential,

(∂2
z + k2)Az(0, 0, z) = − ik

c
Ein(0, 0, z) =

ik

c
Ez(0, 0, z) ≈ − ik

c
V0δ(z) (|z| < h). (11)

Two solutions to the homogeneous differential equation (∂2
z +k2)Az(0, 0, z) = 0 are, of course,

cos kz and sin kz. Since the righthand side of eq. (11) is symmetric in z, the vector potential
will be also, and the function sin kz does not appear in it. A solution to the particular
equation is −iV0 sin k |z| /2c, noting that

∫ ε

−ε
∂2

z sin k |z| dz = ∂z sin k |z| |ε−ε = 2k. Hence, a
general solution to eq. (11) for |z| < h can be written as,

Az(0, 0, z) ≈ − i

2c
(C cos kz + V0 sin k |z|) (|z| < h). (12)

To evaluate the constant of integration C we need an additional condition on the system.
In particular, we note that the current I(z) must vanish at the ends of the antenna, z = ±h.
In the thin-wire approximation, the vector potential on the wire is proportional to the current
in the wire at that point, because of the 1/R dependence in eq. (4). In this approximation,
the needed condition on the vector potential is that it also vanishes at the ends of the
conductors. From this we find,

C = −V0
sin kh

cos kh
, (13)

and so the vector potential along the antenna is,

Az(0, 0, z) ≈ iV0

2c

sin kh cos kz − cos kh sin k |z|
cos kh

=
iV0

2c

sin[k(h − |z|)]
cos kh

(|z| < h). (14)

Since the current is proportional to the vector potential on the axis in this approximation,
we have,

I(z) ≈ I0
sin[k(h − |z|)]

sin kh
(|z| < h), (15)

where I0 = I(0) is the current at the terminals of the antenna.
Thus, the thin-wire approximation (first advocated by Pocklington [2]) leads to the

sinusoidal-current approximation, which latter approximation is often invoked without as
detailed a justification as given above.2

The electromagnetic fields can now be calculated analytically everywhere from the cur-
rent distribution (15). See, for example, [16]. However, the tangential component of the
electric field so calculated does not vanish along the conductors of the antenna. The thin-
wire approximation is not consistent with the perfect-conductor boundary condition on the
electric field.

The fields calculated in the far zone of the antenna from eq. (15) are quite accurate, but
the fields calculated in the near zone are badly misestimated. A consequence is that the

2See, for example, sec. 9.4A of [18]. There it is also implied that radiation damping affects the current
distributions. However, the oscillating charges on the surface of perfect conductors emit no net radiation,
and experience no radiation damping/reaction force. Only currents in the power source experience radiation
damping, which effect appears in the analysis as the radiation resistance of the antenna that is perceived by
the power source.
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reactance of the antenna at its terminals is not well determined in the thin-wire approxima-
tion. The thin-wire approximation to eq. (4) is that Az(0, 0, z) ≈ μ0I(z)/4π, so that eq. (14)
evaluated at z = 0 implies that the current (15) is 90◦ out of phase with the drive voltage.
Thus, writing V0 = I0Z we find Z ≈ −iZ0/2π tan kh, where Z0 =

√
μ0/ε0 = 377 Ω, as also

found for a receiving antenna in the thin-wire approximation [1]. This correctly indicates
that the reactance of a short linear antenna is capacitive and that the reactance vanishes
for h ≈ λ/2, but the result differs from that of a simple model (see the Appendix) by the
absence of a factor of ln(h/a). Furthermore, the real part of the current, and also of the
impedance, is neglected in the thin-wire approximation, so the antenna does not appear to
consume any energy from the rf power source.3

2.2 Solution via Pocklington’s Integral Equation

If we do not assume that the vector potential at the conductors is proportional to the currents
they carry, we can proceed by combining equations (4) and (11) into an integral equation
that relates the incident electric field at the conductors to the response currents in those
conductors (noting that ∂z acts only on R(z, z′)),

∫ h

−h

I(z′)(∂2
z + k2)

e−ikR(z,z′)

−ikR(z, z′)
dz′ =

4π

Z0
Ein(z) (|z| < h). (16)

This is Pocklington’s integral equation [2], whose solution is implemented numerically in
codes such as NEC4 [14]. See also [15]. The integral equation (16) is readily generalized
to any case where the conductors of the antenna are piecewise linear, i.e., to essentially all
cases of practical interest. Some comments on technical difficulties in numerical solutions to
these integral equations are given in [17].

