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1 Problem

Estimate the velocity factor F = v/c and the impedance Z of a two-wire transmission line
made of cylindrical conductors of radius a whose centers are separated by distance d, when
each wire is insulated by a layer of (relative) dielectric constant ε of thickness t, as shown in
the figure below.

The thickness t is of the same order as radius a, but a + t � d. The space outside the
insulated wires has unit (relative) dielectric constant. All media in this problem have unit
(relative) magnetic permeability.

2 Solution

2.1 Velocity Factor

The propagation speed v of waves on a transmission line is,1

v =
1√
LC

, (1)

where L and C are the inductance and capacitance per unit length of the two-line system.
If there is no insulation on the wires, the propagation speed is the speed of light c.2 Thus,

c =
1√

L0C0

, (2)

where L0 and C0 are the inductance and capacitance per unit length of the two-line system
without insulation on the wires. Since the inductance is unaffected by the presence of
insulation (assumed to have unit magnetic permeability), the velocity factor of the insulated-
wire transmission line can be written as,

F =
v

c
=

√
C0

C
. (3)

1See, for example, sec. 2(a) of http://kirkmcd.princeton.edu/examples/impedance_matching.pdf
2See, for example, pp. 16-17 of http://kirkmcd.princeton.edu/examples/ph501lecture13.pdf
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The approximation employed here is that for d � a + t the potential difference between
the two wires can be calculated as twice the potential between radii a and d when only a
single wire is present.

In this approximation the electric field E outside an uninsulated wire is (in Gaussian
units),

E =
2Q

r
, (4)

where Q is the electric charge per unit length on the wire. Then, the potential difference
between radii a and d is 2Q ln(d/a), so the capacitance C0 of an uninsulated two-wire line
is,

C0 =
Q

V
≈ 1

4 ln d
a

. (5)

To convert to SI units, replace the factor 1/4 by πε0 = 27.82 pF/m. An “exact” expression
for C0 is,3

C0 =
1

4 ln d+
√

d2−4a2

2a

≈ 1

4 ln
(

d
a
− a

d

) ≈ 1

4 ln d
a

(
1 +

a2

d2 ln d/a

)
, (6)

which shows that the approximation (5) is rather good when a � d.
Similarly, the electric displacement D outside an insulated wire is,

D =
2Q

r
, (7)

and hence the electric field is,

E(a < r < a + t) =
2Q

εr
, (8)

E(r > a + t) =
2Q

r
, (9)

where the layer of dielectric constant ε extends from radius a to a+t. The potential difference
between radii a and d outside a single such wire is,

2Q

ε
ln

a + t

a
+ 2Q ln

d

a + t
. (10)

From this we estimate the capacitance C to be

C ≈ 1
4
ε
ln a+t

a
+ 4 ln d

a+t

, (11)

and therefore the velocity factor (3) is,

F ≈
√

1
ε
ln a+t

a
+ ln d

a+t

ln d
a

. (12)

An Excel spreadsheet that implements eq. (12) is available at
http://kirkmcd.princeton.edu/examples/velocity_factor.xls

3See, for example, prob. 11 of http://physics.princeton.edu/~mcdonald/examples/ph501set3.pdf
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2.2 Impedance

The characteristic impedance Z of a transmission line is related to its inductance and ca-
pacitance per unit length according to,

Z =

√
L

C
. (13)

The inductance L per unit length of a transmission line that is surrounded by media of unit
magnetic permeability can be related to the capacitance C0 for this case by eq. (2). Thus,

Z =
1

c
√

C0C
. (14)

In particular, the impedance Z0 of an uninsulated two-wire transmission line is,

Z0 =
1

cC0
=

4

c
ln

d +
√

d2 − 4a2

2a
≈ 4

c
ln

d

a
= 120 ln

d

a
Ω, (15)

recalling that 1/c = 30Ω. Then, using eq. (11), the impedance of an insulated two-wire
transmission line is,

Z ≈ 120

√
ln

d

a

(
1

ε
ln

a + t

a
+ ln

d

a + t

)
Ω. (16)

