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1 Problem

Discuss the potentials V and A in various gauges for a plane electromagnetic wave in vacuum
such as,

E = cos(kz − ωt) x̂, B = cos(kz − ωt) ŷ, (1)

where ω = kc and c is the speed of light in vacuum.

2 Solution

2.1 Potentials and Gauge Transformations

Faraday discovered (as later interpreted by Maxwell) that,

∇ × E = −1

c

∂B

∂t
, (2)

where c is the speed of light in vacuum, which implies that time-dependent magnetic fields B
are associated with additional electric fields beyond those deducible from a scalar potential
V . The nonexistence (so far as we know) of magnetic charges (Gilbertian monopoles) implies
that,

∇ · B = 0, (3)

and hence that the magnetic field can be related to a vector potential A by,

B = ∇ × A. (4)

Using eq. (4) in (2), we can write,

∇ ×
(
E +

1

c

∂A

∂t

)
= 0, (5)

which implies that E + (1/c)∂A/∂t can be related to a scalar potential V as −∇V , i.e.,

E = −∇V − 1

c

∂A

∂t
. (6)

Then, using eq. (6) in the Maxwell equation,

∇ · E = 4πρ (7)
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leads to,

∇2V +
1

c

∂

∂t
∇ · A = −4πρ. (8)

Similarly, using eqs. (4) and (6) in the Maxwell equation,

∇ ×B =
4π

c
J +

1

c

∂E

∂t
, (9)

where J is the volume density of electrical current, leads to,

∇2A− 1

c2

∂2A

∂t2
= −4π

c
J + ∇

(
∇ · A +

1

c

∂V

∂t

)
. (10)

The differential equations (8) and (10) do not uniquely determine the potentials V and
A. As perhaps first clearly noted by Lorentz [1, 2],1 if V0, A0 are valid electromagnetic
potentials, then so are,

V = V0 − 1

c

∂χ

∂t
, A = A0 + ∇χ, (11)

where χ is an arbitrary scalar function, now called the gauge-transformation function. That
is, eqs. (4) and (6) give the same values for the electromagnetic fields B and E for either the
potentials V , A or V0, A0.

2.2 Gibbs Gauge

Perhaps the simplest potentials for the plane wave (1) are those in the Gibbs gauge [5, 6, 7],2

in which the gauge condition is that the scalar potential V is zero,

V (G) = 0 (Gibbs gauge). (12)

For the plane wave (1), the relations that E = −(1/c)dA(G)/dt and B = ∇ × A(G) imply
that,

A(G) =
c

ω
sin(kz − ωt) x̂ + F(r), (13)

where F is any vector function of space, but not of time, whose curl is zero. Then,

E(G) = −∇V (G) − 1

c

∂A(G)

∂t
= E, B(G) = ∇ × A(G) = B. (14)

If the take F = 0, then,

∇ · A(G) = 0 = −1

c

dV (G)

dt
. (15)

1A transformation A′ = A+∇χ of the vector potential was discussed by W. Thomson (1850) in sec. 82
of [3], without consideration of the electric field/potential. In sec. 98 of [4], Maxwell noted that if potentials
V0, A0 do not obey ∇ · A0 = 0, then the potentials V and A of eq. (11) [Maxwell’s eqs. (74) and(77)]
obey ∇ · A = 0 (Coulomb gauge) if ∇2χ = ∇ · A0, which he thereafter considered to be the proper type of
potentials.

2The Gibbs gauge is also called the Hamiltonian or temporal gauge. See, for example, sec. VIII of [8].
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2.3 Coulomb Gauge

The Coulomb-gauge condition is that,

∇ · A(C) = 0 (Coulomb), (16)

so the Gibbs-gauge potentials (12)-(13) with F = 0 are also Coulomb-gauge potentials for
the plane wave (1).

However, there is an infinite set of Coulomb-gauge potentials that can be obtained from
one another via so-called restricted gauge transformations of the form (11) using gauge
functions χ that obey ∇2χ = 0. For example, consider,

χ = x cos ωt. (17)

This gauge function leads to,

A′ = A(G) − ∇χ =
ω

c
sin(kz − ωt) x̂ + cosωt x̂, V ′ = V (G) +

1

c

∂χ

∂t
= −ω

c
x sin ωt, (18)

E′ = −∇V ′ − 1

c

∂A′

∂t
=

ω

c
sinωt x̂ + cos(kz − ωt) x̂− ω

c
sinωt x̂ = cos(kz − ωt) x̂ = E, (19)

B′ = ∇× A′ = B. (20)

Since ∇ · A′ = 0, the potentials (18) are also Coulomb-gauge potentials for the plane wave
(1). But, as V ′ �= 0, the potentials (18) are not in the Gibbs gauge, and the Coulomb- and
Gibbs-gauge potentials for a plane electromagnetic wave are distinct in general.

Note also that,

∂V ′

∂t
= −ω2

c
x cosωt. (21)

2.4 Lorenz Gauge

The Lorenz-gauge condition [9] is that,

∇ · A(L) = −1

c

∂V (L)

∂t
(Lorenz), (22)

so that the Gibbs-gauge potentials (12)-(13) with F = 0 are also Lorenz-gauge potentials (as
well as Coulomb-gauge potentials), but the Coulomb-gauge potentials (18) are not Lorenz-
gauge potentials in view of ∇ · A′ = 0 and eq. (21).

There is an infinite set of Lorenz-gauge potentials that can be obtained from one another
via so-called restricted gauge transformations of the form (11) using gauge functions χ that
obey the scalar wave equation,

∇2χ =
1

c2

∂2χ

∂t2
. (23)

For example, consider,

χ = cos(kz − ωt). (24)
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This gauge function leads to,

A′′ = A(G) −∇χ =
ω

c
sin(kz − ωt) x̂ + k sin(kz − ωt) ẑ, V ′′ = V (G) +

1

c

∂χ

∂t
=

ω

c
sin(kz − ωt),(25)

E′′ = −∇V ′′ − 1

c

∂A′′

∂t
=

ω

c
sin(kz − ωt) ẑ + cos(kz − ωt) x̂− ω

c
sin(kz − ωt) x̂ = E, (26)

B′′ = ∇ × A′′ = B, (27)

∇ ·A′′ = k2 cos(kz − ωt) = −1

c

∂V ′′

∂t
. (28)

Hence, the potentials (18) are also Lorenz-gauge potentials for the plane wave (1).
Since V ′′ is nonzero the potentials (18) are not in the Gibbs gauge, and as ∇ · A′′ is

nonzero, they are not Coulomb-gauge potentials.

Thus, in general, the Gibbs-gauge, Coulomb-gauge and Lorenz-gauge potentials for the
plane wave (1) are distinct.3

This problem was suggested by Vladimir Onoochin.
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