The nonzero radius a of the conductors can be taken into account by using,

R(z, z′) =
√

(z − z′)2 + a2, (17)

rather than R = |z − z′|.
Recalling from eqs. (9)-(10) that the input electric field for a thin, center-fed dipole

antenna can be written Ein(z) ≈ V0δ(z), Pocklington’s integral equation (16) is, for |z| < h,

4π

Z0
V0 δ(z) ≈

∫ h

−h

I(z′)(k2 + ∂2
z)

e−ikR

−ikR dz′ =

∫ h

−h

I(z′)(k2 + ∂2
z′)

e−ikR

−ikR dz′

=

∫ h

−h

[k2I(z′) − I ′(z′)∂z′ ]
e−ikR

−ikR dz′ (18)

=

∫ h

−h

[k2I(z′) + I ′′(z′)]
e−ikR

−ikR dz′ − I ′(h)

(
e−ikR(z,h)

−ikR(z, h)
+

e−ikR(z,−h)

−ikR(z,−h)

)
,

3The real part of the antenna impedance, the so-called radiation resistance Rrad, can be well calculated
from the far-zone fields generated by the current distribution of eq. (15) using the relation 〈P 〉 = I2

0Rrad/2,
where 〈P 〉 is the time-average radiated power, with the result Rrad = Z0(kh)2/6π = 20(kh)2 Ohms. See, for
example, sec. 2.6 of [16].

4



where we note that ∂2
zf [R(z, z′)] = ∂2

z′f [R], so that we can integrate twice by parts, using the
boundary condition that I(±h) = 0 and the fact dI/dz ≡ I ′(z) = −I ′(−z) according to the
symmetry condition (3). For a short linear antenna (kh � 1) eq. (18) can be approximated
as,

4π

Z0

V0 δ(z) ≈
∫ h

−h

[k2I(z′) + I ′′(z′)]
(

1 +
i

kR(z, z′)

)
dz′ − I ′(h)

(
2 +

i

kR(z, h)
+

i

kR(z,−h)

)

=

∫ h

−h

[
k2I(z′) + i

k2I(z′) + I ′′(z′)
kR(z, z′)

]
dz′ − iI ′(h)

k

(
1

R(z, h)
+

1

R(z,−h)

)
. (19)

In the thin-wire approximation, the current distribution in a short linear antenna follows
from eq. (15) as,

I(z) =

⎧⎨
⎩

I0

(
1 − |z|

h

)
(|z| < h),

0 (|z| > h),
(20)

whose derivatives are,

I ′(z) =
I0

h

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 (−h < z < 0),

−1 (0 < z < h),

0 (|z| > h),

(21)

and,

I ′′(z) = −2I0

h
δ(z) +

I0

h
[δ(z − h) + δ(z + h)]. (22)

To use the forms (20)-(22) in eq. (19), we first note that,

∫ h

−h

I(z′)
R(z, z′)

dz′ = I0

∫ h

−h

(
1 − |z′|

h

)
dz′√

(z′ − z)2 + a2
= I0

∫ h−z

−h−z

(
1 − |z + x|

h

)
dx√

x2 + a2

= I0

∫ h−z

−h−z

dx√
x2 + a2

+
I0

h

∫ −z

−h−z

z + x√
x2 + a2

dx − I0

h

∫ h−z

−z

z + x√
x2 + a2

dx

= I0 ln

√
(h − z)2 + a2 + h − z√

(h + z)2 + a2 − (h + z)

+
I0z

h
ln

(
√

z2 + a2 − z)2(√
(h + z)2 + a2 − (h + z)

)(√
(h − z)2 + a2 + h − z

)

+
I0

h

(
2
√

z2 + a2 −
√

(h + z)2 + a2 −
√

(h − z)2 + a2
)

. (23)

Then, we find,

4π

Z0
V0 δ(z) ≈ k2hI0 + ik

∫ h

−h

I(z′)
R(z, z′)

dz′ − 2iI0

kh

(
1

R(z, 0)
− 1

R(z, h)
− 1

R(z,−h)

)
. (24)

Of the various terms in eqs. (23)-(24), the one most like the delta-function δ(z) is 1/R(z, 0).
So, we make the somewhat bold approximation of ignoring all other imaginary terms in
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eq. (24), and we write it as,

4π

Z0
V0 δ(z) ≈ k2hI0 − 2iI0

khR(z, 0)
(|z| < h). (25)

Next, we integrate from −h to h to evaluate the parameter I0,

4π

Z0
V0 ≈ 2k2h2I0 − 2iI0

kh

∫ h

−h

dz√
z2 + a2

= 2k2h2I0 − 2iI0

kh
ln

√
h2 + a2 + h√
h2 + a2 − h

≈ 2k2h2I0 − 4iI0

kh
ln

h

a
. (26)

The terminal impedance Z of the antenna is then given by,

Z =
V0

I0
≈ Z0k

2h2

2π
− iZ0

πkh
ln

h

a
. (27)

The solution to Pocklington’s integral equation (16) based on the simple form (20) of the
current distribution gives an estimate of Z0(kh)2/2π for the (very small) radiation resistance
of a short, linear dipole antenna, which result is a factor of three larger than nominal.
Further, the estimate −Z0 ln(h/a)/πkh of the (capacitive) reactance equals the value found
in the Appendix by an electrostatic calculation.