Furthermore, eliminating C in eq. (14) by use of expression (3) for the velocity factor,
we find,

Z =
F

cC0

= FZ0. (17)

2.3 Estimate of the Capacitance by an Energy Method

An alternative computation of the capacitance per unit length C can be based on the relation
for stored electrostatic energy U per unit length when charge ±Q per unit length is placed
on the two wires,

U =
Q2

2C
=

∫
ED

8π
dArea =

∫
D2

8πε
dArea =

∫
D2

8π
dArea +

∫ (
1

ε
− 1

)
D2

8π
dArea

≈ Q2

2C0
+

2

8π

(
1

ε
− 1

) ∫ a+t

a

4Q2

r2
2πr dr ≈ Q2

2

[
4 ln

d

a
+ 4

(
1

ε
− 1

)
ln

a + t

a

]

=
Q2

2

[
4

ε
ln

a + t

a
+ 4 ln

d

a + t

]
. (18)

This yields the same estimate for C as eq. (11).
We can also use the energy method to find the next correction to eq. (11) for the capac-

itance. For this, we note that the electric displacement D when a dielectric is present is the

3



same as the electric field E1 if the dielectric constant were unity. For the latter case, the cor-
responding electric potential V1 can be determined from an appropriate complex logarithmic
function,4

V1 = −Q ln
(x′ − c)2 + y2

(x′ + c)2 + y2
, (19)

in a coordinate system (x′, y) whose origin is midway between the two conductors, as sketched
below. The conductors are centered at x′ = ±b = ±d/2, and the parameter c is, given by

c =
√

b2 − a2 ≈ b − a2

2b
= b − a2

d
. (20)

For use in energy expression (18), we wish to estimate the integral,

2

(
1

ε
− 1

) ∫ a+t

a

dr

∫ 2π

0

r dφ
D2

8π
= 2

(
1

ε
− 1

) ∫ a+t

a

dr

∫ 2π

0

r dφ
E2

1

8π
, (21)

in a coordinate system centered on the righthand wire. So, we make the change of variables
x′ = x + b, leading to,

V1 = −Q ln
(x + b − c)2 + y2

(x + b + c)2 + y2
. (22)

The electric field E1 then has components,

E1,x = −∂V1

∂x
= Q

2(x + b − c)

(x + b− c)2 + y2
− Q

2(x + b + c)

(x + b + c)2 + y2

≈ 2Q

(
x + a2/d

r2 + 2a2x/d
− x + d

d2 + 2dx

)
≈ 2Q

(
x + a2/d

r2 + 2a2x/d
− d − x

d2

)
, (23)

E1,y = −∂V1

∂y
= Q

2y

(x + b− c)2 + y2
− Q

2y

(x + b + c)2 + y2

≈ 2Q

(
y

r2 + 2a2x/d
− y

d2

)
, (24)

where r2 = x2 + y2. Then,

E2
1 ≈ 4Q2

(
x2 + 2a2x/d + y2

(r2 + 2a2x/d)2
− 2

(x + a2/d)(d − x) + y2

d2(r2 + 2a2x/d)

)
4See, for example, pp. 14-16 of

http://kirkmcd.princeton.edu/examples/ph501lecture6.pdf
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≈ 4Q2

r2 + 2a2x/d

(
1 − 2x

d
− 2a2

d2
+ 2

x2 − y2

d2

)

≈ 4Q2

r2

(
1 − 2x

d
− 2a2x

r2d
− 2a2

d2
+

4a2x2

r2d2
+ 2

x2 − y2

d2

)
. (25)

The integral over φ in eq. (21) leads to the cancelation of all terms in eq. (25) except the
first, using x = r cos φ and y = r sinφ. Hence, we find no corrections to the capacitance (11)
at either order a/d or a2/d2.

That we find no corrections at these orders is surprising in view of numerical computations
for the case a = t = d/2 in which the insulated wires touch,5 indicating a capacitance about
twice that predicted by eq. (11).

