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1 Problem

Discuss wireless power transmission between a pair of electrical circuits that contain coils.

2 Solution

The related issue of the flow of energy in such circuits as described by the Poynting vector
is considered in [1].

Supposing the distance d between the centers of the two coils is small compared to the
wavelength λ = 2πc/ω, where c is the speed of light in vacuum, circuit analysis is a good
approximation. Writing the self inductance of the two coils as Lp = Ls = L and their
mutual inductance as M(d), the circuit equations are (for time dependence eiωt for the
voltage source),

V = IpZp + iωMIs, Zp = iωL, 0 = IsZs + iωMIp, Zs = R + iωL. (1)

Then,

Is = − iωM

Zs
Ip, Ip = V

Zs

ZpZs + ω2M2
, Is = −V

iωM

ZpZs + ω2M2
, (2)

and the (time-average) power delivered to the load resistor R is,

PR =
|Is|2 R

2
=

V 2

2

ω2M2R

|ZpZs + ω2M2|2 . (3)

For the circuits shown above, with impedances Zp and Zs as stated in eq. (1), the delivered
power would be,

PR =
V 2

2

ω2M2R

|iωLR − ω2L2 + ω2M2|2 =
V 2

2R

M2

L2[1 + ω2(L2 −M2)2/L2R2]
. (4)
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In general, M2 ≤ LpLs = L2, and M(d) ∝ 1/d3 for coil separations d large compared to the
coil size (see the Appendix). Hence, the (idealized) circuits on p. 3, for which PR ∝ 1/d6,
are not favorable for wireless transmission of energy.

To maximize the delivered power (3) we should minimize Zp or Zs or both. For example,
a capacitor Cp and a small resistor Rp could be added in series to the coil in the primary
circuit,1 such that this series R-L-C circuit resonates at angular frequency ω, with Zp = Rp.

2

Similarly, a capacitor Cs could be added in series in the secondary circuit such that it also
resonates at angular frequency ω, with Zs = R.

Then,

PR =
V 2

2

ω2M2R

(RpR + ω2M2)2
. (5)

Although the mutual inductance gets smaller rapidly with increasing distance d between
the coils, it is possible that RpR � ω2M2 for a useful range of d. If so,

PR ≈ V 2

2

R

ω2M2
=

V 2

2R

(
R

ωM

)2

(RpR � ω2M2), (6)

and the power delivered to the load resistor R could increase with distance (at least for
r � λ)!

Of course, power is also dissipated in the resistor Rp, although this is small if RpR �
ω2M2,

PRp =
|Ip|2 Rp

2
=

V 2

2

|Zs|2 Rp

|ZpZs + ω2M2|2 =
V 2

2

R2Rp

(RRp + ω2M2)2
≈ V 2

2

R

ω2M2

RRp

ω2M2
� PR. (7)

Then, if one defines the power transmission efficiency as,

ε =
PR

PR + PRp

=
ω2M2

ω2M2 + RRp
, (8)

1Any real inductor has some capacitance and resistance; Cp and Rp are the total capacitance and
resistance in the primary circuit, including that of the nominal inductor.

2Strictly, the analysis should include effects of radiation by the circuits, which are small loop antennas.
To a first approximation, this affects the impedance of the circuit by the addition of a (series) “radiation
resistance” Rrad = 31171(NArea/λ2)2 Ω, which is of order 1 Ω for typical geometries relevant to wireless
power transmission. That is, the resistances Rp and R include the radiation resistance, and so cannot be
less than ≈ 1 Ω.
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this efficiency could be close to unity when RRp � ω2M2.
While inductors are typically thought of as solenoidal coils (with length b many times

their radius a), it is considered more practical for wireless power transmission to use planar
spiral coils of outer radius a (and inner radius a′ that we take to be zero in this note). Either
type of coil has a self capacitance Cself between adjacent turns in the winding, and it is
convenient to operate the system at the natural (angular) frequency ω0 = 1/

√
LCself , where

L is the self inductance of the coils (taken here to be the same for both coils).
For a numerical estimate, suppose that R = 10Ω, Rp ≈ 1Ω, and that the planar spiral

coils have N = 700 turns of outer radius a = 0.3 m. Then, as estimated in Appendix A.2,
(ω0M)2 = 10(3/d)6 Ω2 for coil separation d in meters. In this case, ω0 ≈ 10 kHz, and
f0 = 1600 Hz. Then, according to eqs. (5) and (8),

