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1 Problem

An example of unipolar induction1 is a slab of material with (relative) permittivity εr and
(relative) permeability μr that is immersed in a uniform, time-independent external magnetic
field H0 parallel to the plane of the slab, such that if the slab has velocity v perpendicular
to H0 but also in the plane of the slab, a nonzero voltage difference V is detected between
sliding contacts (fixed in the laboratory) on opposite sides of the slab.

Deduce this voltage difference. Consider also the case that the material is in the form
of a (long) cylindrical shell, of length l and radii a < b, that rotates with constant angular
velocity ω about its axis, which is parallel to the external field H0. You may assume that
all velocities are small compared to the speed of light c.

Experiments with rotating magnetized cylinders were first performed by Faraday [2, 3].
The variant with a permeable, dielectric cylindrical shell and an external magnetic field was
studied in 1913 by Wilson and Wilson [4] as a test of special relativity;2 see also [6].

2 Solution

A theme of this example is to what extent the electrodynamics of systems involving only low
velocities are nonetheless “relativistic”, and whether rotating systems can be successfully
analyzed using the methods of special relativity.

We work in Gaussian units, where the speed of light appears in Maxwell’s equations in a
manner that alerts us to possible relativistic effects.3

2.1 Slab with Linear Motion

We first consider the example of a slab that moves with constant velocity with respect to the
lab frame (which we assume to be an inertial frame), where it is clear that special relativity
can be used to describe the electrodynamics in the rest frame of the slab. Can we, however,
give an analysis in the lab frame with no explicit mention of the theory of relativity, other
than that which is implicit in “Maxwell’s equations”?

1The term unipolar induction was coined by Weber (1840) [1].
2In 1904, Wilson [5] studied a rotating dielectric with unit (relative) permeability, which did not test the

difference between eqs. (6) and (18) below.
3A textbook with extensive discussion of the electrodynamics of moving dielectric and magnetic media

is [7], especially Chap. E III.
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2.1.1 A Näıve analysis

For example, since the slab has permittivity ε different from unity, it is a polarizable medium.
Hence, there exist bound charges within the medium that can move relative to the bulk in
response to a macroscopic electric field E to create a density of polarization P according to,

P =
D −E

4π
=

εr − 1

4π
E, (1)

in the approximation that the medium is linear and isotropic, such that D = E+4πP = εrE.
However, this simple interpretation of the permittivity εr can only be made in the rest frame
of the slab.

If we ignore this limitation, we might argue that the polarizable charges in the present
example have velocity v, and that they are in a magnetic field whose strength inside the
medium is B = μrH0, so that the Lorentz force (a part of the larger notion of “Maxwell’s
equations”) on an electric charge e is,

e
v

c
× B = eELorentz, (2)

where,

ELorentz =
v

c
× B = μr

v

c
× H0. (3)

This suggests that effective field on charges in the medium is E+ELorentz, and the polarization
P of the medium related by,

P =
εr − 1

4π
(E + ELorentz). (4)

Arguments of this sort predate the theory of relativity, and are often used to explain unipolar
induction in examples such as Faraday’s disk where εr = 1 = μr for all relevant media [7]-[11].

Since there are no free charges in this example, the electric displacement D = E + 4πP
vanishes.4 Thus, the electric field E within the medium is given by E = −4πP, and so,

E = −
(

1 − 1

εr

)
ELorentz = −μr

(
1 − 1

εr

)
v

c
× H0. (5)

Finally, the voltage observed between the sliding contacts would be,

V = −Ed = μr

(
1 − 1

εr

)
vH0d

c
, (6)

where d is the thickness of the slab.5

4As there are no free charges, ∇ · D = 0, and in this stationary example, ∇ × D = 0, so that D = 0
according to Helmholtz’ theorem.