For comparison, a NEC4 [14] calculation of a short linear antenna with kh = 0.05 and
h/a = 5×105 predicts a radiation resistance within 3% of Z0(kh)2/6π and a reactance within
10% of −(Z0/πkh) lnh/a. In that calculation, the antenna was divided into 201 segments,
with simple forms for the current distribution used for each segment. The predicted real
and imaginary parts of the current distribution are shown in the figures below: the (larger)
imaginary part is very close to the form (20), while the (very small) real part has the form
1 − z2/h2 and a peak value close to (kh)3/6 ln(h/a) times the peak value of the imaginary
part of the current.

While the success of the approximate analytic solution (26)-(27) to Pocklington’s inte-
gral equation is (to this author) remarkable, it may be of interest to explore in secs. 2.3-4
an analytic solution via another integral equation that has often been considered in the
literature.
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2.3 Solution via Hallén’s Integral Equation

For purely linear antennas of lengths up to 1-2 wavelengths, one can obtain rather good
solutions for the currents using eq. (4) together with the approximate solution (12) for the
vector potential along the conductors,

Z0

2π

∫ kh

−kh

I(z′)
e−ikR

−ikR d(kz′) =
iZ0

2π

4π

μ0

Az(0, 0, z) ≈ V0 sin |kz| + C cos kz (|z| < h), (28)

with R(z, z′) again given by eq. (17). This integral equation is due to Hallén [6], whose
method of solution was improved by King [8, 9, 10]. The current I(z) must still vanish at
the ends of the conductors, i.e., z = ±h, but the vector potential need not vanish there.

The simplest analytic approximation to the integral equation (28) is that the integrand
is significant only when R is very small, i.e., when z ≈ z′, and hence,

I(z) ≈ −2πi

Z0
[V0 sin |kz| + C cos kz] (|z| < h). (29)

Setting I(h) = 0 we recover the thin-wire solution of sec. 2.1.
To do better, we would like the impedance Z = R + iX calculated from V0 = I0Z to

include a real part (i.e., to acknowledge the existence of radiation!). This implies that we
cannot approximate the factor e−ikR/ − ikR in eq. (28) as being purely imaginary. Now,

e−ikR

−ikR =
sin kR

kR + i
cos kR

kR =
sin(kR/2) cos(kR/2)

kR/2
+ i

cos kR
kR ≈ cos

kR
2

+
i

kR , (30)

where the approximation holds for kR <∼ 1. Using this approximation in eq. (28), the real
part of the integral is,

Z0

2π

∫ kh

−kh

I(z′) cos
kR
2

d(kz′) ≈ Z0

2π

∫ kh

0

I(z′)
(

cos
k |z − z′|

2
+ cos

k |z + z′|
2

)
d(kz′)

=
Z0

π
cos

kz

2

∫ kh

0

I(z′) cos
kz′

2
d(kz′) ≡ R cos

kz

2
, (31)

and the imaginary part of the integral is,

Z0

2π

∫ kh

−kh

I(z′)
kR d(kz′) ≈ XI(z), (32)

where R and X are real constants, with dimensions of impedance, that are to be determined.
The approximate solution to eq. (28) can be written as,

iXI(z) ≈ V0 sin |kz| + C cos kz − R cos
kz

2
. (33)

This suggests that the desired better approximation to the current is a linear combination
of terms in sin |kz|, cos kz and cos(kz/2). A form of the current based on these terms which
satisfies the condition that I(±h) = 0 is,

I(z) = I01I1(z) + I02I2(z) + I03I3(z), (34)
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where I01, I02 and I03 are complex constants and the dimensionless currents Ij, j = 1, 2, 3,
have the forms,

I1(z) =
sin kh − sin |kz|

sin kh
=

sin kh − sin |kz|
J1

, (35)

I2(z) =
cos kz − cos kh

1 − cos kh
=

cos kz − cos kh

J2
, (36)

I3(z) =
cos(kz/2) − cos(kh/2)

1 − cos(kh/2)
=

cos(kz/2) − cos(kh/2)

J3
, (37)

where,
J1 = sin kh, J2 = 1 − cos kh, and J3 = 1 − cos(kh/2), (38)

such that the Ij are normalized to 1 at z = 0.
Using this form for the current in the integral equation (28), we have,

I01Z1(z) + I02Z2(z) + I03Z3(z) = V0 sin |kz| + C cos kz (|z| < h), (39)

where the forms,

Zj(z) =
Z0

2π

∫ kh

−kh

Ij(z
′)

e−ikR

−ikR d(kz′), j = 1, 2, 3, (40)

are computable functions of z using R(z, z′) from eq. (17).
The four unknowns, C , I01, I02 and I03 in eq. (39) could in principle be determined by

evaluating this equation at four different z. However, we follow the recommendation of King
[9, 10] that we only make an evaluation at z = h, and seek three additional constraints on
these unknowns elsewhere.

