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1 Problem

Give a Fourier analysis of electromagnetic fields E(x, t) and B(x, t) in the half spaces z >
< 0

(which are uniform, isotropic, nonconducting media with known free currents J(x, t)) in
terms of plane-wave solutions to Maxwell’s equations. This analysis can be interpreted as
a representation of these fields in terms of “classical photons.” In particular, consider the
fields of a charge q that moves with uniform velocity v = v ẑ in a medium with index of
refraction n(ω), including the limit that v = 0 as well as the case that v > c/n (Čerenkov
radiation [1]), where c is the speed of light in vacuum.

In this classical problem, consider only plane waves that satisfy Maxwell’s equations as
the basis for the Fourier synthesis of the electromagnetic fields (and potentials).1

To analyze as large a class of time-dependent fields as possible, consider plane waves
for which the wave vector k is complex, such that the “plane waves” for which Im(k) �= 0
are physically significant only close to their source charge-current distributions. Waves with
such limited spatial extent are often called evanescent.

1For a static electric field, such as that of a point charge q at the origin, E = q r̂/r2 (in Gaussian
units), relevant plane waves of the form ei(k·x−ωt) have zero frequency. Then, a Fourier analysis of the scalar
potential V = q/r has the Fourier expansion,

V (x) =
q

r
=

∫
Vk eik·x d3k, (1)

where the Fourier coefficient Ṽ is given by,

Vk =
∫

V (x) e−ik·x d3x
(2π)3

=
q

(2π)2

∫ ∞

0

r dr

∫ 1

−1

e−ikr cos θ d cos θ

= − q

2π2k

∫ ∞

0

sin kr dr = − q

2π2k
cos kr|∞0 =

q

2π2k2
, (2)

on averaging to zero the rapid oscillations of the term cos kr for large r.
Then,

E =
q

r2
r̂ = −∇V = −∇

∫
q

2π2k2
eik·x d3k = − iq

2π2

∫
k
k2

eik·x d3k = − iq

2π2

∫
k̂

eik·x

k
d3k. (3)

This result suggests that the static Coulomb fields can be regarded as consisting of longitudinal “plane
waves”, k̂ eik·x, of zero frequency. This description is appealing from a quantum view, in which we identify
the “wave” k̂ eik·x with a longitudinal virtual photon (of mass m given by m2 = −(�k/c)2). However, this
“wave” does not satisfy the free-space Maxwell equation ∇ ·E = 0, and so is somewhat unsatisfactory from
a classical perspective.

We return to this case in sec. 2.7.2.
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2 Solution

This problem is a variant on the analysis of Huygens and Fresnel of a scalar field (with time
dependence e−iωt) in terms of spherical waves generated by sources on a surface, typically
planar. Here, we seek a description of the vector electromagnetic fields E and B in terms of
plane waves rather than spherical waves.

The solution builds on the spirit of Weyl’s representation [2] of a scalar spherical wave
in terms of scalar plane waves,

eikr

r
=

i

2π

∫ ∫
ei(kxx+kyy+kz |z|)

kz

dkx dky =
i

2π

∫ ∫
eik±·x

kz

dkx dky, (4)

where,

kz =
√

k2 − k2
x − k2

y =

⎧⎨
⎩

√
k2 − k2

x − k2
y if k2

x + k2
y ≤ k2,

i
√

k2
x + k2

y − k2 if k2
x + k2

y > k2,
(5)

and,2

k± =

⎧⎨
⎩

(kx, ky, kz) if z ≥ 0,

(kx, ky,−kz) if z < 0.
(6)

The plane waves are homogeneous when k2
x + k2

y ≤ k2, but they are inhomogeneous (evanes-
cent, and significant only close to the plane z = 0) otherwise. The plane-wave decomposition
(4) is not spherically symmetric, which is a reminder that all plane waves (and especially
evanescent plane waves = “classical virtual photons”) are convenient mathematical fictions,
rather than entities with crisp physical reality.

The decomposition of three-dimensional scalar waves with a velocity c into homogenous
plane waves of the same velocity was perhaps first considered by Stoney [4], and elaborated
upon by Whittaker [5]. Inclusion of inhomogeneous waves in the decomposition of scalar
waves was first considered by Weyl [2]. The representation of electromagnetic fields in terms
of plane-wave solutions to Maxwell’s equations was perhaps first considered by Clemmow [6]
and [7], which latter work this note follows.3

2.1 Temporal Fourier Analysis

As usual, a (possibly complex) scalar function f(x, t) has a temporal Fourier representation,

f(x, t) =

∫ ∞

−∞
fω(x, ω) e−iωt dω, (7)

where,

fω(x, ω) =
1

2π

∫ ∞

−∞
f(x, t) eiωt dt. (8)

2The notation k± follows [3].
3If one’s attention is restricted to the fields far from the source, a somewhat simpler analysis obtains, as

discussed in [8] (which seems unaware of the full solution of [6, 7]).
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It is customary to consider only positive angular frequencies, so by noting that fω(x,−ω) =
f�

ω(x, ω) we can also write,

f(x, t) = 2Re

∫ ∞

0

fω(x, ω) e−iωt dω. (9)

Throughout the rest of this note we assume that such a temporal Fourier analysis can be
made for all relevant scalar functions.

