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This note gives a prescription for fitting a set of m points, {xj, yj}, (perhaps from digi-
tization of an image) to an ellipse, with the general form (with 5 parameters ai),

a1x
2 + a2xy + a3y

2 + a4x + a5y − 1 = 0 (a1, a3 > 0, a2
2 < 4a1a3). (1)

In addition, we give an estimate of the errors on the best-fit values of the parameters ai.

1 Errors on the Parameters of the Quadratic Form (1)

We first define the auxiliary data set {zij}, i = 1, 5, j = 1, m,

zi,j = (x2
j , xjyj, y

2
j , xj, yj). (2)

Among many possible measures of the goodness of fit of the data {zij} to the ellipse (1),
we adopt the simplest,1 writing,

χ2 =
m∑

j=1

(
∑5

i=1 aizij − 1)2

σ2
j

, (3)

where σj is the measurement uncertainty associated with the data point (xj, yj). The best-fit
parameters âi are those that minimize the function χ2 for a set of measurements {zij}.

We consider the case that the σj are not known, but can be assumed to have the common
value σ. Then, by supposing that the function χ2 is actually a chi-square [3, 4, 5, 6, 7, 8]
with m − 5 degrees of freedom, the best-fit (minimum) χ2 has most probable value m − 5.
Assuming (näıvely) that the best-fit χ2 has this value, the unknown σ is determined, and
error estimates for the best-fit parameters âi follow via standard procedures.2

A great insight is that exp(−χ2/2) can be thought of another way. It is also the (un-
normalized) probability distribution that the polynomial coefficients have values ai when
their best-fit values are âi with uncertainties due to the measurements {xj, yj}. Expressing
this in symbols,

exp(−χ2/2) = const × exp

(
−

5∑
k=1

5∑
l=1

(ak − âk)(al − âl)

2σ2
kl

)
, (4)

or equivalently,

χ2 = const +
5∑

k=1

5∑
l=1

(ak − âk)(al − âl)

σ2
kl

. (5)

1For a survey of 13 measures of goodness of fit, see [1]. For discussion of the measure (3), see [2].
2For a discussion of this approach for polynomial fitting, see Appendix D of [9].
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The uncertainty on âk is σkk in this notation. In eqs. (4) and (5) we have introduced the
important concept that the uncertainties in the coefficients âk are correlated. That is, the
quantity σ2

kl is a measure of the probability that the values of âk and âl both have positive
fluctuations at the same time. In fact, σ2

kl can be negative indicating that when âk has a
positive fluctuation then âl has a correlated negative one.

One way to see the merit of minimizing the χ2 is as follows. According to eq. (5) the
derivative of χ2 with respect to ak is,

∂χ2

∂ak
=

5∑
l=1

âl − al

σ2
kl

, (6)

so that all first derivatives of χ2 vanish when all al = âl. That is, χ2 is a minimum when the
coefficients ai take on their best-fit values âi. A further benefit is obtained from the second
derivatives,

∂2χ2

∂ak∂al
=

1

σ2
kl

. (7)

For our particular χ2 (3), with σj = σ, the first derivatives are,

∂χ2

∂ak
=

m∑
j=1

zkj(
∑5

i=1 aizij − 1)

σ2
=

1

σ2

5∑
i=1

m∑
j=1

aizijzkj − 1

σ2

m∑
j=1

zkj , (8)

and the second derivatives are,

∂2χ2

∂ak∂al
=

1

σ2

m∑
j=1

zkjzlj ≡ Mkl

σ2
. (9)

Using the matrix Mkl introduced in eq. (9), the condition that the first derivatives (8) vanish
at the best-fit coefficients âk can be written as,

5∑
i=5

Mikâi =

m∑
j=1

zkj ≡ Vk. (10)

We then calculate the inverse matrix M−1 and apply it to find the best-fit coefficients âk

(which do not depend on the as-yet-unknown value of σ),

âk =
5∑

l=1

M−1
kl Vl. (11)

Comparing eqs. (7) and (9) we have,

1

σ2
kl

=
Mkl

σ2
, i .e., σ2

kl =
σ2

Mkl
. (12)

The uncertainty in best-fit coefficient âi is then reported as,

σâi = σii =
σ√
Mii

. (13)
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All that remains is to find the value of the unknown uncertainty σ = σj on the measure-
ments. For this, we set the χ2 for the best-fit parameters âi equal to the number of degrees
of freedom, m− 5,

χ2(âi) = m− 5 =
m∑

j=1

(
∑5

i=1 âizij − 1)2

σ2
, (14)

such that σ is determined to be,

σ =

√∑m
j=1(

∑5
i=1 âizij − 1)2

m − 5
, and σâi = σii =

√√√√∑m
j=1(

∑5
k=1 âkzkj − 1)2

(m − 5)
∑m

j=1 z2
ij

. (15)

2 Errors on the Conventional Ellipse Parameters

An alternative description of the ellipse of eq. (1) is that it has semimajor axis of length a
which makes angle θ to the x-axis, semiminor axis of length b, and center at (x0, y0). The
shape parameters a, b and θ depend only on a1, a2 and a3, while the center of the ellipse
depends on all five of the ai. We now deduce the alternative parameters, and their fit errors,
in terms of the ai and the errors on the latter as found in sec. 1.

