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1 Problem

Estimate the minimum horizontal acceleration a of a car such that it can pass through the
resonance without significant excitation of (damped) vertical oscillations when it drives on
a “washboard” road whose height yR varies with horizontal position x according to yR =
A sin(2πx/λ). The car can be approximated as a mass m at height y that can oscillate
vertically at natural (angular) frequency ω0 subject to a velocity-dependent damping force
−γm d(y − yR)/dt.

A simpler version of this problem is Prob. 3 of
http://kirkmcd.princeton.edu/examples/ph205set7.pdf

2 Solution

2.1 Quick Estimate

If the resonance (angular) frequency for vertical oscillations of the car is ω0, and the hori-
zontal period of the “washboard” road is λ, then the oscillations will be maximally excited
when the car has horizontal velocity v = f0λ = ω0λ/2π.

If the oscillations are damped by a velocity-dependent frictional force −γm d(y− yR)/dt,
then the damping time is 1/γ, which is the characteristic time required for oscillations to
build up (or die out). Also, the range of frequencies for which the oscillations are excited
to at least half the maximum amplitude is roughly ω0 − γ < ω < ω0 + γ. Hence, the car
must pass through this range of frequencies in time much less than 1/γ to avoid significant
excitation of the resonance.

If the car has acceleration a, then its velocity is v = v0 + at, and the angular frequency
ω of the force of the “washboard” road on the car is,

ω =
2π

λ
v =

2π

λ
(v0 + at). (1)

The time T required for ω to pass through the resonance of width Δω ≈ 2γ is,

T =
γλ

πa
, (2)

which must be small compared to the damping time 1/γ. Altogether, the acceleration must
satisfy,

a � γ2λ

π
. (3)
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Apparently, shock absorbers on cars have γ ≈ 0.5, so if the period of the “washboard”
is λ = 10 m, the acceleration must be large compared to 10/4π ≈ 1 m/s2 = 0.1 g, where g
is the acceleration due to gravity. Thus, the acceleration must be a substantial fraction of g
for the car to pass through the “washboard” resonance with little noticeable effect.

2.2 Further Details

Suppose the car moves in the +x-direction with initial speed v0 when at time t = 0 it
encounters a washboard road that occupies the region x > 0. Thereafter, the car accelerates
with constant acceleration a for time T , during which its horizontal position is x = v0t+at2/2.

The height yR of the surface of the washboard road is,

yR = A sin
2πx

λ
, (4)

so the height yr(t) of the road at the position of the car varies as,

yR(t) = A sin
2π(v0t + at2/2)

λ
. (5)

Approximating the car by a mass m at position (x, y) that is connected to a spring of
constant k and rest length L, such that the spring only exerts a vertical force, the equation
of vertical motion is,

mÿ = −k(y − yR − L) − mg − γm
d

dt
(y − yR), (6)

assuming a velocity-dependent frictional force proportional to the vertical velocity of the car
relative to the road. Clearly, the equilibrium height of mass m is y0 = L−mg/k. In the rest
of the problem we measure height y relative to y0, so the equation of motion can be written
as,

ÿ + γẏ + ω2
0y = ω2

0yR + γẏR = ω2
0A sin

2π(v0t + at2/2)

λ
+

2πγA

λ
(v0 + at) cos

2π(v0t + at2/2)

λ

= Re

{
Ae−iω(t)t

[
iω2

0 +
2πγ

λ
(v0 + at)

]}
, (7)

where ω0 =
√

k/m and,

ω(t) =
2π(v0 + at/2)

λ
. (8)

The relation (7) is a second-order linear differential equation, whose solution can be
expressed as the sum of a particular solution plus the general solution to the homogeneous
equation,

ÿ + γẏ + ω2
0y = 0, (9)

subject to a specific set of initial conditions. For the present example we take to the latter
to be y(0) = 0 = ẏ(0), supposing that the car first encounters the washboard road at time
t = 0.
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As usual, we consider a trial solution to the homogeneous equation (9) of the form,

y(t) = Re[y0e
−iαt]. (10)

Then, eq. (9) leads to the quadratic equation,

α2 + iαγ − ω2
0 = 0, (11)

such that,

α = − iγ

2
±

√
ω2

0 − γ2/4 . (12)

Hence, the general solution to the homogenous equation (9) can be written as,

y = e−γt/2

[
y1 cos

√
ω2

0 − γ2/4 t + y2 sin
√

ω2
0 − γ2/4 t

]
, (13)

where the real constants y1 and y2 are still to be determined.
If the acceleration a is zero such that ω = 2πv0/λ is constant, then the steady-state

vertical oscillations of the car (for t > 0) are described by,

y(t) = Re

[
Ae−iωt(iω2

0 + γω)

