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1 Problem

Two capacitors of equal capacitance C are connected in parallel by wires of negligible resis-
tance and a switch, as shown in the lefthand figure below. Initially the switch is open, one
capacitor is charged to voltage V0, and charge Q0 = CV0, while the other is uncharged. At
time t = 0 the switch is closed. If there were no damping (dissipative) mechanism, the circuit
would then oscillate forever, at a frequency dependent on the self inductance L ≈ μ0 ln a/b
of the loop of radius a of wire of radius b � a and the total capacitance Ctot ≈ C/2, namely
f = ω/2π ≈ 1/2π

√
LCtot ≈ 1/2π

√
(μ0C/2) ln(a/b) ≈ 200 Hz/

√
C ln(a/b) for C in farards.

However, even in a circuit with zero Ohmic resistance, damping occurs due to the radiation
of the oscillating charges, and eventually a static charge distribution results, with charge
Q0/2 and voltage V0/2, on each capacitor.

The “paradox” is that the final stored energy is Uf = 2(CV 2
f /2) = CV 2

0 /4 = Ui/2, where
Ui = CV 2

0 /2 is the initial stored energy.1 Hence, half the initial energy is “missing” in the
final state.

Where is the “missing” energy?2

2 Solution

This problem is (in the view of this author) meant to illustrate the limitations of “ordi-
nary” circuit analysis,3 and has been discussed many times, including [1]-[40]. A substantial
fraction of these papers argue that “ordinary” circuit analysis suffices for a practical under-
standing of the two-capacitor problem, remarking that if the circuit contains a large enough

1If the two capacitances were unequal, more than half of the initial energy would go “missing”. Better
energy efficiency while charging a capacitor can be obtained using nonlinear circuit elements, as in sec. 9.1
of http://www.ti.com/lit/ds/symlink/lm2664.pdf.

2This problem can also be posed for a single capacitor that is initially charged with ±Q on its plates,
and then discharged by “shorting” its terminals with a wire. This can be dangerous, so “don’t try this at
home”. That is, a spark generally occurs during the discharge, which is a clue that the physics here can be
intricate. The experiment discussed in sec. 2.3 below is for the single-capacitor version of the “paradox”.

3Another example that illustrates the limitations of “ordinary” circuit analysis is [41].
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Ohmic resistance, the associated Joule heating accounts for essentially all of the “missing”
energy.4,5

Recall that in Poynting’s view [42], the energy the energy that is transferred from one
capacitor to the other passes through the intervening space, not down the connecting wires.
In the present example, some of the energy in the electrostatic field of the initially charged
capacitor “escapes” from the circuit in the form of electromagnetic radiation.6 Hence, we
should also examine the possibility that radiation carries away a significant fraction of the
“missing” energy.7

2.1 Ordinary Circuit Analysis of the Two-Capacitor Problem

If the quantity labeled Rrad in the circuit diagram on p. 1 were an ordinary resistor of value
R, then the circuit equation would be (for t ≥ 0),

− V1 + V2 + Lİ + IR = 0,
Q

C
+

LQ̈

2
+

RQ̇

2
= 0, (1)

where L ≈ μ0 ln(a/b) is the self inductance of the circuit, Q ≡ Q2 − Q1 and we note that
I = Q̇2 = −Q̇1 = Q̇/2. The initial conditions are Q(0) = −Q1(0) = −CV0 and Q̇(0) = 0.
Use of a trial solution of the form eiωt leads to,

ω =
iR

2L
± ω0, ω0 ≡

√
2

LC
− R2

4L2
, (2)

so the (real) solution that obeys the initial conditions can be written as,

Q(t ≥ 0) = −CV0 e−Rt/2L

(
cos ω0t +

R

2Lω0
sinω0t

)
, I(t ≥ 0) =

Q̇

2
=

V0

Lω0
e−Rt/2L sinω0t. (3)

Then, Qf = 0, Q1,f = CV1,f = Q2,f = CV2,f, and hence V1,f = V2,f . The energy dissipated by
the resistor R is,