5The result (6), but not necessarily the above derivation, is attributed by Wilson and Wilson [4] to a
pre-relativistic theory of H.A. Lorentz.
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2.1.2 A Special-Relativistic Analysis

We try to confirm the preceding analysis using the theory of special relativity.6

We know that the form of Maxwell’s equations is the same in all inertia frames. However,
we can only say with confidence that the so-called constitutive equations (for a linear, isotropic
medium),

D� = εrE
�, (7)

B� = μrH
�, (8)

and (for a medium with electrical conductivity σ),

J� = σE�, (9)

hold in an inertial rest frame of the medium, where the fields are denoted with a �. That
is, our understanding of electrical media is not fully relativistic in that there is a preferred
frame (the rest frame of the medium) in which key physical parameters are given a special
meaning. Hence, any analysis of electrical media involves some level of conflict with the
spirit of special relativity.

The Lorentz transformations of the fields from the lab frame to the rest frame are [7],

E�
‖ = E‖, E�

⊥ = γ
(
E⊥ +

v

c
× B

)
, B�

‖ = B‖, B�
⊥ = γ

(
B⊥ − v

c
× E

)
, (10)

D�
‖ = D‖, D�

⊥ = γ
(
D⊥ +

v

c
×H

)
, H�

‖ = H‖, H�
⊥ = γ

(
H⊥ − v

c
× D

)
, (11)

where γ = 1/
√

1 − v2/c2.
The constitutive equations (7) and (8) can now be expressed in terms of lab-frame quan-

tities (for any value of γ) as,

D +
v

c
× H = εr

(
E +

v

c
× B

)
, B − v

c
× E = μr

(
H − v

c
× D

)
. (12)

Inserting these expressions into one another, we obtain,7

D − εrμr

v2

c2
D⊥ = εr

(
E − v2

c2
E⊥

)
+ (εrμr − 1)

v

c
× H, (13)

B − εrμr

v2

c2
B⊥ = μr

(
H − v2

c2
H⊥

)
− (εrμr − 1)

v

c
× E. (14)

Because v � c in the present example it suffices to take the low-velocity limit that terms
in v2/c2 are negligible while keeping terms in v/c.8 Thus, the constitutive equations of an
electrical medium that has velocity v � c in the lab frame are,

D = εrE + (εrμr − 1)
v

c
×H, (15)

B = μrH − (εrμr − 1)
v

c
× E, (16)

6This section is abstracted from [12].
7The lab-frame constitutive equations (13)-(14) were first obtained by Minkowski [14].
8This is not the limit of so-called Galilean electrodynamics, in which c → ∞. The multiple possible

meanings of Galilean electrodynamics are reviewed in [13].
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to order v/c. These relations are not readily anticipated without use of Lorentz transforma-
tions.

In the present example there are no free charges or conduction currents associated with
the slab in the lab frame, so we infer that D = 0 and H = H0 there. It follows from eq. (15)
that the lab frame electric field inside the slab is,

Ein = −
(

μr −
1

εr

)
v

c
× H0, (17)

and the voltage observed between the sliding contacts would be,

V = −Eind =

(
μr −

1

εr

)
vH0d

c
, (18)

where d is the thickness of the slab. This result differs from the näıve calculation (6) when
the permeability μr is not unity.

2.1.3 Additional Comments on the Special-Relativistic Analysis

Inside the slab the magnetic field is Bin = μrH0 + O(v2/c2), according to eq. (16). Outside
the slab where εr = 1 = μr we have Eout = 0 and Bout = H0, according to eqs. (15)-(16), as
expected.

In the rest frame of the slab, the interior fields are, to order v/c,

D�
in =

v

c
×H0, E�

in =
D′

in

ε
=

v

εrc
× H0, H�

in = H0. B�
in = μrHin = μrH0. (19)

using eqs. (10)-(11), while the exterior fields are,

D�
out = E�

out =
v

c
× H0 = D�

in, B�
out = H�

out = H0 = H�
in. (20)

The presence of a nonzero (and uniform) electric displacement D� in the rest frame of the
slab is possibly surprising, as we argued that there is no free charge associated with the
slab. However, there must be conduction current density J somewhere in the lab frame
to generate the nominally uniform magnetic field H0. Recalling that charge density ρ and
current density J are combined in a 4-vector (ρ,J/c), there is an apparent free charge density
ρ′ in the rest frame of the slab given by,

ρ� = γ

(
ρ − v · J

c2

)
, (21)

which leads to a nonzero field D�. It might appear that the part of the apparent charge
density ρ� in the rest frame associated with current J in the lab frame is negligible in the
low-velocity limit. However, the following idealized example shows that this is not so.