2.4 Estimate of the Capacitance Supposing the Insulation Follows

Equipotentials

The equipotentials of the potential (19) are circles of the form,

(
x − c coth

V

2Q

)2

+ y2 = c2csch2 V

2Q
, (26)

and the corresponding fields lines are also circles, characterized by a parameter W according
to,

x2 +

(
y + c cot

W

2Q

)2

= c2 csc2 W

2Q
, (27)

as sketched in the figure below.

If the region inside an equipotential were filled with a dielectric of permittivity ε, then
the above forms describe the displacement field D rather than the electric field E. In general,
one cannot write D = −∇V , because ∇ ×D is nonzero at the interface between regions of

5See, for example, J.C. Clements, C.R. Paul and A.T. Adams, Computation of the Capacitance Matrix
for Systems of Dielectric-Coated Cylinders, IEEE Trans. Elec. Compat. 17, 238 (1975),
http://kirkmcd.princeton.edu/examples/EM/clements_ieeetec_17_238_75.pdf
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differing permittivity. However, if D (and E) are everywhere perpendicular to such interfaces,
then ∇ × D = 0 everywhere, and the displacement field can be deduced from a scalar
potential.

This provides another method of estimating the capacitance of an insultated pair of
wires. We suppose that the surface of the insulation is circular, but the center of this circle
is displaced from the center of the wire, such that the surface of the insulation is on an
equipotential.

The equipotential (26) intercepts the positive x-axis at,

x = c coth
Vx

2Q
± c csch

Vx

2Q
, i .e., x = c tanh

Vx

4Q
and c coth

Vx

4Q
, (28)

where Vx is the potential at x when ε = 1 everywhere. In particular, if x = b − a is on the
surface of a wire, the potential of that wire is,

Vwire = 4Q tanh−1 b − a

c
= 2Q ln

b + c

a
=

V0

2
=

Q

2C0
, (29)

where V0 = 2Vwire is the voltage difference between the wires, so the capacitance of the bare
wires is

C0 =
1

4 ln b+c
a

=
1

4 ln d+
√

d2−4a2

2a

, (30)

as previously stated in eq. (6).
If instead the wires are surrounded by circular cylinders of insulation of permittivity

ε that extend from x = c tanhVx/4Q to c coth Vx/4Q, then the electric field for |x| <=
c tanh Vx/4Q is the same as for bare wires, but the field for c tanh Vx/4Q < |x| < b − a is
smaller than for bare wires by a factor 1/ε. Hence, the voltage difference between the wires
is now,

V = 2

(
Vx +

V0/2 − Vx

ε

)
=

V0

ε
+ 2Vx

(
1 − 1

ε

)
=

Q

εC0
+ 4Q

ε − 1

ε
ln

c + x

c − x
, (31)

and the capacitance is now,

C =
εC0

1 + 4(ε − 1)C0 ln c+x
c−x

. (32)

The actual wires have a concentric layer of insulation of thickness t. Setting x = b−a− t
in eq. (32) corresponds to increasing the amount of insulation until if fills the equipotential
that passes through this point, which overestimates the capacitance,

C <
εC0

1 + 4(ε − 1)C0 ln c+b−a−t
c−b+a+t

. (33)

On the other hand, we could remove insulation from the wires until it fills the equipotential
that passes through point x = b + a + t, in which case eq. (32) would underestimate the
capacitance. Recalling eq. (28), the surface of this insulation also passes through the point
x = c2/(b + a + t), so we have that,

C >
εC0

1 + 4(ε − 1)C0 ln b+a+t+c
b+a+t−c

. (34)
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We might then take are our estimate to be a kind of average of eqs. (33) and (34), such as,

C ≈ εC0

1 + 2(ε − 1)C0

(
ln c+b−a−t

c−b+a+t
+ ln b+a+t+c

b+a+t−c

) =
εC0

1 + 2(ε − 1)C0 ln (c+b−a−t)(b+a+t+c)
(c−b+a+t)(b+a+t−c)

. (35)

The approximation (35) appears to be significantly better than that of eq. (11) for the
case that b = a + t.
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