PR ≈ V 2

2R

10(3/d)6

[1 + (3/d)6]2
ε ≈ (3/d)6

1 + (3/d)6
, (9)

which is maximal for d = 3 m where the efficiency is ε ≈ 0.5. The efficiency at, say, d = 2 m
would be ≈ 92%.3

Considerations such as the above have led to optimism of practical wireless power trans-
mission, famously starting with Tesla [2]-[7] (who noted the importance of resonant circuits,
but advocated high voltage to compensate for low ωM). An analysis similar to that given
here appears in [8], where Fig. 4 shows an example of the transferred power first increas-
ing with distance and then falling at larger distance; subsequent efforts include methods to
extend the range of “good” distances by sensing the location of the load circuit and elec-
tronically adapting the parameters of the circuits for optimal efficiency at that distance [9].
Among the vast literature, see also [10]-[12].

3 High Frequencies

The preceeding discussion assumed that the wavelength λ = 2πc/ω was large compared
to all relevant length scales in the coupled-circuit problem. Considerations of circuits of
size of order the operating wavelength arise for antenna arrays (see, for example, [13]), and
later became important with the development of integrated circuits for which appropriate
modifications to circuit analysis were pioneered by Ruehli [14], and are incorporated into
integrated-circuit simulations such as SPICE [15].

In this section we consider the case that the coil separation d is of order λ, but that the
primary and secondary circuits are each small compared to λ. For wireless power transmis-
sion in “room-size” applications, the operating frequency would be in excess of 100 MHz.

At such high frequencies, radiation by the circuits is not entirely negligible. Here, we
simply suppose that the resistances Rp and R include the radiation resistances of the pri-
mary and secondary circuits; for practical power transmission the radiation resistance of the
secondary should be small compared to the Ohmic resistance of the load in that circuit.

3However, if we desire (ω0M)2 = RRp at larger coil separation d, the number of turns required grows
rapidly with d according to eq. (46) (and the self-resonant frequency ω0 drops rapidly, according to eq. (45).
This suggests that efficient wireless power transmission via coupled coils will be restricted to relatively small
distances.
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If we suppose that coupled-circuit analysis of the type used above can be applied to the
high-frequency case, we are led to a paradox (noted in [16, 17]), that if the coil separation
is λ/4 then the back reaction of the secondary on the primary is shifted in phase by 180◦

compared to the case of small separation such that the back reaction reinforces the drive
voltage, perhaps leading to “infinite” currents in the circuit.4

4A näıve analysis is as follows.
The separation d between the primary and secondary coils implies that wave propagating across the space

between these circuits accumulate a phase retardation,

φ = kd =
2πd

λ
=

ωd

c
. (10)

The revised circuit equations are,

V eiωt = Ip eiωtZp + iωMIs eiωt′ , 0 = Is eiωtZs + iωMIp eiωt′ , (11)

in that the EMF in the primary at time t due to the coupling with the secondary depends on the current
in the latter at the earlier (retarded) time t′ = t − d/c = t − φ/ω (and similarly the EMF in the secondary
at time t depends on the current in the primary at the retarded time t′). Dividing out the common factors
eiωt, as usual, we obtain,

V = IpZp + iωMIs e−iφ, 0 = IsZs + iωMIp e−iφ, (12)

Then,

Is = − iωM e−iφ

Zs
Ip, Ip = V

Zs

ZpZs + ω2M2 e−2iφ
, Is = −V

iωM e−iφ

ZpZs + ω2M2 e−2iφ
. (13)

Again assuming that the primary and secondary are each resonant circuits at angular frequency ω, with
Zp = Rp and Zs = R, we have,

Ip = V
R

RpR + ω2M2 e−2iφ
, Is = −V

iωM e−iφ

RpR + ω2M2 e−2iφ
. (14)

If the coil separation is d = λ/4, then φ = π/2 (= 90◦), and,

Ip = V
R

RpR − ω2M2
, Is = −V

ωM

RpR − ω2M2
(d = λ/4). (15)

In the special case that RpR = ω2M2, the currents are formally infinite (which is a clue that the analysis is
too näıve).

