Two Conducting Spheres at the Same Potential

Kirk T. McDonald

Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544

(September 19, 2002)

1 Problem

The centers of two conducting spheres of radii a and a' are separated by distance $b \gg a + a'$, and the two spheres are at the same electric potential. The latter condition could be enforced by connecting the two spheres with a fine wire. Deduce a relation between charges Q and Q' that reside on spheres, accurate to terms of order a^2/b^2 , aa'/b^2 and a'^2/b^2 .

Comment also on the case that $b \gtrsim a \gg a'$, which could correspond to "grounding" a conducting sphere of radius a' to the Earth of radius a.

2 Solution

This problem is taken from the classic essay by G. Green (1828) [1], who gave an answer only to 1^{st} order of accuracy.

To 0^{th} order, the charges Q and Q' are uniformly distributed on the conducting spheres bring each to the same potential, independent of the presence of the other sphere. That is,

$$\frac{Q}{a} = \frac{Q'}{a'} \qquad (0^{\text{th order}}). \tag{1}$$

To 1st order, the potential at the center of each sphere can be taken as that due to sum of the potentials due to uniform charge distributions on the spheres,

$$\frac{Q}{a} + \frac{Q'}{b} = \frac{Q'}{a'} + \frac{Q}{b}, \qquad (2)$$

and hence,

$$\frac{Q}{a}\left(1-\frac{a}{b}\right) = \frac{Q'}{a'}\left(1-\frac{a'}{b}\right) \qquad (1^{\text{st order}}).$$
(3)

In general, the charge distributions on the spheres are not uniform, due to their mutual electrical influence. A solution accurate to any desired order can be obtain by use of the image method, in which the charge distribution of the spheres is represented by a sequence of point charges at appropriate locations along their line of centers. We write,

$$Q = Q_0 + Q_1 + Q_2 + \dots, \qquad Q' = Q'_0 + Q'_1 + Q'_2 + \dots,$$
(4)

where charges Q_0 and Q'_0 are located at the centers of the two spheres. To keep the second sphere at an equipotential under the influence of charge Q_0 on the first, we follow the usual prescription in placing charge,

$$Q'_1 = -Q_0 \frac{a'}{b}$$
 at $r'_1 = \frac{a'^2}{b}$ (5)

from the center of the second sphere. Likewise, to keep the first sphere at an equipotential, we place charge,

$$Q_1 = -Q_0' \frac{a}{b} \qquad \text{at} \qquad r_1 = \frac{a^2}{b} \tag{6}$$

from the center of that sphere. Then, to keep the spheres at equipotentials under the influence of charges Q_1 and Q'_1 , we add charges,

$$Q_2' = -Q_1 \frac{a'}{b - r_1} = Q_0' \frac{aa'}{b^2 - a^2} \quad \text{at} \quad r_2' = \frac{a'^2}{b - r_1}, \tag{7}$$

and,

$$Q_2 = -Q_1' \frac{a}{b - r_1'} = Q_0 \frac{aa'}{b^2 - a'^2} \quad \text{at} \quad r_2 = \frac{a^2}{b - r_1'}, \quad (8)$$

etc.

The additional charges $Q_1, Q_2, ..., Q'_1, Q'_2, ...$, have been positioned so that they do not change the potentials of the two spheres. The condition that the two spheres be at the same potential is therefore,

$$\frac{Q_0}{a} = \frac{Q'_0}{a'}.\tag{9}$$

To 2^{nd} order, the total charge on the first sphere can now be written as,

$$Q = Q_0 + Q_1 + Q_2 = Q_0 - \frac{Q'_0 a}{b} + Q_0 \frac{aa'}{b^2 - a'^2} = Q_0 \left(1 - \frac{a'}{b} + \frac{aa'}{b^2 - a'^2}\right),$$
(10)

while,

$$Q' = Q'_0 + Q'_1 + Q'_2 = Q'_0 - \frac{Q_0 a'}{b} + Q'_0 \frac{aa'}{b^2 - a^2} = Q'_0 \left(1 - \frac{a}{b} + \frac{aa'}{b^2 - a^2}\right).$$
(11)

We eliminate Q_0 and Q'_0 by using eq. (9) again to find (for any b > a + a'),

$$\frac{Q}{a}\left(1 - \frac{a}{b} + \frac{aa'}{b^2 - a^2}\right) = \frac{Q'}{a'}\left(1 - \frac{a'}{b} + \frac{aa'}{b^2 - a'^2}\right).$$
(12)