At z = h, eq. (39) is just,

I01Z1(h) + I02Z2(h) + I03Z3(h) = V0 sin kh + C cos kh. (41)

Subtracting eq. (41) from eq. (39), we find,

I01Zh1(z) + I02Zh2(z) + I03Zh3(z) = −V0I1(z)J1 + CI2(z)J2 (|z| < h), (42)

where,

Zhj(z) ≡ Zj(z) − Zj(h) =
Z0

2π

∫ kh

−kh

Ij(z
′)

(
e−ikR

−ikR − e−ikRh

−ikRh

)
d(kz′), j = 1, 2, 3, (43)

and,
Rh = R(h, z′) =

√
(h − z′)2 + a2. (44)

We now apply the approximations of eqs. (31)-(33) to the functions Zhj(z), and write,

Zhj(z) ≈ Rj(cos kz/2− cos kh/2)+ iXjIj(z)Jj = RjI3(z)J3 + iXjIj(z)Jj, j = 1, 2, 3, (45)
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where the Rj and Xj are new unknown, real constants. These constants can be determined
by numerical evaluation of the functions Zhj(z) at z = 0 where the currents Ii(z) are maximal
(or, in case λ/4 < h < 5λ/8, I1 should be evaluated at z = h − λ/4). Thus, for h < λ/4,

Zhj(0) = RjI3(0)J3 + iXjIj(0)Jj , j = 1, 2, 3, (46)

and,

Rj =
Re[Zhj(0)]

I3(0)J3
, Xj =

Im[Zhj(0)]

Ij(0)Jj
, j = 1, 2, 3. (47)

Using the approximation (45) in eq. (42) we have,

I01[R1I3(z)J3 + iX1I1(z)J1] + I02[R2I3(z)J3 + iX2I2(z)J2] + I03(R3 + iX3)I3(z)J3

≈ −V0I1(z)J1 + CI2(z)J2 (|z| < h), (48)

Equating separately the coefficients of the functions I1(z), I2(z) and I3(z) we obtain the
needed three additional constraints on the unknowns C , I01, I02 and I03,

I01 ≈ i
V0

X1
, (49)

C ≈ iX2I02, (50)

R2I02 + (R3 + iX3)I03 ≈ −R1I01. (51)

Using these we can rewrite the fourth constraint, eq. (41), as,

[Z2(h)− iX2 cos kh]I02 +Z3(h)I03 = −I01Z1(h)+ V0 sin kh ≈ −I01[Z1(h) + iX1 sin kh]. (52)

Solving eqs. (51)-(52) for I02 and I03 we find,

I02 ≈ I01
(R3 + iX3)[Z1(h) + iX1 sin kh] − R1Z3(h)

R2Z3(h) − (R3 + iX3)[Z2(h) − iX2 cos kh]
, (53)

I03 ≈ −I01
R2[Z1(h) + iX1 sin kh] −R1[Z2(h) − iX2 cos kh]

R2Z3(h) − (R3 + iX3)[Z2(h) − iX2 cos kh]
. (54)

The current I0 = I(0) at the terminals of the antenna now follows from eq. (34) as,

I0 = I01 + I02 + I03 ≡ V0

Z
, (55)

so the input impedance Z of the antenna is also determined.
Numerical examples of these approximations for h = λ/2, λ and 3λ/2 are given in [10, 15].

So much numerical computation is involved for long antennas in the present semi-analytic
approach that in practice it’s better to use fully numerical codes such as [14].

