
Electric Field of a Uniform Charge Density
Kirk T. McDonald

Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544
(July 27, 2009)

1 Problem

Discuss the electric field associated with a uniform volume charge density �, when this is
surrounded by a nonuniform surface charge density σ. In particular, show that a sphere with
a uniform volume charge density can have its interior electric field normal to an axis of the
sphere, given an appropriate surface charge density.

2 Solution

The electric field E is a vector, but a uniform charge distribution is not associated with any
direction, other than directions related to the boundary of the charge distribution. This
can be expressed formally by first noting that the electric field E associated with a volume
charge density � that is surrounded by a surface charge density σ is (in Gaussian units)

E(r) =
∫

�(r′)
R̂

R2
dVol′ +

∮
σ(r′)

R̂

R2
dArea′, (1)

where R = r− r′. Then, since R̂/R2 = ∇′(1/R), the electric field associated with a uniform
charge density � can be expressed as

E(r) = �
∮

n̂

R
dArea′ +

∮
σ(r′)

R̂

R2
dArea′, (2)

where n̂ is the unit vector normally outward from the bounding surface.
For cases of zero surface charge density and simple geometry, the electric field of a uniform

charge density � has well-known forms:

E = 4π� x x̂ (3)

for an infinite slab of charge whose midplane is x = 0,

E = 2π� ρ ρ̂ (4)

for an infinite cylinder of charge with axis ρ = 0 in coordinates (ρ, φ, z), and

E =
4π�

3
r̂ (5)

for a sphere of charge centered on the origin in coordinates (r, θ, φ). Of course, all three
forms (3)-(5) satisfy the time-independent Maxwell equations ∇ ·E = 4π� and ∇× E = 0.
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Suppose we wish the electric field inside a sphere of radius a to have the form (4). For
this, the field (5) due to the uniform charge density � inside the sphere is modified by the
effect of a surface charge distribution σ according to eq. (2). However, we will analyze this
effect by considering the scalar potential V . Inside the sphere, the relation E = −∇V
implies that

V (r < a) = V0 − π� ρ2 = V0 − π� r2 sin2 θ = V0 + π� r2(cos2 θ − 1), (6)

where V0 is the potential on the z-axis inside the sphere. Outside the sphere, where there
is no charge, the scalar potential can be expanded in a series of Legendre polynomials Pi

according to

V (r > a) =
∑

i

AiPi(cos θ)

ri+1
. (7)

Continuity of the potential across the surface r = a requires that

∑
i

AiPi(cos θ)

ai+1
= V0 + π� a2(cos2 θ − 1) =

(
V0 − 2π� a2

3

)
P0 +

2π� a2

3
P2. (8)

Hence, the exterior potential is

V (r > a) = V0
a

r
P0 +

2π� a

3

(
a4

r3
P2 − a2

r
P0

)
. (9)

The surface charge distribution σ(θ) is given by

σ =
1

4π

[
Er(r = a+) − Er(r = a−)

]
=

1

4π

[
−∂V (r = a+)

∂r
− 2π� a sin2 θ

]

=
1

4π

[
V0

a
P0 + 2π� a

(
P2 − P0

3

)
+

4π� a

3
(P2 − P0)

]

=
V0

4πa
P0 +

� a

2

(
5

3
P2 − P0

)
=

V0

4πa
+

� a

4

(
5 cos2 θ − 11

3

)
. (10)

The total surface charge is

Qsurface = 2πa2
∫ 1

−1
σ(θ) d cos θ = V0 a − 2π� a3 = V0 a − 3

2
Qinterior . (11)

A solution for which the interior electric field has the cylindrical form (4) exists for any
value of V0, since this only contributes to the uniform component of the surface charge
distribution, which does not affect the interior electric field. In particular, there exists a
solution (V0 = 2π� a2/3) for which the total charge in/on the sphere is zero.

In principle, a charged (or neutral), conducting, rotating sphere takes on a uniform charge
density in its interior, and the associated interior electric field is normal to the axis of rotation
[1]. However, this effect is too small to be observed in practice, being second-order in ωa/c,
where ω is the angular velocity and c is the speed of light.
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