ΔU =

∫ ∞

0

I2R dt =
V 2

0 R

L2 ω2
0

∫ ∞

0

e−Rt/L sin2 ω0t dt =
V 2

0 R

L2 ω2
0

2ω2
0

(R/L)(R2/L2 + 4ω2
0)

4The YouTube video https://www.youtube.com/watch?v=cmverrUVOQA adds a motor + mechanical
load to the circuit, so that the “missing” energy can be “seen” as the mechanical work done after the switch
is closed, thereby avoiding the need to consider radiation or even Joule heating, which concepts the video
author finds too abstract. Yet, this author gets it right that a dissipative mechanism is required for the
circuit to end up with only half of the initial stored field energy.

5Two papers [25, 39] supposed that the switch is capable of dissipating energy, via an effective resistance
(not modeled in the papers). No mention was made of radiation, or of a spark or related plasma physics.

6As noted in [13], when a capacitor is discharged near a radio, the latter detects a burst of noise at any
frequency, associated with the initial “switching” transients that last a few nsec. See also the caption of
Fig. 3 of [7]. For additional commentary on this phenomenon, see [43].

7Some authors [12, 17, 18, 20, 21, 30, 31, 32, 34] have argued that the two-capacitor problem is analogous
to the “two-tank problem,” in which water is transfered from one tank to another via a connecting pipe
(although this “plumbing analogy” was objected to already in [13]). If the water were frictionless, the
eventual “missing” potential energy (i.e., gravitational-field energy) would be radiated away by gravitational
waves. Since this is a very weak process, the frictionless water would oscillate from one tank to the other
for a very long time, before eventually coming to equilibrium with each tank half full. In practice, the
friction (viscosity) of water is large enough that there would be no observable oscillation of the water (i.e.,
overdamped “oscillation”).
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=
CV 2

0

4
=

Ui

2
, and so Uf =

CV 2
0

4
= CV 2

1,f, V1,f =
V0

2
= V2,f , (4)

using Dwight 861.10 [44].8 Thus, if the voltage drop associated with the dissipative mecha-
nism has the form IR for a constant R, the dissipated energy equals the “missing” energy
Ui/2 = CV 2

0 /4. It does not, however, follow that this demonstrates R to be purely an Ohmic
resistance.

Indeed, for low Ohmic resistance, the current in the circuit would perform a damped
oscillation with nominal angular frequency ω0 ≈ √

2/LC , and the associated electric and
magnetic dipole radiation would have power well described by Prm(t) = I2(t)Rrad where Rrad

is a constant with dimensions of electrical resistance.

2.2 Model Calculation of Magnetic Dipole Radiation

We assume that the wires form a circle of radius a and we neglect charge accumulation
in the wires compared to that on the capacitor plates. In this approximation the current
in the wires is spatially uniform, and the total electric dipole moment of the system (with
symmetrically arrayed capacitors) is constant. Then, electric dipole radiation does not exist,
and magnetic dipole radiation dominates.

The “radiation resistance” of this circuit causes a voltage drop Vrad within the circuit
that can be identified as,

Vrad(t) =
Prad(t)

I(t)
= I(t)

Prad(t)

I2(t)
≡ I(t)Rrad , (5)

where Prad is the radiated power, I(t) is the current in the wire, and the radiation resistance
is Rrad = P/I2. The latter is constant in the further approximation that the damping time
is large compared to the period of oscillation of the current, i.e., Ï ≈ −ω2

0I ≈ 2I/LC.
To estimate the radiated power we note that the magnetic moment m of the circuit is

(in Gaussian units),

m(t) =
πa2I(t)

c
, (6)

where c is the speed of light. According to the Larmor formula [45], the radiated power is,

Prad =
2m̈2

3c3
=

2π2a4Ï2

3c5
≈ 2π2a4ω4

0I
2

3c5
. (7)

The radiation resistance is,

Rrad =
Prad

I2
≈ 2π2

3c

(aω0

c

)4

=
25π6

3c

(a

λ

)4

≈ 3 × 105
(a

λ

)4

Ω, (8)

noting that ω0 = 2πc/λ, and 1/c in Gaussian units equals 30 Ω.
While this radiation resistance appears large at first glance, in practice a/λ (the ratio

of the size of the circuit compared to the wavelength of the radiation) will be quite small,
and the circuit would oscillate a very long time before the “missing” energy CV 2

0 /4 would
be radiated away.