2.4 Hallén’s Integral Equation for a Short Linear Antenna

To obtain a more complete analytic approximation, we restrict our attention to a short linear
antenna, for which kh � 1.
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In this limit, the currents I2(z) and I3(z) of eqs. (36)-(37) are proportional to one another,
so we consider only two forms of the (normalized, dimensionless) current,

I1(z) = 1 − |z|
h

, (56)

I2(z) = 1 − z2

h2
, (57)

which are the limiting forms of the currents (35)-(36) when kh � 1. Then, the total current
is given by,

I(z) = I01I1(z) + I02I2(z), (58)

where I01 and I02 are complex constants to be determined.
Using this form for the current in the integral equation (28), we have,

I01Z1(z) + I02Z2(z) = V0 sin |kz| + C cos kz, (|z| < h), (59)

where,

Zj(z) =
Z0

2π

∫ kh

−kh

Ij(z
′)

e−ikR

−ikR d(kz′) ≈ Z0

2π

∫ kh

−kh

Ij(z
′)

(
1 +

i

kR
)

d(kz′), j = 1, 2. (60)

In particular,

Z1(z) ≈ kZ0

2π

∫ h

−h

(
1 − |z′|

h

) (
1 +

i

kR
)

dz′

=
khZ0

2π
+

iZ0

2π

∫ h

−h

(
1 − |z′|

h

)
dz′√

(z′ − z)2 + a2

=
khZ0

2π
+

iZ0

2π

∫ h−z

−h−z

(
1 − |z + x|

h

)
dx√

x2 + a2

=
khZ0

2π
+

iZ0

2π

∫ h−z

−h−z

dx√
x2 + a2

+
iZ0

2πh

∫ −z

−h−z

z + x√
x2 + a2

dx

− iZ0

2πh

∫ h−z

−z

z + x√
x2 + a2

dx

=
khZ0

2π
+

iZ0

2π
ln

√
(h − z)2 + a2 + h − z√

(h + z)2 + a2 − (h + z)

+
izZ0

2πh
ln

(
√

z2 + a2 − z)2(√
(h + z)2 + a2 − (h + z)

)(√
(h − z)2 + a2 + (h − z)

)

+
iZ0

2πh

(
2
√

z2 + a2 −
√

(h + z)2 + a2 −
√

(h − z)2 + a2
)

. (61)

For later use we need the values of Z1 at z = 0 and h,

Z1(0) ≈ khZ0

2π
+

iZ0

2π
ln

√
h2 + a2 + h√
h2 + a2 − h

− iZ0

πh

(√
h2 + a2 − a

)

≈ khZ0

2π
+

iZ0

π

(
ln

h

a
− 1

)
≈ khZ0

2π
+

iZ0

π
ln

h

a
, (62)
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and,

Z1(h) ≈ khZ0

2π
+

iZ0

2π
ln

a√
(2h)2 + a2 − 2h

+
iZ0

2π
ln

(
√

h2 + a2 − h)2

a
(√

(2h)2 + a2 − 2h)
)

+
iZ0

2πh

(
2
√

h2 + a2 −
√

(2h)2 + a2 − a
)

≈ khZ0

2π
+

iZ0

2π
ln

4h

a
+

iZ0

2π
ln

a

h
− iaZ0

2πh
≈ khZ0

2π
+

iZ0

π
ln 2, (63)

noting that a/h � 1. Similarly,

Z2(z) ≈ kZ0

2π

∫ h

−h

(
1 − z′2

h2

) (
1 +

i

kR
)

dz′

=
khZ0

3π
+

iZ0

2π

∫ h

−h

(
1 − z′2

h2

)
dz′√

(z′ − z)2 + a2

=
khZ0

3π
+

iZ0

2π

∫ h−z

−h−z

(
1 − (z + x)2

h2

)
dx√

x2 + a2

=
Z0

3π
+

iZ0(h
2 − z2)

2πh2

∫ h−z

−h−z

dx√
x2 + a2

− izZ0

πh2

∫ h−z

−h−z

x√
x2 + a2

dx

− iZ0

2πh2

∫ h−z

−h−z

x2

√
x2 + a2

dx

=
khZ0

3π
+

iZ0(h
2 − z2)

2πh2
ln

√
(h − z)2 + a2 + h − z√

(h + z)2 + a2 − (h + z)

+
izZ0

πh2

(√
(h + z)2 + a2 −

√
(h − z)2 + a2

)

− iZ0

4πh2

(
(h + z)

√
(h + z)2 + a2 + (h − z)

√
(h − z)2 + a2

)

+
ia2Z0

4πh2
ln

√
(h − z)2 + a2 + h − z√

(h + z)2 + a2 − (h + z)
. (64)

For later use we record the values of Z2 at z = 0 and h,

Z2(0) ≈ khZ0

3π
+

iZ0

2π
ln

√
h2 + a2 + h√
h2 + a2 − h

− iZ0

4πh

√
h2 + a2 +

ia2Z0

4πh2
ln

√
h2 + a2 + h√
h2 + a2 − h

≈ khZ0

3π
+

iZ0

π

(
ln

h

a
− 1

2

)
≈ khZ0

3π
+

iZ0

π
ln

h

a
, (65)

and,

Z2(h) ≈ khZ0

3π
+

iZ0

2πh

(√
(2h)2 + a2 − 2a

)
+

ia2Z0

4πh2
ln

a√
(2h)2 + a2 − 2h

≈ khZ0

3π
+

iZ0

π
+

ia2Z0

2πh2
ln

2h

a
≈ khZ0

3π
+

iZ0

π
. (66)
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As before, we find one constraint on the unknown coefficients C , I01 and I02 by evaluating
eq. (59) at z = h,