We imagine that the uniform magnetic field H0 is generated in the lab frame by two large,
conducting sheets that carry current J = ±cH0 v̂/4πd, where d is the thickness of the sheets,
which are on either side of the moving slab. If the charge density ρ is zero on these current
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sheets, then the apparent charge density9 in the rest frame of the slab is ρ� ≈ ∓H0v/4πcd,
and the corresponding surface charge density is σ� ≈ ∓H0v/4πc. Thus, the sheets act like a
parallel-plate capacitor in the rest frame, with electric displacement D� = 4πσ� = v/c×H0

between the sheets, and hence surrounding the slab.

We can also consider the densities P = (D − E)/4π and M = (B − H)/4π of electric
and magnetic polarization in the slab. These densities can also be expressed in terms of the
permittivity εr and permeability μr using the constitutive equations (7)-(8) in the comoving
inertial frame of the slab, and (15)-(16) in the lab frame. Thus,

P�
in =

εr − 1

4π
E�

in =
εr − 1

4πεr

v

c
× H0, M�

in =
μr − 1

4π
H′

in =
μr − 1

4π
H0, (22)

and,

Pin =

(
μr −

1

εr

)
v

4πc
×H0 = −Ein

4π
, Min =

μr − 1

4π
Hin +(εrμr −1)

v

c
×Ein ≈ μr − 1

4π
H0.

(23)
Note that the electric polarization in the lab frame does not obey the form P = (εr−1)E/4π,
as might have been supposed to hold if relativistic effects were ignored. Thus, the analysis
of sec. 2.1.1 was indeed too näıve.

Note that the lab-frame electric polarization is nonzero when εr = 1, so long as μr differs
from unity. This is an example of the well-known phenomenon that a moving magnetization
is associated with an electric polarization (see, for example, sec. 88 of [7] or sec. 18.6 of [11]).

The polarizations (22)-(23) in the two frames are also consistent with the Lorentz trans-
formation of the polarization tensor [7],

P�
‖ = P‖, P�

⊥ = γ
(
P⊥ − v

c
×M

)
, M�

‖ = M‖, M�
⊥ = γ

(
M⊥ +

v

c
×P

)
. (24)

2.1.4 Why is There a Nonzero Electric Field in the Lab Frame?

The lab-frame electric field (17) inside the moving slab is nonzero for both the cases of εr �= 1,
μr = 1 and εr = 1, μr �= 1.

When the medium can be polarized electrically (εr �= 1), we can invoke the sense of the
näıve argument of sec. 2.1.1. The Lorentz force on the moving atoms deforms those atoms,
creating a nonzero electric polarization Pin in the lab frame, and hence a nonzero electric
field Ein.

If, however, the medium cannot be polarized electrically (εr = 1), but can be polarized
magnetically (μr �= 1), the argument is more subtle. The Ampèreian view is that magnetic
polarization is associated with “molecular currents” J�

mol (in the rest frame of the medium).

9The total charge associated with the sheets is zero both in the lab frame and in the rest frame. A
more realistic configuration of the currents is that the two conducting sheets are joined at their edges that
are perpendicular to v by two other conducting sheets, also carrying current J, so as to form a complete
circuit. Then, if the slab is accelerated from rest in the lab frame up to velocity v, an observer on the slab
would consider that some charge migrated from one of the conducting sheets parallel to v to the other, while
conserving total charge.
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An electrically neutral, but magnetically polarized medium that is in motion appears, ac-
cording to the inverse of eq. (21), ρ = γ(ρ� + v · J�/c2) = γv · J�/c2, to have regions of
nonzero charge density in the lab frame, which leads to an electric field there.

This discussion reinforces the conclusion that the näıve argument (5)-(6) is incorrect
because it predicts no electric field/voltage in the lab frame when εr = 1 but μr �= 1.

While the nonzero lab-frame electric field in the moving slab can be called a “relativistic”
effect in both cases εr �= 1, μr = 1 and εr = 1, μr �= 1, an understanding of the latter case
emerged only after the development of the theory of special relativity.