2.2 Plane Electromagnetic Waves

We consider uniform, isotropic, nonconducting media with (frequency-dependent) relative
permittivity ε and relative permeability μ. Maxwell’s equations for the Fourier components
Eω and Bω of the electric and magnetic fields in such media are,

∇·Eω =
4πρω

ε
, ∇×Eω = ik0Bω, ∇·Bω = 0, ∇×Bω =

4πμ

c
Jω−in2k0Eω, (10)

where ρω and Jω are the Fourier components of the free charge and current densities,

k0 =
ω

c
, (11)

and n =
√

εμ is the index of refraction of the medium.
In regions with no free charge or current all six scalar components of Eω and Bω obey

the Helmholtz equation,
∇2fω + k2fω = 0, (12)

where,

k =
√

εμk0 = nk0 =
nω

c
. (13)

In general, ε and μ are frequency dependent, which implies that they are complex functions.
However, at frequencies not close to the natural frequencies of the medium the imaginary
parts of ε and μ are very small in many (transparent) media of interest, so we approximate
the index n and the wave number k as being purely real throughout the rest of this note.

Plane-wave solutions to the Helmholtz equation (12) have the form,

fω(x) = f0 eik·x, (14)

where the (possibly complex) wave vector k = Rek + iImk obeys,

k2 = k2 = k2
x + k2

y + k2
z . (15)

The plane waves are homogeneous when Imk is zero, and inhomogeneous when Imk is
nonzero.

In general, any of the components (kx, ky, kz) of the wave vector might be complex.
We consider the case that two components are real and one, kz say, is complex. In the
approximation that k is real, eq. (15) tells us that kz is real when k2

x + k2
y ≤ k2, and purely

imaginary when k2
x + k2

y > k2. When kz is imaginary the plane waves are evanescent, dying
out in the z-coordinate, and propagating in x and y.
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We can introduce the (possibly complex) unit vector k̂ = k/k, such that k̂2 = 1. Using
eq. (14) for components of the plane wave Eω,k, Bω,k we see that Maxwell’s equations (10)
(in regions with no free charge or current) imply that,

k̂ ·Eω,k = 0, k̂×Eω,k =
k0

k
Bω,k =

Bω,k

n
, k̂ ·Bω,k = 0, k̂×Bω,k = −nEω,k. (16)

Thus, k̂, Eω,k and Bω,k are mutually orthogonal, and |Bω| = n |Eω|.
The time-average density of electromagnetic energy stored in a plane wave is,

〈uω,k〉 =
ε |Eω,k|2

16π
+

|Bω,k|2
16πμ

=
ε |Eω,k|2

8π
. (17)

The transport of energy by a plane wave is described by the Poynting vector, whose time
average is,

〈Sω,k〉 =
c

8π
Re(Eω,k × H�

ω,k) =
cn

8πμ
Re[Eω,k × (k̂� × E�

ω,k)] =
c ε

8πn
|Eω,k|2 Rek̂� =

c

n
〈uω,k〉 .

(18)
In the case of evanescent waves, Rek̂� has no component in the z-direction, and their energy
flows only perpendicular to the direction in which these waves die out.

For each direction of the unit wave vector k̂ there are two independent plane-wave solu-
tions, commonly characterized by their polarization. We can, however, omit further discussion
of polarization and proceed to relate the plane waves to the source charges and currents.4

2.3 Four-Dimensional Fourier Analysis

We can augment the temporal Fourier analysis that determined the fields Eω, Bω and Jω

with 3-dimensional spatial Fourier analyses of the form,

Bω(x) =

∫ ∫ ∫
Bω,k eik·x d3k, where Bω,k =

1

(2π)3

∫ ∫ ∫
Bω(x) e−ik·x d3x, (19)

and the wave vector k is purely real. The Fourier components Eω,k, Bω,k and Jω,k are related
to one another by the transforms of Maxwell’s equations (10),

k ·Eω,k = −4πiρω,k, k×Eω,k = k0Bω,k, k ·Bω,k = 0, k×Bω,k = −4πiμ

c
Jω,k−n2k0Eω,k.

(20)

4For evanescent waves the condition that k2 be real implies that the vectors Rek and Imk are orthogonal.
These two directions, together with the direction of their cross product, can be taken as the basis for a
definition of the wave polarization. For example, taking Rek along the x-axis and Imk along the z-axis we
can write k = k k̂ = k (cosh a, 0, i sinha) for any real number a, whence k2 = k2.

One polarization (called E-polarization by Clemmow [7]) has Eω perpendicular to both Rek and
Imk and Bω in their plane, Eω,E = (0, EE, 0) eik·x. The other polarization (H-polarization) has
Bω,H = (0, nEH, 0) eik·x. The relations Bω = k̂ × nEω and Eω = k̂ × Bω/n imply that Bω,E =
(inEE sinh a, 0, nEE cosh a) eik·x and Eω,H = (iEH sinh a, 0, EH cosh a) eik·x. For both polarizations,
Re(Eω ×B�

ω) = nE2 cosh a x̂ = n |Eω|2 Rek̂�, which provides a more detailed justification of eq. (18).
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Combining these, we have,

Bω,k = −4πiμ

c

k × Jω,k

n2k2
0 − k2

=
4πiμ

c

k × Jω,k

k2 − k2
=

4πiμ

c

k × Jω,k

k2
z − (k2 − k2

x − k2
y)

, (21)

and hence,

Bω(x) =
4πiμ

c

∫ ∫ ∫
k × Jω,k eik·x d3k(

kz −
√

k2 − k2
x − k2

y

) (
kz +

√
k2 − k2

x − k2
y

) . (22)

The expansion (22) expresses the magnetic field in terms of mathematical plane waves, but
are these electromagnetic plane waves? As discussed in sec. 2.2, electromagnetic planes waves
must satisfy the conditions k2 = k2, eq. (15), and k · Bω,k = 0, eq. (16), in a medium of
index n. The second, but not the first of these conditions is met by the expansion (21)-(22).