I01Z1(h) + I02Z2(h) = V0 sin kh + C cos kh. (67)

Subtracting eq. (67) from eq. (59), we find (recalling eqs. (35)-(36) and (43)),

I01Zh1(z) + I02Zh2(z) = −V0I1(z)J1 + CI2(z)J2 (|z| < h), (68)

where now,

J1 = kh, and J2 =
k2h2

2
. (69)

We again apply the approximations of eqs. (31)-(33) to the functions Zhj(z), and write,

Zhj(z) ≈ Rj(cos(kz/2)−cos(kh/2))+iXjIj(z)Jj ≈ Rj
I2(z)J2

4
+iXjIj(z)Jj, j = 1, 2, (70)

noting that cos(kz/2) − cos(kh/2) ≈ (1 − z2/h2)k2h2/8 = I2(z)J2/4 for kh � 1. The
constants Rj and Xj can be determined by evaluation of the functions Zhj(z) at z = 0 where
the currents Ii(z) are maximal. Thus,

Zhj(0) = Rj
I2(0)J2

4
+ iXjIj(0)Jj =

k2h2Rj

8
+ iXjIj(0)Jj , j = 1, 2 (71)

such that,

Rj =
8Re[Zhj(0)]

k2h2
=

8Re[Zj(0) − Zj(d)]

k2h2
, Xj =

Im[Zhj(0)]

Ij(0)Jj
=

Im[Zj(0) − Zj(d)]

Ij(0)Jj
. (72)

Referring to eqs. (56)-(57), (62)-(63), (65)-(66) and (69) we find,

R1 ≈ 0 ≈ R2, X1 ≈ Z0

πkh
ln

h

a
, X2 ≈ 2Z0

πk2h2
ln

h

a
. (73)

Using the approximation (70) in eq. (68) we have,

I01

(
R1

4
I2(z)J2 + iX1I1(z)J1

)
+ I02

(
R2

4
+ iX2

)
I2(z)J2 ≈ −V0I1(z)J1 + CI2(z)J2, (74)

Equating separately the coefficients of the functions I1(z) and I2(z) we obtain the needed
two additional constraints on the unknowns C , I01 and I02,

I01 ≈ i
V0

X1
≈ i

πkhV0

Z0 ln(h/a)
, (75)

C ≈ R1

4
I01 +

(
R2

4
+ iX2

)
I02 ≈ iX2I02. (76)

Using these we can solve the first constraint, eq. (67), for I02,

I02 ≈ khV0 − I01Z1(h)

Z2(h) − iX2
≈ i

πk3h3V0

2Z0 ln(h/a)
+

πk4h4V0

4Z0 ln2(h/a)
. (77)
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The (complicated) impedance function Z(z) is now given by,

Z(z) =
I01I1(z)Z1(z) + I02I2(z)Z2(z)

I01I1(z) + I02I2(z)
, (78)

using eqs. (56)-(57), (61), (64) and (76)-(77).
The input impedance Z of the antenna is determined from the current,

I(0) = I01I1(0) + I02I2(0) = I01 + I02 ≈ i
πkhV0

Z0 ln(h/a)
+

πk4h4V0

4Z0 ln2(h/a)
(79)

at the terminals according to,

Z =
V0

I(0)
≈ Z0k

2h2

4π
− i

Z0

πkh
ln

h

a
. (80)

The real part of the impedance is closer to the radiation resistance Z0(kh)2/6π of a short
linear antenna than the approximation of sec. 2.2, and the imaginary part again equals the
capacitive reactance of a short linear antenna as estimated in the Appendix.

Thus, with substantial effort, the solution to Hallén’s integral equation based on a current
distribution with two terms provides a small improvement over the approximate solution to
Pocklington’s integral equation with only one function for the current.

2.5 Fields Very Close to a Dipole Antenna

The approximate forms of the currents found in secs. 2.3-4 are fairly good over most of the
length of the antenna, with the greatest error being close to the terminals at z = 0. The
resulting estimates for antenna impedances, are reasonably accurate, the near electric and
magnetic fields calculated from the approximate currents using the retarded vector potential
(4) according to eqs. (7)-(8) are reasonably accurate except very close to the antenna con-
ductors [9, 10]. But, even in the better approximations of secs. 2.2-4 the tangential electric
field Ez(a, φ, |z| < h) is not zero.