2.2 Rotating Cylindrical Shell

The expression (18) has not been tested directly in the laboratory. However, the experiment
of Wilson and Wilson [4] has confirmed that the voltage observed between contacts sliding
on a cylindrical shell of inner radius a and outer radius b that rotates with angular velocity
ω in an external magnetic field H0 parallel to its axis is,

V = −
∫ b

a

Er(r) dr =

(
μr −

1

εr

)
ωH0(b

2 − a2)

2c
. (25)

2.2.1 Analysis Using a Local Inertial Frame

The experimental result (25) follows immediately from eq. (17) on writing v = ωr φ,

Ein = −
(

μr −
1

εr

)
ωr φ

c
× H0 = −

(
μr −

1

εr

)
ωr H0

c
r̂. (26)

Hence, the Wilson-Wilson experiment was historically considered as evidence for the
correctness of (non)relativistic electrodynamics of moving media.

However, it is possible to be surprised at the success of an analysis based on special
relativity when a noninertial (rotating) frame is involved. Perhaps an analysis based on
general covariance should be used in this case.10

A valid technique of general covariance when describing a rotating system is to associate
each line with fixed (r and φ) in the rotating system with a nonrotating, inertial frame whose
(vector) velocity relative to the lab frame is that of the line (relative to the lab frame). This
description in terms of what I call local inertial frames is particularly useful when the physical
quantities of interest at a point in the rotating system are determined largely by the (local)
behavior of the system close to that point.

In the experiment of Wilson and Wilson, the voltage difference in the lab frame is related
to the radial electric field Er in the lab frame along the line between the sliding contacts.
The lab-frame electric fields D and E at a point along the line of integration of V =

∫ b

a
Er dr

can be related to the electric fields D� and E� in the local inertial frame by a Lorentz
transformation. The only physics needed in the local inertial frame of a point P along
the line of integration is the constitutive equation (7), D� = εrE

�, which is based on a

10In physics, general covariance is usually associated with Einstein’s theory of general relativity. If the
latter is taken to be the theory of gravity due to mass, then the present example is not one of general
relativity (and the centrifugal force experienced in the rotating frame is not a kind of gravitational force).
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macroscopic average over a volume containing only a few atoms, assumed to be at rest.
Atoms at a large distance from point P are not at rest in the local inertial frame, and the
constitutive equation (7) is not valid for those atoms in this frame. However, this awkward
fact is irrelevant to our use of eq. (7) at point P . Hence, we expect that an analysis based
on the use of local inertial frames will give a valid result when transformed to the lab frame,
as is confirmed by experiment.

Another well-known example of successful use of local inertial frames to describe a rela-
tivistic rotating system is a muon storage ring. Here, a beam of mu mesons moves in a circle
at speeds very close to that of light under the influence of a constant laboratory magnetic
field. Mu mesons decay with a lifetime τμ = 2.2μs when at rest, while mu mesons circulat-
ing with velocity v are observed in the lab frame to decay with a lifetime τ = γτμ where

γ = 1/
√

1 − v2/c2. This is the result expected from the special-relativistic time dilation in
the local inertial frame of a circulating mu meson. The physics of the decay of a mu meson is
governed by extremely short distance scales, so it is no surprise that the use of local inertial
frames is effective in this case.

Other reviews of the use of local inertial frames to study the electrodynamics of rotating
systems are [12, 15]. For other discussions particular to the Wilson-Wilson experiment, see
[16]-[19].

Bound and Free Charges (The rest of sec. 2.2.1 was rewritten Nov. 9, 2020, as inspired
by e-discussions with Jacques Maritz.)