8In [1], the self inductance was ignored, so the resulting circuit equation Q̇ = −2Q/RC has the solution
Q(t ≥ 0) = −CV0 e−2t/RC, with I(t ≥ 0) = Q̇/2 = (V0/R) e−2t/RC. Then, the total energy dissipated by
the resistor R is, ΔU =

∫ ∞
0

I2R dt = (V 2
0 /R)

∫ ∞
0

e−4t/RC dt = CV 2
0 /4 = Ui/2.
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2.3 An Experiment (Jan. 11, 2018)

Hence, it is useful to consider experimental data in the literature related to the two-capacitor
problem, such as Fig. 3 of [7], shown on left below, where the current trace has 10 μs
per horizontal (time) division. This experiment was on the “short circuit” discharge of a
single capacitor with C = 11.5 μF, where the observed frequency of the damped oscillations
was ω/2π = f = 41 kHz (λ = 7.3 × 105 cm), and the damping time was observed to be
approximately two periods, τ ≈ 2/f . Considering the equivalent circuit to be a series R-L-C
circuit, the current I(t > 0) = K e−αt, obeys (for complex constants K and α),

ÏL + IR +
Q

C
= 0, α =

R

2L
± i

√
1

LC
− R2

4L2
≈ R

2L
± i√

LC
≡ β ± iω, (9)

where the approximation holds for small resistance R, as in this example. The discharge
begins at time t = 0, when I0 = 0 and Q0 = CV0, and the waveforms are, using Dwight
575.1 [44],9

I(t > 0) = A e−βt sinωt = −CV0(β
2 + ω2)

ω
e−βt sinωt ≈ −CV0 ω e−Rt/2L sinωt, (10)

Q(t > 0) = Q0 +

∫ t

0

A e−βt′ sinωt′ dt′ = CV0 e−Rt/2L

(
cos ωt +

R

2ωL
sinωt

)
. (11)

Then, the observed frequency implies that the self inductance of the circuit was L =
1/4π2f2C = 1.3 μH (consistent with the circuit being a loop of 2-cm radius made of
24-gauge wire), and the observed damping time implies that the effective resistance was
R = fL = 0.05 Ω.

The wires in the circuit were stated to be “very short,” such that it is implausible that
the Ohmic resistance of the circuit was 0.05 Ω (for example, the resistance of 2000 feet
of 24-gauge wire is 0.05 Ω). However, the conventional capacitor contained a “rolled up”
sandwich of foil and dielectric, for which the equivalent series resistance of the thin foil was
very plausibly close to the observed 50 mΩ.10 In contrast, the radiation resistance (8) is only
1.7 × 10−17 Ω for a = 2 cm and λ = 7.3 × 105 cm.

9Note that the damping time constant is 2L/R and not RC. That is, most textbook discussions of the
discharge of a capacitor are näıve in ignoring the self inductance, and claiming that Q(t > 0) = CV0 e−t/RC .

10https://en.wikipedia.org/wiki/Aluminum_electrolytic_capacitor
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This supports the view in many of the discussions of the two-capacitor problem [1]-[38]
that the Ohmic resistance of the circuit dissipates the vast majority of the “missing” energy
(unless, of course, the electrical circuit is used to drive a nonelectrical load that dissipates
the energy, as in footnote 4 above).

2.3.1 Another Experiment (July 1, 2022)

Another experiment involving a capacitor in a series L-R-C circuit was reported in Fig. 81,
p. 226 of [46]. The figure caption was somewhat ambiguous, but I believe the circuit studied
was that shown on the right below.

