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1 Problem

Discuss how by rearranging terms in Poynting’s theorem [1], one can display (at least) 729
variants thereof.1

2 Solution

2.1 The Standard Version of Poynting’s Theorem

Poynting’s theorem [1]2 expresses energy conservation in electromagnetic phenomena in the
form,3

∂ energy density

∂t
+ ∇ · energy current density = source power density. (1)

In the standard version, the sources on the right side are “nonelectromagnetic” in charac-
ter, such as batteries or dynamos that convert chemical (i.e., quantum electrodynamic) or
“mechanical” (really another form of quantum field) energy into “electromagnetic” form as
understood in the context of “classical” electrodynamics.

The author finds it instructive to characterize the nonelectromagnetic power source by a
nonelectromagnetic field E′ that acts on the “free” conduction current Jfree according to an
extension of Ohm’s law,

Jfree = σ(E + E′), (2)

where E is the usual electric field and σ is the conductivity of the medium that supports
the conduction current. This permits us to relate the nonelectromagnetic field E′ to electro-
magnetic quantities,

E′ =
Jfree

σ
− E. (3)

The total density of power delivered by the nonelectromagnetic source to the electromag-
netic system is then,

Pnonelectromagnetic,total = Jfree · E′ =
J2

free

σ
− Jfree · E. (4)

1This problem is an extension of [2] in which the usual Poynting’s theorem was recast as eq. (13) involving
the magnetization density M. For a review of a different class of Poynting-vector alternatives, in which the
Poynting vector is not simply the cross product of two fields, see [3].

2Heaviside’s independent discovery of this theorem can be traced in [4, 5, 6].
3Apparently, the form (1) was first considered by Umov [8] as an extrapolation to energy flow of Euler’s

continuity equation for mass flow [9].
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The first term on the right side of eq. (4) is the density of Joule heating of the conductive
medium, and we regard this power as “lost” with respect to the electromagnetic system. In
contrast, the second term represents power that is transferred from the nonelectromagnetic
system into energy stored, or flowing, within the electromagnetic system,

Pnonelectromagnetic,transferred = −Jfree · E = −E ·
(

∇ × H − ∂D

∂t

)

= ∇ · (E × H)− H · ∇ × E + E · ∂D

∂t

= ∇ · (E × H) + E · ∂D

∂t
+ H · ∂B

∂t
, (5)

where we have used the third and fourth macroscopic Maxwell equations and a vector-
calculus identity. Of course, D = ε0E + P and B = μ0(H + M), where P and M are the
densities of electric and magnetic dipoles. We identify the Poynting vector S,

S = E × H, (6)

as describing the flow (current density) of electromagnetic energy, and,

∂u

∂t
= E · ∂D

∂t
+ H · ∂B

∂t
(7)

as the time rate of change of the electromagnetic energy density u.
While Poynting’s theorem (5) clearly suggests that S describes the flow of electromagnetic

energy, it does not in general identify the electromagnetic energy density u. This leaves open
the possibility that some alternative form of eq. (5) might be preferable.

2.2 Poynting’s Theorem for Linear Media

For so-called linear media in which E is proportional to D and B is proportional to H, the
expression (7) is a perfect differential and we can write the electromagnetic energy density
u as,

u =
E · D + B · H

2
, (8)

and Poynting’s theorem reads,4

∇ · S +
∂u

∂t
= −Jfree · E = Pnonelectromagnetic,transferred. (11)

4Poynting’s original derivation [1] assumed linear media, and did not proceed as in our eq. (5). Rather,
he began with the energy density (8) written as u = εE2/2 + μH2/2, and took its time derivative,

∂u

∂t
= E · ∂D

∂t
+ H · ∂B

∂t
= E · ∂D

∂t
− H · ∇ × E = −E ·

(
−∂D

∂t
+ ∇ ×H

)
− ∇ · (E× H)

= −Jfree · E − ∇ · (E ×H). (9)

The volume integral of this is,∫
∂u

∂t
dVol = −

∫
Jfree · E dVol−

∫
(E ×H) · dArea, (10)
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2.3 729 Variants

In general, the (classical) macroscopic electromagnetic fields E, D, B and H are related by
the forms,

D = ε0E + P, B = μ0(H + M), (12)

where P and M are the densities of (quantum) electric and magnetic dipole moments. A
detailed understanding of the densities P and M is beyond the scope of “classical” electro-
dynamics.

We take the attitude that any electric dipoles formed by free electric charges and currents
do not contribute to the densities P and M, but are represented in Maxwell’s equations in
the quantities ρfree and Jfree.

Using the relations (12) to we can replace any/all of the 6 field vectors on the right side of
Poynting’s theorem (5) with either of two vectors in the relations (12), and move the “extra”
terms from the right side to the left side, to obtain 36 = 729 variants of the form,

Psource,n = ∇ · Sn +
∂un

∂t
. (13)

We display only a few of these below:

Psource,0 = −Jfree · E, S0 = E ×H,
∂u0

∂t
= E · ∂D

∂t
+ H · ∂B

∂t
. (14)

Variant 0 is, of course, the standard version of Poynting’s theorem.