It appears that analytic calculations based sums of sinusoidal currents, such as eqs. (34)
and (58) are not sufficient for good accuracy of the currents very close to the antenna
terminals and of the tangential electric field very close to the conductors. However, numerical
analyses, such as NEC4 [14], in which the antenna is subdivided into segments, on which
sinusoidal currents are assumed to flow, can achieve rather good accuracy for the currents
near the antenna terminals (and hence for the antenna impedance), as well as satisfying the
condition that the tangential electric field as calculated from the retarded vector potential
vanish at the surface of the conductors.

For analyses such as those in secs. 2.2-4 in which the tangential electric field is not zero
at the conductors when calculated via the retarded vector potential, a method for obtaining
somewhat more realistic fields close to the conductors has been given by King and Wu [10].

Very close to the conductors, the radial electric field Eρ is related to the charge distribu-
tion q(z) eiωt along the conductors by Gauss’ law,

Eρ(ρ >∼ a, φ, |z| < h, t) ≈ q(z) eiωt

2πε0ρ
. (81)

13



The charge distribution can be obtained from the current distribution I(z) eiωt via the con-
tinuity equation,

∂I

∂z
= −∂q

∂t
= −iωq, (82)

so that,

q(z) =
i

ω

dI(z)

dz
=

iI ′(z)

ω
. (83)

Thus,

Eρ(ρ >∼ a, φ, |z| < h, t) ≈ iI ′(z)

2πε0ωρ
eiωt =

iI ′(z)Z0

2πkρ
eiωt. (84)

The peak electric field at the surface of the conductor can be estimated using eq. (15) for the
current distribution. The derivative I ′(z) is greatest at the end of the conductor, |z| = h,
where I ′

max = kI0/ sin kh. Thus, the peak electric field at the surface of the conductor, ρ = a,
is,

Eρ,max ≈ I0Z0

2πa sin kh
=

V0

2πa sin kh

Z0

Z
. (85)

For a half-wave antenna (h ≈ λ/4) the antenna impedance Z ≈ 70Ω is real, so,

Eρ,max ≈ 0.86
V0

a
(half-wave antenna), (86)

which is larger than the electric field V0/d between the terminals of the antenna if a < 1.17d.
The scalar potential V (ρ, z, t) close to the surface of the conductor can be obtained from

eqs. (15) and (84) by integration,

V (ρ, z, t) = V (a, z, t)−
∫ ρ

a

Eρ(ρ, z, t) dρ = V (a, z, t)± i
V0 eiωt

2

Z0

πZ

cos[k(h − |z|)]
sin kh

ln
ρ

a
. (87)

The scalar potential V (a, z, t) at the surface of the conductor can be estimated from the
vector potential there using the gauge condition (5)-(6) and supposing that the thin-wire
approximation (14) actually describes the vector potential Az(a, z, t) at the surface of the
conductor. Then,

V (a, z, t) =
ic

k

∂Az(a, z, t)

∂z
= ±V0 eiωt

2

cos[k(h − |z|)]
cos kh

(|z| < h), (88)

and,

V (ρ, z, t) = ±V0 eiωt

2
cos[k(h− |z|)]

(
1

cos kh
+

i

sin kh

Z0

πZ
ln

ρ

a

)
(ρ >∼ a, |z| < h). (89)

As h approaches λ/4 the term 1/ cos kh grows large and the scalar potential is very large
near the tips of the antenna.4 However, this high voltage is not associated with a large
electric field because the latter is determined by the derivative with respect to ρ of the other
term in parentheses, in which term the factor 1/ sin kh is unity for h = λ/4. Hence, the

4This result was anticipated qualitatively by Poincaré by analogy with acoustic resonators. See Fig. 81
of [19].
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high voltage at the surface of the conductor is not relevant to the issue of possible electric
discharge (corona) at the surface of the antenna.

Similarly, close to the conductors the magnetic field follows from Ampère’s law (as the
displacement current can be neglected here compared to the conduction current),

Bφ(ρ >∼ a, φ, |z| < h, t) ≈ μ0I(z)

2πρ
eiωt. (90)

Finally, the electric field component Ez can be found from the φ component of Faraday’s
law, ∇× E = −∂B/∂t,

∂Ez

∂ρ
=

∂Ep

∂z
+ iωBφ ≈ i

2πε0ωρ

[
I ′′(z) + k2I(z)

]
eiωt. (91)

Integrating out from ρ = a where Ez = 0 by assumption, we find,

Ez(ρ >∼ a, φ, |z| < h, t) ≈ i

2πε0ω

[
I ′′(z) + k2I(z)

]
ln

ρ

a
eiωt. (92)

For |z| > h and for ρ larger than a few times the radius a, the fields can be calculated
from the retarded vector potential. The fields Eρ and Bφ so calculated agree with the forms
(84)-(90) close to the conductors, while eq. (92) is a better approximation for the axial field
Ez close to the conductors.