At time t = 0, a switch connected a battery of voltage V to an inductance L and resistance
R in series. The voltage drop IR across the resistor was observed with an oscilloscope (of
large input impedance). The current waveform corresponding to this position of the switch
was,

I(t > 0) =
V

R

(
1 − eRt/L

)
, (12)

as reviewed in eq. (414), p. 219 of [46], and seen on the left side of the photo (oscillogram)
above.

At time t1 large enough that the current I was essentially V/R, the switch was thrown
so as to disconnect the battery and connect L and R to a capacitor C that was initially
uncharged. The circuit equation for t > t1 again follows from eq. (9), whose solution can
now be written as,

I(t > t1) =
V

R
e−R(t−t1)/2L cos ω(t− t1), ω =

√
1

LC
− R2

4L2
, (13)

such that I(t1) = V/R. The waveform for t > t1 is that seen in the right side of the
photo above, and is oscillatory (rather than a simple exponential as would be inferred if the
inductance were neglected).

A Appendix: Loss-Free Resistor (June 30, 2022)

This Appendix was inspired by e-discussions with Ivo Barbi and Sigmond Singer
Circuits have been developed that are called “loss-free resistors”. The original version

[47, 48] is a 4-terminal device that appears to the two input terminals as a resistance R,
while transferring power I2R to a load connected to the two output terminal, where I is the
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input current. Another version is a 3-terminal device [49], with input, output and common
terminals, where this “series loss-free resistor” appears to be between the input and output
terminals. Both of these devices are not totally loss free, and the “series loss-free resistor”
of [49] operates only for currents of one sign.

We now consider the two-capacitor circuit with a series “loss-free” resistor in the config-
uration of [49], which involves two circuit loops.11

Nominally, R1 is “loss free”, although it includes a small dissipative resistance, while R2

is a small dissipative resistance.12 Each loop has self inductance, some of which is shared
between the two loops, which we indicate by the three inductances Lj in the figure below.13

A diode D next to L3 keeps the current I1 − I2 through this inductor always negative.

Initially, Q1 = CV0, Q2 = 0, and the switch is open, to be closed at time t = 0. The
steady-state voltage and charge on the two capacitors are equal.

In the approximation that the system is actually “lossless”, the final (positive) charge
on each capacitor is Q1(0)/

√
2.14 The total final positive charge is greater than the initial

positive charge, which is possible in the two-loop circuit with the series “loss-free” resistor,
whose internal circuitry can generate additional charge separation.15

After the switch is closed at time t = 0, the circuit relations are, so long as I2 − I1 > 0,

I1 = −Q̇1, I2 = Q̇2, (14)

L1İ1 + L3(İ1 − İ2) + I1R1 − Q1

C
= 0, (L1 + L3)Ï1 − L3Ï2 + R1İ1 +

I1

C
= 0, (15)

L2İ2 + L3(İ2 − İ1) + I2R2 +
Q2

C
= 0, (L2 + L3)Ï2 − L3Ï1 + R2İ2 +

I2

C
= 0. (16)

Supposing the currents Ij have the time dependences as (the real part of) ...

11If a series “loss-free” resistor were used in a simple R-L-C circuit, its output and common terminals
would have to be shorted together, such that there would be no “load” to accept the I2R power. That is,
there cannot be a “loss-free” R-L-C circuit with a series “loss-free” resistor.

12The dissipative resistances are partly Ohmic and partly due to radiation.
13The complex internal circuitry of the series “loss-free” resistor is not shown in the figure. See [49].
14Of course, a capacitor supports equal and opposite charges on its two plates, such that the total charge

associated with a capacitor is zero. The total charge in the two-capacitor circuit is zero at all times.
We follow the usual convention in describing the positive charge on one of the capacitor plates as “the”

charge of the capacitor.
15Recall that for the classic two-capacitor problem in a single-loop circuit, Q1(∞)+Q2(∞) = Q1(0), and

half the initial energy has been “lost” in the final configuration.
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Ij(t ≥ 0) = Kj eαt for complex constants α and Kj , the loop equations take the forms,16

α2(L1 + L3)K1 − α2L3K2 + αR1A1 +
K1

C
= 0, (17)