Psource,1 = −E ·
(
Jfree +

∂P

∂t
+ ∇ × M

)
= −E · Jtotal,

S1 =
E ×B

μ0

, u1 =
ε0E

2

2
+

B2

2μ0

. (15)

Variant 1 looks a lot like the microscopic version of Poynting’s theorem, but here the E and
B are macroscopic averages over their microscopic counterparts.5 This might be called the

which Poynting interpreted as indicating that the time rate of change of the electromagnetic energy inside a
volume equals the rate −Jfree ·E of work done by the fields within that volume, minus the flux S = E × H
of energy that leaves the volume across its surface.

A notable feature of this derivation is that it deduces −Jfree · E to be the power delivered by the fields
to the free current density Jfree without any model of those currents, other than that they obey Maxwell’s
equations.

While some derivations of the magnetic field energy density, umag = B ·H/2, start from a statement that
the power delivered by the fields to the free current density is −Jfree ·E, Maxwell’s first argument for umag,
given (1856) on p. 63 of [10], was a generalization of the energy density in the case of permanent magnetism.
See also Arts. 632-636 of [11], and sec. A.28.1.6 of [12].

In 1861, Maxwell used his famous “idler-wheel” model of electric currents, to deduce the magnetic energy
density umag on pp. 286-288 of [13], and then that −Jfree · E is the power density delivered to the currents,
pp. 288-289. See also sec. A.28.2.3 of [12]. Maxwell considered his deduction of −Jfree · E to be model
dependent, and did not include it in his great paper of 1864 [14], nor in his Treatise [11].

5Variant 2 appears as eq. (7.171) of [15].

3



“pure” electromagnetic field version of Poynting’s theorem in that for all other variants the
“material” fields P or M appear somewhere in S or u.

Psource,2 = −E ·
(
Jfree +

∂P

∂t

)
+ M · ∂B

∂t
S2 = E × H, u2 =

ε0E
2

2
+

B2

2μ0

, (16)

Psource,3 = −E ·
(
Jfree +

∂P

∂t

)
− μ0H · ∂M

∂t
S3 = E × H, u3 =

ε0E
2

2
+

μ0H
2

2
, (17)

Psource,4 = −E · Jfree +
P

ε0
· ∂D

∂t
− μ0H · ∂M

∂t
S4 = E ×H, u4 =

D2

2ε0
+

μ0H
2

2
, (18)

Psource,5 = −E · Jfree +
P

ε0
· ∂D

∂t
+ M · ∂B

∂t
S5 = E× H, u5 =

D2

2ε0
+

B2

2μ0

, (19)

Variants 2-5 keep the standard Poynting vector E × H and use 4 different energy densities
based on E or D and B or H,6 but the price is that the power-source terms include at least
one of E, D, B or H, which implies that the fields are sources for themselves. This is not
logically excluded, but differs from the spirit of the standard Poynting theorem in which the
source term is “nonelectromagnetic” (although written as −Jfree ·E in eq. (5)). All of the 723
remaining variants share this feature that the fields are in some way sources of themselves.

Psource,6 = −D

ε0
· (Jfree + ∇× M) + c2B · ∇ × P,

S6 = c2 D × B, u6 =
D2

2ε0
+

B2

2μ0

, (20)

Psource,7 = −D

ε0
· Jfree +

H

ε0
· ∇ × P− μ0H · ∂M

∂t

S7 =
D × H

ε0
, u7 =

D2

2ε0
+

μ0H
2

2
, (21)

Variants 6 and 7 use “Poynting vectors” ∝ D × B and D × H, together with “matching”
energy densities.

Psource,8 = −E ·
(
Jfree +

∂P

∂t
+ ∇× M +

∂D

∂t

)

S8 =
E× B

μ0

, u8 =
ε0E

2

2
− E · D

2
+

B2

2μ0

. (22)

Variant 8 supposes that Maxwell’s displacement current, ∂D/∂t, is included in the source
currents, but this leads to a negative “matching” energy density for dielectric materials.

Psource,9 = −∂(ε0E
2/2 + μ0H

2/2)

∂t
− D

ε0
· ∂P

∂t
− B

μ0

· ∂M

∂t
− ∇ · E ×B

μ0

+ ∇ · D × M

ε0
,

S9 = c2 P× M, u9 = −P 2

2ε0
− μ0M

2

2
. (23)

6Variant 2 appears as eq. (4) of [16].
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Variant 9 is an example for how far one can go from the original statement of Poynting’s
theorem by using a “Poynting vector” P × M, for which the “matching” energy density is
negative, and the source terms are peculiar.

In the author’s view, only variants 0 and 1 will find much “practical” use in physics,
while the others are just formally correct rearrangements of terms with little useful physical
meaning thereto.7
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