Note that the denominator of the integrand of eq. (22) vanishes when the first condition
holds. If we consider, say, the integration over kz to be a contour integration with the contour
completed at infinity, then Cauchy’s integral theorem has the effect of enforcing the condition
(15). When k2

x + k2
y > k2, kz = i

√
k2

x + k2
y − k2 is pure imaginary and the plane waves are

evanescent. Physically, these waves should die out, rather than grow, with |z|, which is
insured when z > 0 by completing the contour on a semicircle at infinity for positive Im(kz)
and deforming the contour along the Re(kz) axis to enclose the pole at kz =

√
k2 − k2

x − k2
y

(when this is real) but not that at the negative of this value (and completing the contour
on a semicircle at infinity for negative Im(kz) if z < 0). Using Cauchy’s integral theorem we
now obtain,5

Bω(x) = −4π2μ

c

∫ ∫
k± × Jω,k±

kz
eik±·x dkx dky, (23)

where kz and k± are defined in eqs. (5)-(6) and the ± sign holds for z >
< 0. Then, using the

last of eq. (16), Eω,k = −k × Bω,k/nk, to determine the electric field of the plane wave we
find,

Eω(x) =
4π2μ

cnk

∫ ∫
k± × (k± × Jω,k±)

kz

eik±·x dkx dky. (24)

The expansions (23)-(24) are the electromagnetic equivalent of the more familiar Fresnel
diffraction integral6 for scalar fields, and have the advantage of being “exact” throughout all
space. Qualitatively, these expansions indicate that the fields in space are a kind of Fourier
transform of the source distribution, which is often restricted to an aperture in the plane
z = 0.

2.4 Surface Currents Only on the Plane z = 0

We can confirm the general result (23) by a different argument for the case that the currents
are confined to the plane z = 0. Then, the magnetic field obeys the following symmetry with

5This argument follows sec. 3.4 of [7], where the discussion is artificially restricted to currents on the
plane z = 0.

6See, for example, http://www.fourieroptics.org.uk/fresnelDiff.html
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respect to this plane,7

Bx(x, y,−z) = −Bx(x, y, z), By(x, y,−z) = −By(x, y, z), Bz(x, y,−z) = Bz(x, y, z).
(25)

From consideration of small loops with areas normal to the x and y axes and which surround
a surface-current-density element K(x, y, 0, t), the fourth Maxwell equation and eq. (25)
imply that,

Bx(x, y, 0+, t) =
2πμ

c
Ky(x, y, 0, t), and By(x, y, 0+, t) = −2πμ

c
Kx(x, y, 0, t). (26)

Of course, the temporal Fourier components obey the same form,

Bω,x(x, y, 0+) =
2πμ

c
Kω,y(x, y, 0), and Bω,y(x, y, 0+) = −2πμ

c
Kω,x(x, y, 0). (27)

The surface current density Kω can be further analyzed in a two-dimensional Fourier trans-
form,

Kω(x, y, 0) =

∫ ∫
Kω,ke

i(kxx+kyy) dkx dky, (28)

where,

Kω,k =
1

(2π)2

∫ ∫
Kω(x, y, 0)e−i(kxx+kyy) dx dy. (29)

The expansion of Bω into homogeneous and inhomogeneous electromagnetic plane waves
(which latter die out with increasing |z|) has the general form,

Bω(x) =

∫ ∫
Bω,k± eik±·x dkx dky , (30)

so that,

Bω(x, y, 0+) =

∫ ∫
Bω,k ei(kxx+kyy) dkx dky. (31)

Then, equations (27) and (28) tell us that,

Bω,k+,x =
2πμ

c
Kω,k,y, Bω,k+,y = −2πμ

c
Kω,k,x, (32)

and the condition (16) that k+ · Bω,k+ = 0 leads to,

Bω,k+,z = −2πμ

c

kxKω,k,y − kyKω,k,x

kz
. (33)

Equations (32)-(33) can be combined into the form,

Bω,k+ = −2πμ

c

k+ × Kω,k

kz

= −2πμ

c

k+ × Kω,k+

kz

(z > 0), (34)

7See, for example, [9].
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where we note that Kω,k = Kω,k+ = Kω,k− since the Fourier component Kω,k does not
depend on kz.

For z < 0, a similar argument for Bω(x, y, 0−) leads to eqs. (34) with the substitution of
k− for k+. Hence,

Bω(x) = −2πμ

c

∫ ∫
k± × Kω,k±

kz
eik±·x dkx dky , (35)

where kz and k± are defined in eqs. (5) and (6) and the ± sign holds for z >
< 0. This is a

special case of the previous result (23), since the volume current density J corresponding to
the surface current density K on the plane z = 0 is,

Jx = Kx δ(z), Jy = Ky δ(z), Jz = 0, (36)

for which the Fourier transforms are,

Jω,k±,x =
1

(2π)3

∫ ∫ ∫
Jω,x δ(z) e−ik± ·x d3x =

1

(2π)3

∫ ∫
Kω,x e−i(kxx+kyy) dx dy =

1

2π
Kω,k±,x,

(37)
etc.