The electric polarization in the lab frame of the rotating cylinder is again given by
eq. (23). There is also a nonzero bound charge density in the lab frame,

ρbound = −∇ · Pin = − 1

4π
∇ · Ein =

(
μr −

1

εr

)
ωH0

2πc
, (27)

recalling eq. (26). The cylindrical surfaces at r = a and p support bound surface charge
densities,

σbound(r = a+) = −Pin(r = a) · r̂ =

(
μr −

1

εr

)
ωaH0

4πc
, (28)

σbound(r = b−) = Pin(r = b) · r̂ = −
(

μr −
1

εr

)
ωbH0

4πc
. (29)

The bound surface charges are,

Qbound(r = a+) = 2πalσbound(r = a+) =

(
μr −

1

εr

)
ωa2lH0

2
, (30)

Qbound(r = b−) = 2πblσbound(r = b) = −
(

μr −
1

εr

)
ωb2lH0

2c
. (31)

The total bound charge is zero, as expected,

Qbound =

∫
ρbound dVol + Qbound(r = a+) + Qbound(r = b−)

=

∫ b

0

(
μr −

1

εr

)
ωH0

2πc
2πlr dr +

(
μr −

1

εr

)
ω(a2 − b2)lH0

2c
= 0. (32)
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In the Wilson-Wilson experiment [4], the surfaces at r = a and b of the rotating cylinder
were metalized, forming a cylindrical capacitor of capacitance,

C ≈ εrl

2 ln(b/a)
, (33)

independent of the angular velocity ω. In the rest of this section, such conductors are assumed
to exist. The bound surface charge (30)-(31) induces free charge on these conductors, given
by,

Qfree(r = a−) = −Qbound(r = a+) = −
(

μr −
1

ε

)
ωa2lH0

2
, (34)

Qfree(r = b+) = −Qbound(r = b−) =

(
μr −

1

εr

)
ωb2lH0

2c
. (35)

The total free charge on the rotating capacitor is nonzero,

Qfree = Qfree(r = a−) + Qfree(r = b+) =

(
μr −

1

εr

)
ω(b2 − a2)lH0

2
, (36)

unlike an ordinary capacitor which has equal and opposite free charges ±Q on its two elec-
trodes.

Circuit Analysis

If the rotating capacitor is part of an “ungrounded” electrical circuit with zero total free
charge, the free charge (36) on the conductors of the rotating cylinder implies that equal
and opposite free charge resides elsewhere on the circuit, which compensating charge can be
thought of as associated with the stray capacitance of the circuit to “ground”.

The rotating cylinder acts as a (unipolar) voltage source of strength (25), which is in
series with its capacitance. The energy which may be provided by this source comes from
the mechanism that drives the constant angular velocity ω, or, if no such mechanism exists,
from the (decreasing) mechanical kinetic energy of the rotating cylinder as ω falls to zero.

If there is no other voltage source in the circuit, there is no charge ±Q on the conductors
of the rotating cylinder. But when another voltage source is present, the charge on the outer
conductor of the rotating cylinder is Qfree(r = b+) of eq. (35) plus an additional (free) charge
Q, while that on the inner conductor is Qfree(r = a−) of eq. (34) plus an additional (free)
charge −Q, and the voltage drop across the rotating cylinder is V of eq. (25) plus Q/C.

Variable Rotation

The angular velocity ω was constant in the Wilson-Wilson experiment, but if it were time
dependent, then the rotating cylinder would be a kind of variable voltage source (in series
with the constant capacitance C of eq. (33)).11

11An oddity in case of variable velocity ω is that the current into the outer conductor of the rotating
cylinder must include the term dQfree(r = b+)/dt = (μr − 1/εr) ω̇b2lH0/2, and the current out of the inner
conductor must include dQfree(r = a−)/dt = (μr − 1/εr) ω̇a2lH0/2.
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2.2.2 Analysis in the Rotating Frame

A different analysis of the Wilson-Wilson experiment could involve a transformation between
the lab and the rotating frame, along with knowledge of the constitutive equation in the
rotating frame.

One of the first analyses of electrodynamics in a rotating frame using general covariance
was made by Schiff [20]. See also [21]-[38]. A major concern of these efforts is the form
of Maxwell’s equations in a rotating frame, which will not be needed here as we do not
deduce the fields in the rotating frame from sources in that frame. Those sources include
“fictitious” terms needed to explain, for example, how a magnetic field exists in the rest
frame of a rotating sphere of charge.