An additional difficulty with the above analysis concerns energy conservation. The (time-average) power
delivered by the voltage source is,

Psource =
V Ip

2
= V 2 R

2(RpR − ω2M2)
, (16)

while the power consumed by the load resistors is,

Pp + Ps =
I2
pRp

2
+

I2
s R

2
= V 2R

RpR + ω2M2

2(RpR − ω2M2)2
. (17)

These are equal only if the factor in the denominator were RpR + ω2M2, corresponding to coil separation
d � λ. We infer that the above type of coupled circuit analysis is inappropriate for any coil separation that
is a significant fraction of a wavelength, and that more advanced analyses are required in such cases.
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The case of coil separation being a significant fraction of a wavelength requires use of
techniques of antenna analysis, which are best performed numerically, using codes such as
NEC4 [18] that solve an appropriate integral equation.5

The present example is called a two-element loop Yagi in the antenna community, where
Yagi antennas more typically have linear elements. Analytic discussion of Yagi antennas is
given, for example, in [13, 20]. The coupled-circuit analysis is based on the equations,

V = IpZp + IsZM , 0 = IsZs + IpZM , (18)

where the source voltage V and currents Ip and Is all have time dependence eiωt, Zp and Zs

are the (self) impedances of the primary and secondary circuits, and ZM = Zps = Zsp is the
mutual impedance between the circuits. The mutual impedance also arises in the context of
antenna reciprocity theorems [21, 22, 23]. The mutual impedance can be computed according
to eq. (22.3.4) of [20],

ZM = − 1

Ip(0)Is(0)

∮
s

E‖,psIs dls, (19)

where E‖,ps is the tangential component of the electric field from the primary circuit along
the conductor of the secondary circuit.

For simplicity, we suppose both coils have N turns of radius a and their centers are
separated by distance d � a, with the coils being coaxial. Then, the electric field due to
current Ip in the primary coil is azimuthal, with value at the secondary coil,6

E‖,ps =
μ0c

4π
NπIpa

2a

d

(
k2

d
− ik

d2

)
e−ikd. (20)

For small coils the current is independent of position in the coil, so the integral (19) (over
the N turns of the secondary coil) reduces to,

ZM = iω
μ0N

2a4

2πd3
(1 − ikd) e−ikd = iωM(1 − ikd) e−ikd, (21)

where k = ω/c and M = μ0N
2a4/2πd3 is the mutual inductance at low frequency (where

kd � 1).7,8

The circuit equations (18) have the solutions,

Ip =
V Zs

ZpZs − Z2
M

, Is = −Ip
ZM

Zs
= − V ZM

ZpZs − Z2
M

, (22)

5See, for example, [19].
6See, for example, sec. 9.23 of [24].
7The DC mutual inductance M , usually associated with magnetism, was obtained via eq. (19) which

explicitly involves only the electric field, thereby illustrating the unity of the electromagnetic field.
8The result (21) differs from that of eq. (12) by the factor 1 − ikd. For coil separations d >∼ λ, where

each coil is in the far zone of the other, the term kd leads the mutual impedance to vary as 1/d2 rather than
1/d3 as for small d. This behavior indicates that the coupling of the coils in the far zone is via the radiation
fields rather than the quasistatic magnetic dipole field as latter holds for small d.
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The (self) impedances of the circuits are real in case of resonance,

Zp = Rp + Rrad, Zs = R + Rrad, (23)

where the radiation resistance of the small coils is,9

Rrad =
8Z0π

5N2a4

3λ4 = 31171

(
Nπa2

λ2

)2

Ω, with Z0 = μ0c =

√
μ0

ε0
= 377Ω. (24)

The (time-average) power delivered to the load resistor R in the secondary circuit is,

PR =
|Is|2 R

2
=

V 2 |ZM |2 R

2 |ZpZs − Z2
M |2 . (25)

The (time-average) powers dissipated in the primary and secondary circuits are, according
to the circuit analysis [noting that Zp and Zs are real for resonant circuits according to
eq. (23)],

Pp =
|Ip|2 Zp

2
=

V 2Z2
s Zp

2 |ZpZs − Z2
M |2 , Ps =

|Is|2 Zs

2
=

V 2 |ZM |2 Zs

2 |ZpZs − Z2
M |2 . (26)

We define the efficiency of the power transfer as,

ε =
PR

Pp + Ps
=

R |ZM |2
Zs(ZpZs + |ZM |2)

=
ω2M2(1 + k2d2)R

(R + Rrad)[(Rp + Rrad)(R + Rrad) + ω2M2(1 + k2d2)]
< 1, (27)

recalling eq. (23). High efficiency is achieved only if R � Rrad and RRp � ω2M2(1+k2d2).10

9The radiation resistance can be related to the reactance Xcoil = ωL = μ0ωN2πa2/b of the coil by
Rrad = (4π3/3)(Vol/λ3)Xcoil, where the volume of the coil is πa2b.