2.5 Oscillating Electric Dipole

As a first example, we consider a small oscillating electric dipole of moment p = p0 e−iωt p̂,
so that pω = p0 p̂. We follow the usual method of Hertz (see, for example, sec. 9.2 of [10])
which shows that, on integration by parts and using the continuity equation ∇ · Jω = iωρω,∫

Jω d3x = −
∫

x(∇ · Jω) d3x = −iω

∫
xρω d3x = −iωpω. (38)

For a “point” dipole at the origin we therefore write,

Jω = −iωpω δ3(x). (39)

Then,

Jω,k± =
1

(2π)3

∫ ∫ ∫
Jω(x) e−ik±·x d3x =

−iωpω

(2π)3
. (40)

Taking the dipole to be in vacuum, its magnetic field is given by eq. (23) as,

Bω(x) =
ik

2π

∫ ∫
k± × pω

kz

eik±·x dkx dky = ∇ × Aω, (41)

where k = k0 = ω/c, kz =
√

k2 − k2
x − k2

y and,

Aω(x) =
kpω

2π

∫ ∫
eik± ·x

kz

dkx dky = −ikpω
eikr

r
, (42)

recalling Weyl’s expansion (4). Thus, we obtain the standard form for the vector potential
of an oscillating “point” dipole (or conversely, we can use the standard form of the vector
potential together with eq. (42) to provide a “proof” of eq. (4)).
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The corresponding plane-wave expansion of the electric field follows from eq. (24),

Eω(x) = − i

2π

∫ ∫
k± × (k± × pω)

kz
eik± ·x dkx dky . (43)

The expansions (41)-(43) contain both homogeneous and inhomogeneous plane waves, which
is satisfactory in that the fields of an oscillating dipole contain energy in the “near zone”
that is exchanged with the source rather than radiated away. We can say that this energy
corresponds to the inhomogeneous plane waves, whose energy flow is the same in magnitude
for ±kx and for ±ky such that the average flow of energy in the inhomogeneous waves is
zero. However, the details of the characterization of the inhomogeneous waves is somewhat
unsatisfactory in that these depend on the arbitrary choice of orientation of the plane called
z = 0. To this author, there is very limited physical reality to the inhomogeneous plane
waves identified in the expansions (41)-(43).8

2.6 Radiated Power

When considering the power radiated by a time-dependent current distribution, our expan-
sion of the fields in plane waves (in which the plane z = 0 plays a special role) leads us to
evaluate the power crossing a plane with z > 0. Because the orientation of the x-y-z axes
is arbitrary, we obtain a general result. In this way we can deduce the total power radiated
into any half space, as discussed in sec. 3.1.2 of [7].

However, this does not provide a very detailed picture of the flow of radiated power. Far
from all current sources the radiated power flows radially outwards from the centroid of the
source, and the plane-wave expansion of the fields, together with appropriate approximations,
leads to the usual characterization of the power radiated into a specified solid angle, as
discussed in sec. 3.2 of [7]. Of course, in this approximation the spirit of the plane-wave
expansion is abandoned in favor of the more usual approach based on spherical waves.

Close to the sources (Fresnel zone in optics, near zone in antenna theory) the plane-wave
expansion provides an alternative description to the more usual formulation in terms of the
fields Eω(x) and Bω(x). However, because plane waves have, by definition, infinite transverse
extent, the physical meaning of such waves in small volumes is ambiguous (to this author).
It remains that the standard description of the (time-average) flow of energy through an
electromagnetic field is via the Poynting vector,

〈S〉 =
c

8π
Re(E × H�), (44)

and its temporal Fourier components,

〈Sω〉 =
c

8π
Re(Eω × H�

ω). (45)

Further decomposition of the fields, by spatial Fourier transforms, into electromagnetic plane
waves does not, in general, provide much additional physical insight as to the nature of the
flow of energy.

Of possible interest will be the plane-wave expansion of the fields of a charge with uniform
velocity.

8Plane-wave representations of arbitrary multipoles are discussed in [11].
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2.7 Charge with Uniform Velocity

The first calculation of the fields of a charge with uniform velocity may have been made by
Maxwell [12] who understood that the fields are fore-aft symmetric, but whose miscalculation
of asymmetric fields via Lorenz’ retarded potentials [13, 14] held up acceptance of this
powerful tool for many years. The first published calculation of the fields of a charge with
v 	 c was made by J.J. Thomson [15], and the first calculation valid for any v < c was given
by Heaviside [16]. See also [17]. Shortly thereafter, Heaviside also calculated the fields for
motion with v > c [18], anticipating by many years what is now called the Čerenkov effect
[1].

The plane-wave expansion of the fields of a uniformly moving charge is treated in sec. 7.2
of [7]. A somewhat earlier discussion was given in [19]. See also [20].

The current density of charge q that moves with velocity v along the x-axis can be written
as,

J = qv δ(x − vt) δ(y) δ(z) x̂. (46)

Then, its temporal Fourier transform is, recalling eq. (13),

Jω =
q x̂

2π
δ(y) δ(z)

∫
δ(x − vt)eiωt v dt =

q eiωx/v x̂

2π
δ(y) δ(z) =

q eickx/nv x̂

2π
δ(y) δ(z). (47)

The spatial Fourier transform of this is,

Jω,k =
q x̂

(2π)4

∫ ∫ ∫
eiωx/v δ(y) δ(z) e−ik·xd3x =

q x̂

(2π)3
δ(kx − ω/v), (48)

noting that δ(k) =
∫

e−ikx dx/2π. Using this in eq. (23), the temporal Fourier components
of the magnetic field are given by,

Bω(x) = −4π2μ

c

∫ ∫
q

(2π)3
δ(kx − ω/v)

k± × x̂

kz
eik±·x dkx dky

= −qμ eiωx/v

2πc

∫ ±kz ŷ − ky ẑ

kz
ei(kyy±kzz) dky, (49)

where,

kz =
√

k2(1 − c2/n2v2) − k2
y =

√
ω2(n2 − c2/v2)/c2 − k2

y = i
ω

c

√
c2/v2 − n2 + l2y, (50)

and ly = cky/ω. Recalling that Eω,k± = −k±×Bω,k±/nk = −k±×cBω,k±/n2ω, the temporal
Fourier expansion of the electric field follows from eq. (49) as,

Eω(x) =
qμ

2πn2ω

∫ ∫
δ(kx − ω/v)k± × ±kz ŷ − ky ẑ

kz
eik±·x dkx dky

=
q eiωx/v

2πεv

∫
kx(1 − n2v2/c2) x̂ + ky ŷ ± kz ẑ

kz
ei(kyy±kzz) dky . (51)
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2.7.1 v < c/n

When the speed of the charge is less than the speed of light c/n in the surrounding medium,
kz is purely imaginary according to eq. (50), and all plane waves in the expansion (49) are
evanescent. No radiation (to “infinity” [21]) is emitted by a charge moving uniformly at
sublight speed.