The result (12) was first obtained by Thomson [2]. See also sec. 174 of [3], from which the expansion to 5^{th} order can be inferred. At 3^{rd} order, eq. (12) becomes,

$$\frac{Q}{a}\left(1-\frac{a}{b}+\frac{aa'}{b^2-a^2}-\frac{a^2a'}{b(b^2-a^2-a'^2)}\right) = \frac{Q'}{a'}\left(1-\frac{a'}{b}+\frac{aa'}{b^2-a'^2}-\frac{aa'^2}{b(b^2-a^2-a'^2)}\right).$$
(13)

To 2^{nd} order of accuracy when $b \gg a + a'$ this can also be written as,

$$\frac{Q}{a}\left(1-\frac{a}{b}+\frac{aa'}{b^2}\right) = \frac{Q'}{a'}\left(1-\frac{a'}{b}+\frac{aa'}{b^2}\right) \qquad (2^{\mathrm{nd}} \text{ order}).$$
(14)

The 1st-order result (3) is contained within the 2^{nd} -order result (14), as expected.

2.1 "Grounding:" b = a + d with $a \gg d \gg a'$

This section added Sept. 5, 2011.

When $a \gg d \gg a'$, the electric field due to the large sphere in the vicinity of the small sphere (and in its absence) is essentially uniform with value $E_a = Q/a^2$. The potential due to charge Q at distance d above the surface of the large sphere is lower that the surface potential Q/a by $\Delta V \approx E_a d = Q d/a$. When the small sphere is at distance d, placing charge Q' on it raises its potential by Q'/a', so with charge,

$$Q' \approx \frac{a'd}{a^2}Q,\tag{15}$$

the small sphere has the same potential as the large one.

Surprisingly, this result does not follow from the 2nd-order image result eq. (12), in that the terms in parenthesis on the left can be approximated as d/a + a'/2d and the terms in parenthesis on the right by 1, to find,

$$Q' \approx \frac{a'}{a} \left(\frac{d}{a} + \frac{a'}{2d}\right) Q$$
 (2nd order). (16)

However, when we use the 3rd-order result (13) the (relatively large) term a'/2d in eq. (16) is cancelled and we obtain eq. (15).

For example, if the first sphere is the Earth with raidus $a \approx 6.4 \times 10^8$ cm and the small sphere has radius a' = 1 cm at distance d = 10 m above the Earth, then "grounding" the small sphere to Earth via a fine wire would leave it with charge

$$Q' \approx \frac{a'd}{a^2} Q \approx -\frac{1 \cdot 10^3 \cdot 5 \times 10^5}{4 \times 10^{17}} \approx -10^{-9} \text{ C},$$
 (17)

noting that the electric charge Q of the Earth is about -500,000 C [4].

"Grounding" a conductor does not reduce its charge to zero, but only to a practically negligible amount.

2.2 Two Conducting Spheres in Contact

A solution by the method of inversion is given in sec. 175 of [3] and by the method of images in [5]. For $a' \ll a$ the charges on the two conducting spheres, in contact, are related by

$$Q' \approx \frac{\pi^2 {a'}^2}{6a^2} Q = 1.65 \frac{{a'}^2}{a^2} Q,$$
(18)

which is slightly larger than the prediction of eq. (15) when d = a'.

References

 G. Green, Mathematical Papers, (Chelsea Publishing Co., Bronx, NY, 1970), pp. 55-56, http://kirkmcd.princeton.edu/examples/EM/green_papers.pdf

- W. Thomson, On the Mutual Attraction or Repulsion between two Electrified Spherical Conductors, Phil. Mag. 5, 287 (1853), http://kirkmcd.princeton.edu/examples/EM/thomson_pm_5_287_53.pdf
- [3] J.C. Maxwell, A Treatise on Electricity and Magnetism, Vol. 1, 3rd ed. (Clarendon Press, 1904), http://kirkmcd.princeton.edu/examples/EM/maxwell_treatise_v1_04.pdf
- [4] M.A. Uman, The Earth and Its Atmosphere as a Leaky Spherical Capacitor, Am. J. Phys. 42, 1033 (1974), http://kirkmcd.princeton.edu/examples/EM/uman_ajp_42_1033_74.pdf
- [5] G. Tong, Charge distributions of two conducting spheres, Eur. J. Phys. 13, 186 (1992), http://kirkmcd.princeton.edu/examples/EM/tong_ejp_13_186_92.pdf