ω2
0 − ω2 − iγω

]
= A

−γω3 cos ωt + [ω2
0(ω

2
0 − ω2) + γ2ω2] sinωt

(ω2
0 − ω2)2 + γ2ω2

. (14)

The energy stored in the steady oscillatory motion is,

U =
k

2
|y|2 , (15)

and the time-average power consumed by the damping is,

P =
1

2
Re(F ẏ�) =

γm

2
|ẏ|2 =

γmω2

2
|y|2 . (16)

The ratio of the stored energy to the energy consumed per cycle at resonance is,

Q

2π
=

U

P (2π/ω0)
=

k

2πγmω
=

ω0

2πγ
, (17)

which confirms the well-known result that Q = ω0/γ.
The full width at half maximum of the resonance curve |y(ω)| = ω2

0A/
√

(ω2
0 − ω2)2 + γ2ω2 ≈

ω0A/
√

4(ω0 − ω)2 + γ2 is Δω =
√

3γ ≈ 2γ.
Returning to the full differential equation (7), its solution is the sum of eqs. (13) and

(14), again assuming that a = 0,

y(t) = A
−γω3 cos ωt + [ω2

0(ω
2
0 − ω2) + γ2ω2] sinωt

(ω2
0 − ω2)2 + γ2ω2

+e−γt/2

[
y1 cos

√
ω2

0 − γ2/4 t + y2 sin
√

ω2
0 − γ2/4 t

]
.

(18)
The initial conditions are,

y(0) = 0 = − ω3γA

(ω2
0 − ω2)2 + γ2ω2

+ y1 , i .e., y1 =
ω3γA

(ω2
0 − ω2)2 + γ2ω2

, (19)
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and,

ẏ(0) = 0 =
[ω2

0ω(ω2
0 − ω2) + γ2ω3]A

(ω2
0 − ω2)2 + γ2ω2

− γ

2
y1 +

√
ω2

0 − γ2/4 y2

=
[ω2

0ω(ω2
0 − ω2) + γ2ω3/2]A

(ω2
0 − ω2)2 + γ2ω2

+
√

ω2
0 − γ2/4 y2 . (20)

Finally, the vertical motion of the car (for fixed ω) is given by,

y(t) =
A

(ω2
0 − ω2)2 + γ2ω2

{
ω3γ

[
e−γt/2 cos

√
ω2

0 − γ2/4 t − cosωt

]
(21)

−
[

ω2
0ω(ω2

0 − ω2) + γ2ω3/2√
ω2

0 − γ2/4
e−γt/2 sin

√
ω2

0 − γ2/4 t − [ω2
0(ω

2
0 − ω2) + γ2ω2] sinωt

]}
,

as sketched below for ω = ω0 = 16γ.

We see that the motion has very nearly reached its full amplitude after Q = ω0/γ = 16
cycles. This confirms the argument in sec. 2.1 that the acceleration of the car must be
sufficient that the angular frequency ω of the driving force due to the washboard road must
be within ±γ of ω0 only for a time small compared to 1/γ, i.e., for a time much less than Q
cycles.

A Appendix: No Damping as an Illustration of the

Higgs Mechanism

If the damping constant γ is zero, and a steady state could still somehow be achieved, then
the vertical oscillations have amplitude,

y(t) = A
ω2

0 sinωt

ω2
0 − ω2

, (22)
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according to eq. (14), where now ω = 2πv/λ. Nonzero energy,

Uosc = k 〈y(t)〉2 =
kA2

2

ω4
0

(ω2
0 − ω2)2

<
mv2

0

2
, (23)

is associated with these oscillations. If the car simply coasted onto the washboard road with
initial velocity v0 (and no oscillations), conservation of energy implies that it would slow
down to velocity v given by.

mv2
0

2
=

mv2

2
+ Uosc. (24)

If we take a view that ignores the tranverse oscillations and emphasizes only the longitudinal
velocity of the car, we might say that when on the washboard road it has effective mass m
related by.

mv2
0

2
=

mv2

2
, (25)

and hence,

m = m +
2Uosc

v2
= m +

2Uosc

mv2
0 − 2Uosc

. (26)

In language more common to quantum theory, we might say that the car has become a
“quasicar” with effective mass m. The “quasicar” has been “given” (additional) mass by its
interaction with the washboard road, which is a kind of a “background field.”

In the quantum realm, we say that the Higgs background field “gives mass” to otherwise
massless elementary (quasi)particles by a mechanism somewhat analogous to the case of a
car on a washboard road. See, for example, [1].
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