The field B is axially symmetric, and azimuthal, with respect to the axis of motion, which
is the x-axis here. The azimuthal field Bφ(x, t) (about the x-axis) at distance r⊥ from the
x-axis can be evaluated as −By(x, 0, r⊥, t) using eq. (49),

Bφ = −By(x, 0, r⊥, t) = −2Re

∫ ∞

0

Bω,y(x, 0, r⊥) e−iωt dω

=
qμ

πc2
Re

∫
dly

∫ ∞

0

ω dω eiωx/ve−(ωr⊥/c)
√

c2/v2−n2+l2ye−iωt where ly = cky/ω

=
qμ

πr2
⊥

Re

∫
dly[

ic(x− vt)/r⊥v −
√

c2/v2 − n2 + l2y

]2

=
qμ

πr2
⊥

∫ −[c(x− vt)/r⊥v]2 + c2/v2 − n2 + l2y{
[c(x − vt)/r⊥v]2 + c2/v2 − n2 + l2y

}2 dly

=
qμ

πr2
⊥

2πi
d

dly

−[c(x− vt)/r⊥v]2 + c2/v2 − n2 + l2y[
ly + i

√
[c(x − vt)/r⊥v]2 + c2/v2 − n2

]2

∣∣∣∣∣∣∣
ly=i

√
[c(x−vt)/r⊥v]2+c2/v2−n2

=
qμv

c

(1 − n2v2/c2)r⊥
[(x− vt)2 + (1 − n2v2/c2)r2

⊥]
3/2

, (52)

where the integral in ly was evaluated by completing the contour at +∞. This is the usual
result for the magnetic field of a charge moving at constant, sublight speed.

For completeness, we also calculate the axially symmetric electric field E(x, 0, r⊥, t) in
the x-z plane. Comparing eqs. (49) and eq. (51), we infer that,

Ez(x, 0, r⊥, t) = − c

εμv
By(x, 0, r⊥, t) =

q

ε

(1 − n2v2/c2)r⊥
[(x − vt)2 + (1 − n2v2/c2)r2

⊥]
3/2

. (53)

The y-component of Faraday’s law tells us that,

∂Ex(x, 0, r⊥, t)

∂r⊥
=

∂Ez(x, 0, r⊥, t)

∂x
−1

c

∂By(x, 0, r⊥, t)

∂t
= −3q

ε

(1 − n2v2/c2)2(x − vt)r⊥

[(x − vt)2 + (1 − n2v2/c2)r2
⊥]

3/2
,

(54)
which integrates to,

Ex(x, 0, r⊥, t) =
q

ε

(1 − n2v2/c2)(x − vt)

[(x − vt)2 + (1 − n2v2/c2)r2
⊥]

3/2
. (55)

Thus, the electric field is radial with respect to the position of the charge, (x− vt, 0, 0), and
is related to the magnetic field by,

E =
nv

c
× B. (56)
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2.7.2 The Plane-Wave Spectrum of the Coulomb Field (v = 0)

In the limit that the speed v of the charge goes to zero the magnetic field (52) vanishes,
while the electric field becomes the Coulomb field E(v = 0) = q r̂/r2, where r is the distance
from the charge to the observer.

To deduce the electric field from its plane-wave expansion (51) we write,

E(x, t) = 2Re

∫ ∞

0

Eω(x) e−iωt dω

=
q

πε
Re

∫
dkx

∫
dky

∫ ∞

0

dω

ω
δ(kx − ω/v)k± × ±kz ŷ − ky ẑ

kz

eik±·xe−iωt

=
q

πε
Re

∫ ∫
kx(1 − n2v2/c2) x̂ + ky ŷ ± kz ẑ

kz
eik±·xe−ikxvt dkx dky, (57)

where now,

k =
ωn

c
=

kxnv

c
, and kz =

√
k2 − k2

x − k2
y = i

√
k2

x(1 − n2v2/c2) + k2
y . (58)

In the limit that v = 0, kz = i
√

k2
x + k2

y , k2 = 0 = (k±)2 and we obtain the expansion,

E(x, v = 0) =
q

πε
Re

∫ ∫
kx x̂ + ky ŷ ± kz ẑ

kz

eik±·x dkx dky

= − q

πε
Re

∫ ∫
ik± eik±·x√

k2
x + k2

y

dkx dky. (59)

The Fourier components Ek± of this expansion obey the relation k± · Ek± = 0 as v and
k go to zero. So we can say that the expansion (59) expresses the Coulomb field in terms
of zero-frequency electromagnetic plane waves, all of which are evanescent since kz is pure
imaginary. This expansion is therefore conceptually superior to that of eq. (3) (although
eq. (59) suffers from the arbitrariness of the choice of the plane z = 0.)

An expansion of the Coulomb field in evanescent plane waves was perhaps first given in
[22].

Presumably the classical gravitational field can be decomposed into gravitational plane
waves. Then, a static gravitational field consists of zero-frequency plane waves (“virtual
gravitons”), which are not affected by the gravitational field since they have zero frequency
(zero energy in the quantum view). Hence, the exterior gravitational field of a black hole
can exist without being “sucked” into it. Similarly, a black hole can have an exterior static
electric field consisting of zero-frequency (zero energy) “virtual photons.”