α2(L2 + L3)K2 − α2L3K1 + αR2A2 +
K2

C
= 0. (18)

We have two simultaneous equations in the two unknowns K1 and K2 (in terms of the
unknown parameter α),

[
α2(L1 + L3) + αR1 +

1

C

]
K1 − α2L3K2 = 0, (19)

−α2L3K1 +

[
α2(L2 + L3) + αR2 +

1

C

]
K2 = 0. (20)

For a solution to exist, the determinant of the 2 × 2 coefficient matrix must vanish,

0 =

[
α2(L1 + L3) + αR1 +

1

C

][
α2(L2 + L3) + αR2 +

1

C

]
− α4L2

3

= α4(L1L2 + L1L3 + L2L3) + α3[R1(L2 + L3) + R2(L1 + L3)]

+α2

[
R1R2 +

L1 + L2 + 2L3

C

]
+ α

R1 + R2

C
+

1

C2
. (21)

This is a quartic equation for α, for which an analytic solution exists, but which is very
cumbersome. Instead, we content ourselves with a numerical example, based on parameters
of a proposed experiment (Ivo Barbi, private communication) in which the series “loss-free”
resistor has R1 = 150 Ω, and C = 1 mF. We take R2 = 0.05 Ω, as in the experiment described
in sec. 2.3 above. As noted in sec. 1 above, the self inductances are of order μ0 ln(a/b), and
we take L1 = L2 = 2L3 = 5 μH. With these parameters, the quartic equation is (in SI units),

5 × 10−11α4 + 0.075α3 + 7.5α2 + 1.5 × 105α + 1 × 106 = 0. (22)

Because the terms higher than linear are small (and R2 � R1), there is a solution with
no oscillation and simple exponential damping with time constant −1/α ≈ R1C = 0.15 s;
however, this requires the charge on both capacitors to decrease with time, and so is not the
solution we seek. Other solutions (found by several online quartic-equation solvers) include,

α ≈ −50 ± 1500 i ≡ −β + i ω0. (23)

corresponding to rapidly damped oscillations,

Ij(t ≥ 0) = Aj e−βt sinω0t, (24)

with real, positive constants Aj and about 10 oscillations per damping time constant.17

16As will be seen below, this assumption is not consistent with I2 − I1 > 0 at all times.
17This behavior is similar to that observed in the discharge of a single capacitor, as discussed in sec. 2.3

above. There is also an unphysical solution with α ≈ −107.
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Use of eq. (24) for all t > 0 would imply that the charges Qj on the two capacitors obey,
recalling eq. (14),

Q1(t ≥ 0) = Q1(0) −
∫ t

0

I1(t
′) dt′ = Q1(0) − A1

∫ t

0

e−βt′ sinω0t
′ dt′

= Q1(0) − A1 ω0

ω2
0 + β2 +

A1 ω0 e−βt

ω2
0 + β2

(
cos ω0t− β

ω0

sin ω0t

)
, (25)

Q2(t ≥ 0) = Q2(0) +

∫ t

0

I1(t
′) dt′ = A2

∫ t

0

e−βt′ sinω0t
′ dt′

=
A2 ω0

ω2
0 + β2 − A2 ω0 e−βt

ω2
0 + β2

(
cosω0t − β

ω0
sinω0t

)
, (26)

using Dwight 575.1 [44]. The final charges as t → ∞ are,

Q1(∞) = Q1(0) − A1 ω0

ω2
0 + β2 ≈ Q1(0) − A1

ω0
Q2(∞) =

A2 ω0

ω2
0 + β2 ≈ A2

ω0
. (27)

As noted earlier, the design of the series “loss-free” resistor of [49] is such that its input
and output terminals are connected by effective resistance R1, which means that the final
(steady-state) voltages on the two capacitors are the same. For two capacitors of the same
capacitance, this implies that Q1(∞) = Q2(∞), and hence that,

A2 = −A1 +
Q1(0) (ω2

0 + β2)

ω0
≈ −A1 + Q1(0)ω0. (28)