10The present circuit analysis is not fully consistent in that the power delivered by the source,

Psource =
Re(V Ip)

2
= Re

(
V 2Zs

2(ZpZs − Z2
M )

)
=

V 2Zs(ZpZs − ReZ�2
M )

2 |ZpZs − Z2
M |2

, (28)

is not quite equal to the sum of the dissipated powers, eq. (26). One aspect of this inconsistency is that the
power radiated by the two circuits is subject to interference effects, and is not simply the sum of the powers
radiated by each circuit separately, as assumed in the circuit analysis.

In more detail, the electric field in the far zone of the two coils (i.e., for r � λ and r � d) is,

Erad,φ =
μ0c

4π
Nπa2k2(Ip + Is e−ikd cos θ) sin θ

eikr

r
=

Z0Nπ2a2

λ2 (Ip + Is e−ikd cos θ) sin θ
eikr

r
. (29)

The (time-average) angular distribution of the radiated power at large distance r from the system is related
to the Poynting vector S = E × H by,

dPrad

dΩ
= r2 〈Sr〉 =

r2 |Erad,φ|2
2Z0

=
1
2

Z0π
4N2a4

λ4

[
|Ip|2 + |Is|2 + 2Re(I�

P Is e−ikd cos θ)
]

sin2 θ, (30)
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A Appendix: Estimates of Inductances

and Self Capacitance

A.1 Solenoidal Coils

In the lowest approximation, a coil of N turns of radius a and total length b � a that
carries current I has internal magnetic field B = μ0NI/b and self-flux Φ = LI = Nπa2B =
μ0N

2πa2I/b, such that the self inductance is

L ≈ μ0N
2πa2

b
, (32)

and its magnetic moment has magnitude m = Nπa2I . The magnetic field outside the coil
at distance r is approximately,

B =
μ0

4π

3(m · r̂)r̂ − m

r3
=

μ0Nπa2I

4π

3(m̂ · r̂)r̂− m̂

r3
. (33)

The magnetic flux from coil 1 that is linked by coil 2 is,

Φ12 = M12I1 ≈ Nπa2 m̂2 · B1 ≈ μ0N
2π2a4I

4π

3(m1 · r̂)(m̂2 · r̂) −m1 · m̂2

r3
(34)

Thus, for two identical, coaxial coils separately by distance r, their mutual inductance is,

M‖ ≈ μ0N
2πa4

2r3
(m1 = m2 ‖ r), (35)

while for two identical, parallel coils with axes perpendicular to their line of centers their
mutual inductance is,

M⊥ ≈ μ0N
2πa4

4r3
(m1 = m2 ⊥ r). (36)

An impressive collection of lore on computation of inductances of solenoidal coils is
available in [25].

There is a capacitance between adjacent turns of wire in the coils, with value roughly
0.1 nF/m for wire with insulation of relative permittivity ε = 3 and insulation of thickness

and the (time-average) radiated power is,

Prad = 2π

∫
dPrad

dΩ
d cos θ =

1
2

8Z0π
5N2a4

3λ4

[
|Ip|2 + |Is|2 +

3
2

∫
d cos θ Re(I�

P Is e−ikd cos θ) sin2 θ

]

=
Rrad

2

[
|Ip|2 + |Is|2 +

3
2

∫
d cos θ Re(I�

P Is e−ikd cos θ) (1 − cos2 θ)
]

. (31)

The third (interference) term of eq. (31) is outside the scope of the circuit analysis.
For a more accurate analysis, a numerical simulation with a code such as NEC4 [18] should be performed.
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equal to the radius of the wire.11 For a single-layer solenoid coil of N turns of radius a m,
this self capacitance is,

Cself ≈ 2πNa × 10−10 F. (37)

The resonant angular frequency of such a planar spiral coil is,

ω0 =
1√

LCself

≈ 1√
8π3N3a3 × 10−17/b

≈ 108

2N
√

2πNa/b)a
. (38)

For example, a solenoid coil of radius a = 5 cm, length b = 50 cm and N = 60 turns has
ω0 ≈ 107.