2.7.3 Čerenkov Radiation: c/n < v < c

When a charge q moves with speed v greater than that of light, c/n, in a medium (but
with v < c, of course), the plane-wave expansion (49) contains both homogeneous and
inhomogeneous waves, and radiation is therefore emitted. This is sometimes considered to
be paradoxical in that the charge is not obviously accelerating. However, the radiation exists
only when the charge moves through a medium with index of refraction greater than 1, in
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which case the charges in the medium are accelerated by the passing charge q, and we can say
that is the medium, rather than the charge itself, which emits the radiation. Of course, the
radiated energy must come from the charge itself, so there must be a (small) back reaction
of the medium on the passing charge, which decelerates the latter.

The temporal expansion of the magnetic field is, from eq. (49),

Bω(x) = −qμeiωx/v

2πc

∫ ±kz ŷ − ky ẑ

kz

ei(kyy±kzz) dky , (60)

where,

kx =
ω

v
=

ck

nv
and kz =

√
k2(1 − c2/n2v2) − k2

y. (61)

For plane waves in the x-y plane, kz = 0 and ky = k
√

1 − c2/n2v2 = kx(nv/c)
√

1 − c2/n2v2 =

kx

√
n2v2/c2 − 1, which is real, so these waves are homogeneous, and carry energy away from

the charge q. Similarly, for plane waves in the x-z plane, ky = 0 and kz = kx

√
n2v2/c2 − 1.

The wave vector k for the homogeneous waves (radiation field) does not have a continuous
angular distribution, but always makes angle θC to the y-z plane, where,

tan θC =
kx

ky(kz = 0)
=

kx

kz(ky = 0)
=

1√
n2v2/c2 − 1

, (62)

so that,

cos θC =
1√

1 + tan2 θC

=
c

nv
. (63)

The angle θC is the famous Čerenkov angle.

Since k± · Eω,k± = 0, the electric field points only in a single direction, namely at the
Čerenkov angle θC to the negative x-axis (and the magnetic field circles about the x-axis).
This field configuration was first depicted by Heaviside [18].

The temporal Fourier expansion of the electric field follows from eq. (51) as,

Eω(x) =
q eiωx/v

2πεv

∫ −kx(n
2v2/c2 − 1) x̂ + ky ŷ ± kz ẑ

kz
ei(kyy±kz z) dky . (64)

The electric field in, say, the x-z plane for z > 0 consists of plane waves with ky = 0, so we
have that,

E(x, 0, z > 0, t) = 2Re

∫ ∞

0

Eω(x, 0, z > 0) e−iωt dω

=
q

πεv
Re

∫ ∞

0

[− tan θC(n2v2/c2 − 1) x̂ + ẑ] eiω[(x+z/ tan θC)/v−t] dω

= −2q

εv
[tan θC(n2v2/c2 − 1) x̂ − ẑ] δ

(
x + z/ tan θC

v
− t

)
. (65)
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At time t = 0 the electric field in the x-z plane for z > 0 is nonzero only along the line
z = −x tan θC , as shown in the figure. By a similar argument the magnetic field in the z-z
plane is nonzero only along this line. The electric and magnetic fields are is azimuthally
symmetric, so the fields are nonzero only on the Čerenkov cone. The present argument
predicts infinite fields on this cone, whereas in reality the index n exceeds unity for only a
finite range of frequency, and the fields extend slightly outside the cone, and are finite.

To deduce the frequency spectrum of the radiated power, we first note that the total
energy d2U that crosses an area element dArea, integrated over all time, is,

d2U =

∫ ∞

−∞
S · dArea dt =

c

4πμ
dArea ·

∫ ∞

−∞
E × B dt

=
c

4πμ
dArea ·

∫ ∞

−∞

∫ ∞

−∞
Eω ×B e−iωt dω dt

=
c

2μ
dArea ·

∫ ∞

−∞
Eω × B�

ω dω =
c

μ
dArea · Re

∫ ∞

0

Eω ×B�
ω dω, (66)

since Eω(−ω) = E�
ω(ω) and Bω(−ω) = B�

ω(ω). Equal amounts of energy cross any plane at
z > 0 or at z < 0, so the total energy radiated is twice that which crosses a plane at z > 0,

U =
2c

μ

∫ ∫
dx dy ẑ · Re

∫ ∞

0

(Eω × B�
ω)z>0 dω. (67)

The energy radiated per unit frequency interval and per unit path length of the charge’s
motion along the x-axis is independent of x. Since Bx = 0, we have,

d2U

dω dx
=

2c

μ

∫
dy Re(Eω,xB

�
ω,y)z>0

=
2c

μ

q

2πεv

qμ

2πc
Re

∫ ∫ ∫
kx(n2v2/c2 − 1)

kz
ei(kyy+kzz)e−i(k′

yy+k′
z

�z) dy dky dk′
y

=
2c

μ

qω

2πεv2

qμ

2πc
(n2v2/c2 − 1)Re

∫ ∫
2πδ(ky − k′

y)
ei(kz−k′

z
�)z)

kz
dky dk′

y

=
q2ω

πεv2
(n2v2/c2 − 1)Re

∫
e−2Im(kz)z

kz
dky

=
q2ωn2

πεc2
(1 − c2/n2v2)

∫ (ωn/c)
√

1−c2/n2v2

−(ωn/c)
√

1−c2/n2v2

dky√
(ω2n2/c2)(1 − c2/n2v2) − k2

y

=
q2μω

c2

(
1 − c2

n2v2

)
, (68)

where we note that in the fourth line the integrand is real only when kz is real. Equation
(68) is the standard result for the energy spectrum of Čerenkov radiation [23], which has
the surprising feature (of little practical import) that a magnetic medium of index n emits μ
times as much Čerenkov radiation as does a dielectric medium of the same index. As usual,
we note that the index n can be greater than unity for only a finite range of frequencies, so
that the total power radiated over all frequencies is finite.
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The x-component of the electric field at the charge is, using eq. (64),

Ex(vt, 0, 0, t) = 2Re

∫ ∞

0

Eω,x(vt, 0, 0) e−iωtdω (69)

= −
∫ ∞

0

dω
qω

πεv2
(n2v2/c2 − 1)Re

∫
1

kz
dky = −

∫ ∞

0

dω
qμω

c2

(
1 − c2

n2v2

)
.