Also, as noted earlier, the above analysis is valid only if I2− I1 > 0, to be consistent with
the presence of the diode in the circuit. However, in our model, I2−I1 = (A2−A1) e−βt sinω0t,
which is negative half of the time for any values of A1 and A2. Hence, the above analysis
cannot be valid for all times, and it is perhaps a matter for experiment to determine what
actually happens in the two-capacitor circuit with a series “loss-free” resistor.18

B Appendix: A Two-Inductor Circuit (July 4, 2022)

This Appendix is based on an e-print by Ivo Barbi [50].
A circuit somewhat analogous (dual) to that of the two capacitors on p. 1 above, but

with two inductors rather than two capacitors, is sketched below.
For time t < 0 the switch connects the battery to inductor L1, such that the steady-state

current through that inductor (for t < 0) is I0 = V/R1. Hence, magnetic energy U0 = L1I
2
0/2

exists in the circuit at t = 0.

18In the approximation that the circuit is loss free, Q1(∞) = Q0/
√

2 = Q2(∞), so from eq. (27) we would
have,

A2 =
Q0 ω0(

√
2 − 1)√

2
, A2 =

Q0 ω0√
2

, (29)

and A2 > A1. Hence, the above analysis should be a good approximation to the actual performance for the
first half cycle of the oscillations, i.e., for t < π/ω0 ≈ 2 ms.
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At time t = 0, the switch is moved so as to disconnect the battery from L1, and send
the current I0 into the part of the circuit on the right of the figure. Eventually the currents
I1 and I2 drop to zero, and all the initial magnetic energy U0 is dissipated in the resistors
of the circuit. However, if R1 and R2 are small compared to R, there exists an interesting
intermediate state of the circuit in which the current I1−I2 is negligible, and a nearly steady
current I1 ≈ I2 flows through the two inductors, such that the magnetic energy of the system
is still nonzero.

An analytic solution can be given if we neglect the small resistances R1 and R2. Then,
the circuit equations are (for t > 0),

L1İ1 + R(I1 − I2) = 0, L2İ2 + R(I2 − I1) = 0, (30)

with initial conditions that I1(0) = I0 and I2(0) = 0. Supposing the currents to have the
forms I1(t > 0) = I0(A + B e−αt)/(A + B) and I2(t > 0) = I0A(1 − e−αt)/(A + B), the
solutions are readily verified to be,

I1(t > 0) = I0
L1 + L2 e−R(L1+L2)t/L1L2

L1 + L2
, I2(t > 0) =

I0L1

L1 + L2

(
1 − e−R(L1+L2)t/L1L2

)
.(31)

At large times (in this approximation), the “final” currents are steady and equal, I1f = I2f =
I0L1/(L1 + L2), and the “final” magnetic energy is (independent of R),19

Uf =
L1I

2
1f + L2I

2
2f

2
=

L2
1I

2
0

2(L1 + L2)
=

L1

L1 + L2

U0. (32)

It is interesting to consider the magnetic fluxes in the inductors:

Φ1(t > 0) = L1I1 =
L1I0

(
L1 + L2 e−R(L1+L2)t/L1L2

)
L1 + L2

, (33)

Φ2(t > 0) = L2I2 =
L1L2I0

(
1 − e−R(L1+L2)t/L1L2

)
L1 + L2

, (34)

Φ(t > 0) = Φ1(t > 0) + Φ2(t > 0) = L1I0 = Φ0. (35)

The total magnetic flux through the two inductors is the same as the initial magnetic flux
Φ0 = L1I0 at any time t > 0. The fluxes Φ1 and Φ2 are not equal except for large times and
when L1 = L2.

Of course, this situation is not strictly true, and the “final” currents I1f = I2f =
I0L1/(L1 + L2), and energy Uf of eq. (32), eventually go to zero, as the small resistances

19For equal inductances, L1 = L2, the “final” stored energy is Uf = U0/2, which parallels the result for
the two-capacitor circuit with equal capacitors.
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R1 and R2 were neglected in the preceding analysis. As mentioned previously, the “final”
currents and energy are eventually dissipated in those resistors.20
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