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1 Problem

A neutral wire along the z-axis carries current I that varies with time t according to,

I(t) =

⎧⎨
⎩

0 t ≤ 0,

αt t > 0, α is a constant.
(1)

Deduce the time-dependence of the electric and magnetic fields, E and B, observed at a point
(r, θ = 0, z = 0) in a cylindrical coordinate system about the wire. Use your expressions to
discuss the fields in the two limiting cases that ct � r and ct = r + ε, where c is the speed
of light and ε � r.

2 Solution

We follow the familiar method of first calculating the retarded potentials and then taking
derivatives to find the fields. The retarded scalar and vector potentials V and A are given
by,

V (x, t) =

∫
ρ(x′, t− R/c) d3x′

R
, and A(x, t) =

1

c

∫
J(x′, t− R/c) d3x′

R
, (2)

in Gaussian units, where ρ and J are the charge and current densities, respectively, and
R = |x − x′|.

In the present case, we assume that the wire remains neutral when the current flows.1

Then, the scalar potential vanishes. For the vector potential, we see that only the component
Az will be nonzero. Also, J d3x′ can be rewritten as I dz for current in a wire along the z-
axis. For an observer at (r, 0, 0) and a current element at (0, 0, z), we have R =

√
r2 + z2.

Further, the condition that I is nonzero only for time t > 0 implies that it contributes to
the fields only for z such that (ct)2 > R2 = r2 + z2. That is, we need to evaluate the integral
only for,

|z| < z0 ≡
√

(ct)2 − r2. (3)

Altogether,

Az(r, 0, 0, t) =
α

c

∫ z0

−z0

(
t√

r2 + z2
− 1

c

)
dz =

α

c

(
t ln

ct + z0

ct − z0
− 2z0

c

)
=

2α

c

(
t ln

z0 + ct

r
− z0

c

)
.

(4)

1We ignore the small departure from neutrality that scales as v2/c2 where v ≈ 1 cm/sec is the velocity
of the conduction electrons. See, for examlple, [1].
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[The two forms in eq. (4) arise depending on whether or not one notices that the integrand
is even in z.]

The magnetic field is obtained via B = ∇×A. Since only Az is nonzero, the only nonzero
component of B is (noting that ∂z0/∂r = −r/z0),

Bφ = −∂Az

∂r
=

2αz0

cr
. (5)

The only nonzero component of the electric field is,

Ez = −1

c

∂Az

∂t
= −2α

c2
ln

z0 + ct

r
. (6)

For long times, ct � r, ⇒ z0 ≈ ct, and the fields become,

Bφ ≈ 2αt

cr
=

2I(t)

cr
= B0(t), Ez ≈ −2α

c2
ln

2ct

r
= −B0

r

ct
ln

2ct

r
� B0, (7)

where B0(t) = 2I(t)/cr is the instantaneous magnetic field corresponding to current I(t).
That is, we recover the magnetostatic limit at large times.

For short times, ct = r + ε with ε � r, after the fields first become nonzero we have,

z0 =
√

2rε + ε2 ≈
√

2rε, (8)

so,

Bφ ≈ 2α

c2

√
2ε

r
, and Ez ≈ −2α

c2
ln

r + ε +
√

2rε

r
≈ −2α

c2

√
2ε

r
= −Bφ. (9)

In this regime, the fields have the character of radiation, with E and B of equal magnitude,
mutually orthogonal, and both orthogonal to the line of sight to the closest point on the wire.
(Because of the cylindrical geometry, the radiation fields do not have 1/r dependence,vwhich
holds instead for cylindrical static fields.)

In sum, the fields build up from zero only after time ct = r. The initial fields propagate
outwards at the speed of light and have the character of cylindrical waves. But at a fixed
transverse distance r, the electric field dies out with time, and the magnetic field approaches
the instantaneous magnetostatic field due to the current in the wire.2,3

2Of possible amusement is a direct calculation of the vector potential for the case of a constant current
I0. First, from Ampere’s law we know that Bφ = 2I0/cr = −∂Az/∂r, so we have that,

Az = −2I0

c
ln r + const. (10)

If we use the integral form for the vector potential we have,

Az(r, 0, 0) =
1
c

∫ ∞

−∞

I0dz√
r2 + z2

=
2I0

c

∫ ∞

0

dz√
r2 + z2

= −2I0

c
ln r + lim

z→∞ ln(z +
√

z2 + r2). (11)

Only by ignoring the large constant, which does not depend on r for a long wire, do we recover the “elemen-
tary” result.

3For the related example of the fields associated with a linearly rising current in a solenoid, see [2].
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