This is a peculiar result in that we might have expected the electric field to diverge at the
charge.9 The field (69) acts opposite to the direction of the charge’s velocity and decelerates
it. The work done by the electron per unit path length is −qEx, whose Fourier component
at frequency ω equals the energy radiated per unit path length. That is, the work done by
the electron on the Čerenkov field is transformed into the Čerenkov radiation.

For additional discussion of the relation of radiation by moving charges to the plane-wave
decomposition of their fields, see [24].

2.8 TEM Waves in a Coaxial Transmission Line

We consider a (vacuum) coaxial cable centered on the x-axis (so that the currents are close
to the plane z = 0) with perfect conductors of radii a and b > a. This cable supports TEM
waves with currents in a cylindrical coordinate system (r =

√
y2 + z2, θ, x),

I(r = a, x) = −I(r = b, x) = I0 ei(kx−ω0t), (70)

where ω0 = kc is the angular frequency of the waves, and fields,

E(a < r < b) =
2I0

cr
ei(kx−ω0t) r̂, B(a < r < b) =

2I0

cr
ei(kx−ω0t) θ̂. (71)

The TEM fields are, of course, possible static fields multiplied by the waveform ei(kx−ω0t).
Because the fields are zero for r < a and r > b they are not simply plane waves of the

form ei(kx−ω0t).
To display the plane-wave expansion (23)-(24) of the TEM fields, we first note that the

nonzero Fourier components of the current density are,

Jω0,k± =
1

(2π)3

∫ ∫ ∫
Jω0(x) e−ik±·x d3x

=
1

(2π)3

2I0

c

∫ ∫ ∫
eikx

(
δ(r − a)

2πa
− δ(r − b)

2πb

)
e−ik±·x d3x

=
1

(2π)3

2I0

c

∫
ei(k−kx)x dx

2π

∫ ∫ (
δ(r − a)

a
− δ(r − b)

b

)
e−i(kyr cos θ±kzr sin θ) r dr dθ

=
1

(2π)3

2I0

c
δ(k − kx)

∫ 2π

0

(
e−i(kya cos θ±kza sin θ) − e−i(kyb cos θ±kzb sin θ)

)
dθ. (72)

Thus, kx = k. Then according to eq. (5),

kz =
√

k2 − k2
x − k2

y = iky, (73)

9For v < c/n, kz is pure imaginary and Ex(vt, 0, 0, t) = 0 at the charge according to eq. (69).
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so that the electromagnetic plane-wave decomposition of the TEM wave in a coaxial cable
consists only of inhomogeneous, plane electromagnetic waves. This is consistent with the
usual view that an (infinite) coaxial cable transmits waves along its axial direction but
does not “radiate”. Also, the waves in the transmission line are closely associated with the
conductors of the line, and are not “free” in the sense of homogeneous, plane electromagnetic
waves.

The analysis for TEM waves on an arbitrary two-conductor transmission line parallel to
the x-axis differs from the above only in the form of the double integral in eq. (72) over
the transverse (y-z) plane; eq. (73) holds in all cases, and the plane-wave expansion involves
only inhomogeneous (“evanescent”) electromagnetic plane waves.10 Similarly, the plane-wave
expansion for waves in/on cylindrical waveguides (including optical fibers as wall as hollow
metallic guides) only involves inhomogeneous plane electromagnetic waves.

2.9 Waves in a Rectangular Cavity/Waveguide (Dec. 2, 2020)

The decomposition of waves inside a rectangular cavity or waveguide with perfectly conduct-
ing walls is readily accomplished without the formalism of sec. 2 above.

The standing-wave solutions for electromagnetic fields E and B of angular frequency
ω inside a perfectly-conducting, rectangular cavity of extent 0 < x < dx, 0 < y < dy,
0 < z < dz can be written (in Gaussian units) as,11

Ex = E0x cos kxx sin kyy sin kzz e−iωt,

Ey = E0y sin kxx cos kyy sin kzz e−iωt, (74)

Ez = E0z sin kxx sin kyy cos kzz e−iωt,

Bx = B0x sin kxx cos kyy cos kzz e−iωt,

By = B0y cos kxx sin kyy cos kzz e−iωt, (75)

Bz = B0z cos kxx cos kyy sin kzz e−iωt,

where the wave vector k is,

k = (kx, ky, kz) =

(
lπ

dx
,
mπ

dy
,
nπ

dz

)
, and k =

ω

c
, (76)

for any set of integers {l, m, n}, and c is the speed of light in vacuum (and inside the cavity).
Nontrivial cavity modes exist only with two or three of {l, m, n} nonzero, so there is no
cavity mode in which the wave vector k is parallel to a wall of the cavity.

Further, Faraday’s law,

∇ × E = −1

c

∂B

∂t
, implies that iB0 = k̂× E0, (77)

10In the quantum view, these inhomogeneous waves correspond to virtual photons, so the plane-wave
photons associated with TEM waves on a transmission line are not “real,” even when the wave velocity (of
the total wave) is c as for a vacuum transmission line.