We do need the transformation of the fields B, D, E and H between the lab frame and the
rotating frame. We record here only the low-velocity (O(v/c)) limit of these transformations
[36, 37, 39]:

B = B′, D = D′ − v

c
× H′, E = E′ − v

c
× B′, H = H′, (37)

where a ′ indicates quantities observed in the rotating frame, v = ω × r is the velocity of
the point of observation with respect to the lab frame.

We also need the constitutive equations in the rotating frame. We might suppose that
these have the forms (7)-(8) because the rotating frame is a rest frame of the medium.
However, we recall that “fictitious” forces appear to observers in rotating frames, so the
constitutive equations (which relate fields/forces to dipole source terms) in a rotating frame
may not have the same form when the medium is at rest in an inertial frame. As discussed
in sec. A.5 of [39], the constitutive equations in a rotating frame can be written to O(v/c)
as,

D′ = εrE
′, (38)

B′ = μrH
′ − (εrμr − 1)

v

c
×E′, (39)

Then, transformation of the fields from the rotating frame to the lab frame leads to the
forms (15)-(16) obtained by the methods of special relativity.12 Hence, the predictions for
the lab-frame voltage drop between the sliding contacts of the Wilson-Wilson experiment
are the same for analyses based on use of local inertial frames and on use of the rotating
frame.

2.2.3 Additional Comments on the Analysis in the Rotating Frame

The fields B′, D′, E′ and H′ in the rotating frame are, to order v/c, the same as the fields
(19)-(20) in a local inertial frame.

Using the relations D′ = E′ + 4πP′ and H′ = B′ − 4πM′ for the electric and magnetic
polarization densities, the constitutive equations (38)-(39 imply that to order v/c,

P′ =
εr − 1

4π
E′, M′ =

μr − 1

4π
H′ +

εrμr − 1

4π

v

c
× E′. (40)

12When this analysis is done to all orders of v/c, the forms (13)-(14) are obtained [36].
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Because E ′ = vH0/εrc in the Wilson-Wilson experiment, the magnetization M ′ observed in
the rotating frame is the same M� observed in the local inertial frame to order v/c. However,
in examples with nonzero free charge (and εrμr different from unity), the magnetization would
appear to be different in the rotating frame and the local inertial frame.

If we accept that the magnetic field is the same in the rotating frame as in the lab frame,
then we can use Maxwell’s equations in the rotating frame to solve for the electric fields D′

and E′ and the polarization P′. In particular,

∇′ · D′ = 4π

(
ρ′

free +
ω · H′

2πc
+

v

4πc
· ∇′ × H′

)
=

2ω · H′

c
=

2ωH0

c
, (41)

expresses that the electric field has “fictitious” source terms in the rotating frame [20, 39].
The symmetry of the problem implies that D′ is purely radial, so that eq. (41) leads to,

D′ =
ωr′H0

c
r̂′ =

v

c
× H0. (42)

This result is consistent with the (inverse of the) transformation (37) that D′ = D+v/c×H0,
recalling that in the lab frame D = 0 since there are no free charges. We then have that,

E′ =
D′

εr
=

1

εr

v

c
× H0, and P′ =

(εr − 1)D′

4πεr
=

(εr − 1)

4πεr

v

c
× H0. (43)

Accepting that H′ = H0, we have that B′ = B0 = μrH0 and M′ = M0 = (μr − 1)H0/4π.
Transforming the electric field E′ and polarization P′ to the lab frame [39], we find,

E = E′ − v

c
×B′ = −

(
μr −

1

εr

)
v

c
×H0, and P = P′ +

v

c
×M′ =

(
μr −

1

εr

)
v

4πc
×H0,

(44)
as found in eqs. (17) and (23).

There is also a nonzero bound charge density in the rotating frame,

ρ′
bound = −∇′ · P′ − 2ω · M′

c
+

v

c
· ∇′ ×M′ = −

(
μr −

1

εr

)
ωrH0

4πc
= ρbound , (45)

using eq. (46) of [39], which agrees with the lab-frame charge density (27).

The important overall conclusion is that the same understanding of lab-frame electrody-
namics of a rotating system can be gained either by use of local inertial frames or by use
of the rotating frame, but since the use of local inertial frames is conceptually simpler this
approach is to be preferred in practice.
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