A.2 Planar Spiral Coils

A coil geometry that is becoming popular in wireless transmission of power is a planar spiral,
which in its simplest version has N turns with radial spacing r0 (= diameter of the wire +
insulation) for radii 0 < r < a.

We recall that the self inductance of a circular coil of radius a made from a conductor of
radius r0 can be estimated by suppose that the magnetic field at distance r from the coil is
B ≈ μ0I/2πr, and that the flux linked by the coil is Φ =

∫ a

r0
2πa dr B = μ0I ln(a/r0), i.e.,

L ≈ a ln(a/r0). Applying this argument to a spiral coil, the flux linked is sum/integral of
that linked by the N = a/r0 coils of radius r due to the field generated in the N coils labeled
by radius r′,

Φ ≈ μ0I

∫ a

r0

dr

r0
r

[∫ r−r0

r0

dr′

r0

(∫ r′

r0

dr′′

r′′
−
∫ r−r′

r0

dr′′

r′′

)
+

∫ a

r+r0

dr′

r0

∫ r′

r′−r

dr′′

r′′

]

=
μ0I

r2
0

∫ a

r0

r dr

[∫ r−r0

r0

dr′[ln r′ − ln(r − r′)] +
∫ a

r+r0

dr′[ln r′ − ln(r′ − r)]

]

=
μ0I

r2
0

∫ a

r0

r dr

[∫ r−r0

r0

dr′ ln r′ −
∫ r−r0

r0

ds ln s +

∫ a

r+r0

dr′ ln r′ −
∫ a−r

r0

ds′ ln s′
]

=
μ0I

r2
0

∫ a

r0

r dr [a ln a − a − (r + r0) ln(r + r0) − r − r0 − (a − r) ln(a − r) + a − r + r0 ln r0 − r0]

≈ μ0I

r2
0

∫ a

r0

r dr (a ln a + r0 ln r0 − 2r0 − 2r − a ln r)

≈ μ0I

r2
0

[
a2 − r2

0

2
(a ln a + r0 ln r0 − 2r0) − 2

a3 − r3
0

3
− a3 ln a

2
+

a3

2
+

ar2
0 ln r0

2
− ar2

0

2

]

≈ −μ0I

r2
0

a3

6
= −μ0N

2Ia

6
. (39)

Then, the self inductance is,

L =
|Φ|
I

≈ μ0N
2a

6
. (40)

11For a discussion of the capacitance of two-wire transmission lines see, for example, [26].
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An extensive study [27] of planar spiral coils indicates that the self inductance is closer to
μ0N

2a/4.
To estimate the mutual inductance of a coaxial pair of such planar spiral coils, separated

by distance r, we note that the magnetic moment of each coil has magnitude,

m ≈
∫ a

0

dr

r0
Iπr2 =

πIa3

3r0
=

πINa2

3
, (41)

which differs from that of a solenoid by a factor 1/3. Hence, recalling eqs. (34)-(35), the
mutual inductance is,

M‖ ≈ μ0N
2πa4

6r3
≈ a3

r3
L. (m1 = m2 ‖ r). (42)

The total length of the conductor of the coil is,

l ≈
∫ a

0

2πr
dr

r0
=

πa2

r0
= πNa, (43)

so the self capacitance is,

Cself ≈ πNa × 10−10 F. (44)

The resonant angular frequency of such a planar spiral coil is,

ω0 =
1√

LCself

≈ 1√
4π3N3a2 × 10−17/4

≈ 108

N
√

πNa
. (45)

In this model,

(ω0M)2 ≈
(

108

N
√

πNa

μ0N
2πa4

6r3

)2

=

(
40π2a3

6r3

√
N

π

)2

≈ 1400N
a6

r6
. (46)

If, say, we desire that (ω0M)2 = RRp = 10 Ω2 when r = 3 m for planar spiral coils with
radius a = 0.3 m, then we need N ≈ 700 turns (such that r0 ≈ 0.4 mm = diameter of wire
+ insulation). In this case, ω0 ≈ 10 kHz, and f = 1600 Hz.
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