11See, for example, http://kirkmcd.princeton.edu/examples/ph501/ph501lecture14.pdf
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so,

B0 · E0 = 0, |B0| = |E0| , and iB0 =
(kyE0z − kzE0y, kzE0x − kxE0z, kxE0y − kyE0x)

k
.

(78)
The free-space Maxwell equations ∇ · B = 0 = ∇ · E imply that,

k̂ · E0 = 0 = k̂ · B0. (79)

For each set of integers {l, m, n} there are two orthogonal polarizations of the vectors E0

and B0. As usual, the physical fields are the real parts of eqs. (74)-(75).
The sines and cosines in eqs. (74)-(75) can be rewritten as sums of exponentials, leading

to a decomposition into eight plane waves with the eight wave vectors (±kx,±ky,±kz), that
each propagate with phase velocity c. For example,

Ex = −E0x

8

(
eikxx + e−ikxx

) (
eikyy − e−ikyy

) (
eikzz − e−ikzz

)
e−iωt

= −E0x

8

(
ei(kxx+kyy+kzz−ωt) + ei(−kxx+kyy+kz z−ωt) − ei(kxx−kyy+kzz−ωt) − ei(−kxx−kyy+kz z−ωt)

−ei(kxx+kyy−kz z−ωt) − ei(−kxx+kyy−kz z−ωt) + ei(kxx−kyy−kz z−ωt) − ei(−kxx−kyy−kzz−ωt)
)
.(80)

For a rectangular waveguide with, say, no walls perpendicular to the z-axis, the modes
that propagate in the +z direction are given by the first four terms in the second form
of eq. (80), as first noted by Brillouin [25]. However, kz is no longer nπ/dz, but rather

kz =
√

ω2/c2 − k2
x − k2

y, as required for the guided waves to satisfy the wave equation ∇2E =

∂2E/∂(ct)2.12 The four plane waves of eq. (80) zig-zag down the guide, as shown in the figure
below from [25].13

2.10 DC Magnets

2.10.1 Solenoid

We consider a solenoid magnet of length l and radius a that carries uniform azimuthal current
per unit axial length I = B0/μ0, such that the interior, axial magnetic field is b0 in the limit
of large l. Taking the z-axis to be that of the solenoid, which extends over 0 < z < l, the
current density is,

J(x, t) =
B0

μ0

δ(r − a) φ̂ (0 < z < l), (81)

12The phase velocity, vp = ω/kz = c
√

1 + (k2
x + k2

y)/k2
z , of the guided wave (written as Ex =

E0x cos kxx sin kyy ei(kzz−ωt, etc.) is greater than c, but the group velocity, vg = dω/dkz = c2/vp is less
than c. This is the subject of an amusing puzzler by Slepian [27].

13The zig-zag character for guided waves is also discussed in Chap. 24 of [28], and in sec. 9.5.2 of [29].
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in a cylindrical coordinate system (r, θ, z). The temporal Fourier transform of this dc current
density is

Jω(x) =
B0

μ0

δ(r − a)δ(ω) φ̂ =
B0

μ0

δ(r − a)δ(ω)(− sinφ x̂ + cos φ ŷ) (0 < z < l). (82)

That is, Jω has only a zero-frequency component. When computing the 4-dimensional
Fourier transform of the azimuthally symmetric function (82), we can define the (half)plane
φ = 0 to contain the wave vector k, which can then be written as k = kx x̂ + kz ẑ. Thus,

Jω,k± =
1

(2π)3

∫ ∫ ∫
Jω(x) e−ik±·x d3x

=
B0δ(ω)

(2π)3μ0

∫ ∫
r dr dφ

∫ l

0

dz δ(r − a)(− sinφ x̂ + cos φ ŷ) e−ikxr cos φe−ikzz

=
2aB0δ(ω) e−ikzl/2 sin(kzl/2)

(2π)3μ0kz

∫ 2π

0

dφ (− sin φ x̂ + cos φ ŷ) e−ikxa cosφ

= − iaB0δ(ω)J1(kxa)e−ikzl/2 sin(kzl/2)

2π2μ0kz
ŷ. (83)

The spectrum of plane waves of the (dc) solenoid magnet has only ω = 0, so k = 0 and
all waves are inhomogeneous (virtual photons). The wave vector (kx, 0, kz) has kx ≈ 1/2a
from the Bessel function J1(kxa), while |kz| ranges between 0 and ≈ 2/l according to the
factor sin(kz l/2)/kz .

2.10.2 Helical Wiggler

A so-called helical wiggler [30] made from a double helix winding on a cylinder of radius a
with period 2π/k0 has a purely transverse magnetic field along its axis given by,14

B(0, 0, z) = B0(x̂ cos k0z + ŷ sin k0z), (84)

where the current I in each helical winding is

I =
πB0

k2
0aK0(k0a) + k0K1(k0a)

. (85)

With some effort, the Fourier transform Jω,k± could be computed “exactly,” but it is clear
that the virtual photons of the static magnetic field have zero frequency/energy and have
kz = k0 in the limit of a long wiggler.

2.11 DC Current

As a final example (which could well have been the first, given its simplicity), we consider a
DC current density of any form. This current density may or may not be electrically neutral.
In any case, the temporal Fourier transform of the DC current has only a zero-frequency

14See, for example, sec. 2.3 of [31].
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component, so the plane-wave decomposition contains only inhomogeneous waves (virtual
photons). That is, the DC current does not radiate, although in a model of the current due
to moving charges, these charges are accelerated as they traverse the current loop.15
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