Once good accuracy is obtained for the fields close to the conductors of the antenna,
computation of the Poynting vector shows how power flows out from the feedpoint of the
antenna and is guided by the conductors of the antenna into the far zone. Such computations
were first made for antennas with conductors of nonzero radius by the Landstorfer group [20].
The figures below were produced by NEC4 (thanks to Alan Boswell) for dipole antennas of
total lengths λ/2 and 3λ/2.

An analytic calculation of the surface currents, of the near and far fields and of the
Poynting vector field of a split-sphere antenna has been given recently by Jackson [21].
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2.6 Approximation Relation between the Charge and Voltage

Distributions

The charge distribution ρ(z) in a linear antenna is related to the current distribution I(z)
by the continuity equation,

dI

dz
= −dρ e−iωt

dt
= iωρ, so that ρ(z) = − i

ω

dI

dz
. (93)

In the thin-wire approximation, the vector potential Az(z) along the wire is proportional to
the current distribution,

Az(0, 0, z) ≈ iV0 tan kh

2cI0
I(z) =

iZ tan kh

2c
I(z) (|z| < h), (94)

according to eqs. (14)-(15), where Z = V0/I0 is the (complex) terminal impedance of the
antenna. Then, the Lorenz gauge condition (6) relates the voltage distribution along the
wire as,5

V (0, 0, z) =
ic

k

∂Az(0, 0, z)

∂z
≈ −Z tan kh

2k

dI

dz
= − icZ tan kh

2
ρ(z) (|z| < h). (95)

For a short linear antenna, the impedance is capacitive, Z ≈ −iZ0/2π tan kh = −2i/c tan kh,
so V (z) ≈ ρ(z) = ±V0/2, which is uniform along each arm of the antenna.

The approximation (95) is less accurate for “resonant” antennas, for which Z is real. For
example, a half-wave antenna has ρ(0) ≈ 0 but, as always, V (0) = ±V0/2. Away from the
antenna terminals V and ρ are 90◦ out of phase, and the approximation (95) is fairly good.

In Schelkunoff’s analysis [11], the voltage is proportional to the charge density only for
the principal mode. For antennas of length h >∼ λ/4 the higher modes becomes increasingly
important, and the approximation (95) becomes less accurate.

A Appendix: Capacitance and Reactance of a Short

Linear Dipole Antenna

We estimate the capacitance of a short linear antenna as suggested by Schelkunoff in sec. 10.3
of [24]. The key assumption is that the electric field lines from one arm of the dipole antenna
to the other follow semicircular paths (the principal mode), as shown in the figure below.6

5This relation appears on p. 427 of [23].
6On the right is Fig. 86 from [19].
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If so, all the field lines emanating from charge dQ in interval dr at distance r from the
center of the antenna cross a surface of area 2πr dr sin θ that lies on a cone of half angle θ,
so the electric field strength at (r, θ) is,

E =
dQ/dr

2πε0r sin θ
. (96)

The voltage difference between the two arms of the antenna is,

ΔV = 2

∫ π/2

θmin

Er dθ =
dQ/dr

πε0

∫ π/2

a/r

dθ

sin θ
=

dQ/dr

πε0
ln[tan(θ/2)]

π/2
a/r =

dQ/dr

πε0
ln(2r/a). (97)

This voltage difference should be independent of position along the antenna. The charge
distribution dQ/dr is indeed constant to a good approximation for short dipole antennas,
but the factor ln(2r/a) = − ln(θmin/2) is constant only for a biconical dipole antenna (as
much favored theoretically by Schelkunoff). A reasonable approximation for a linear dipole
antenna is to use r = h/2 as a representative length in eq. (97), which leads to the estimate,

ΔV ≈ dQ/dr

πε0
ln(h/a). (98)

The corresponding capacitance per unit length along the antenna is,

dC

dr
≈ πε0

ln(h/a)
, (99)

and the total capacitance is,

C ≈ πε0h

ln(h/a)
. (100)

This estimate ignores the contribution to the capacitance of roughly πε0a
2/d associated with

the electric field in the gap d between the terminals of the antenna, as is reasonable when
d ≈ a since then ln(h/a) � h/a ≈ dh/a2.

The (capacitive) reactance of the short dipole antenna is then estimated to be,

X = − 1

ωC
= − 1

ckC
≈ − ln(h/a)

πε0ckh
= −Z0

π

ln(h/a)

kh
. (101)
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