We first translate the coordinates according to x′ = x− x0 and y′ = y− y0 such that the
resulting parameters a′

i of the quadratic form have,

a′
1 = a1, a′

2 = a2, a′
3 = a3, a′

4 = 2a1x0 + a2y0 + a4, a′
5 = a2x0 + 2a3y0 + a5. (16)

For the ellipse to be centered at x′ = 0 = y′ we need a′
4 = 0 = a′

5, which leads to,

x0 =
a2a5 − 2a3a4

4a1a3 − a2
2

, y0 =
a2a4 − 2a1a5

4a1a3 − a2
2

. (17)

As a check, we note that if a4 = 0 = a5 then the original ellipse was centered on the origin,
and indeed eq. (17) implies that x0 = 0 = y0.

To deduce the error on, say, x0 we first consider the differential,

dx0 =
a5da2 + a2da5 − 2a4da3 − 2a3da4 − x0(4a3da1 + 4aada3 − 2a2da2)

4a1a3 − a2
2

. (18)

Then, on squaring this we can identify (dx0)
2 with the squared error σ2

x0
when we identify

the products dai daj with the σ2
ij found in eq. (12).

The determine the shape parameters a, b and θ we perform a coordinate rotation by
angle θ with respect to the x′-axis3 (which is parallel to the x-axis),

x′′ = x′ cos θ + y′ sin θ, x′ = x′′ cos θ − y′′ sin θ, (19)

y′′ = −x′ sin θ + y′ cos θ, y′ = x′′ sin θ + y′′ cos θ, (20)

3We could also make the rotation directly from the (x, y) coordinates, with no affect on the shape
parameters as these don’t depend on a4 and a5. However, if parameters x0 and y0 are deduced only after
this rotation, they appear to depend on θ, which complicates the expressions for their errors.
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and require that a′′
2 = 0, in which case a′′

1 = 1/a2 and a′′
3 = 1/b2. This leads to,4

tan 2θ =
a2

a1 − a3
, cos 2θ =

a1 − a3√
a2

2 + (a1 − a3)2
, sin 2θ =

a2√
a2

2 + (a1 − a3)2
, (21)

σθ =
cos2 2θ

2 |a1 − a3|
√

tan2 2θ(σ2
11 + σ2

33 − 2σ2
13) + σ2

22 − 2 tan 2θ(σ2
12 − σ2

23), (22)

and,

1

a2
= a1 cos2 θ + a2 sin θ cos θ + a3 sin2 θ =

a1 + a3 + (a1 − a3) cos 2θ + a2 sin 2θ

2

=
a1 + a3 +

√
a2

2 + (a1 − a3)2

2
, (23)

1

b2
= a1 sin2 θ − a2 sin θ cos θ + a3 cos2 θ =

a1 + a3 − (a1 − a3) cos 2θ − a2 sin 2θ

2

=
a1 + a3 −

√
a2

2 + (a1 − a3)2

2
. (24)

Note that 1/b2 ≤ 1/a2, which means that b is the semimajor axis, and a is the semiminor
axis. Note also that tan 2θ = tan 2(θ − π/2), so there is an ambiguity in eq. (21) as to
whether θ is the angle to the semimajor or the semiminor axis.

As a measure of the departure of the ellipse from a circle we introduce the ellipticity
(flattening) ε,5

ε ≡ b

a
≥ 1 , ε2 =

a1 + a3 +
√

a2
2 + (a1 − a3)2

a1 + a3 −
√

a2
2 + (a1 − a3)2

≡ C+

C−
. (25)

Taking the differential, we have,

2ε dε =
dC+ − ε2 dC−

C−
≡ C1 da1 + C2 da2 + C3 da3

C−
, (26)

where,

C± = a1 + a3 ±
√

a2
2 + (a1 − a3)2 = a1 + a3 ± S, S ≡

√
a2

2 + (a1 − a3)2, (27)

C1 = 1 − ε2 +
a1 − a3

S
(1 + ε2) = −2[a2

2 − 2a3(a1 − a3)]

SC−
≡ −2

D1

SC−
, (28)

C2 =
a2

S
(1 + ε2) =

2a2(a1 + a3)

SC−
≡ 2

D2

SC−
, (29)

C3 = 1 − ε2 − a1 − a3

S
(1 + ε2) = −2[a2

2 + 2a1(a1 − a3)]

SC−
≡ −2

D3

SC−
. (30)

4As z2
2j = x2

jy
2
j = z1jz3j, the definition (9) implies that M13 = M22 = M31. Furthermore, x2 +y2 ≥ 2xy,

so that x4+y4 ≥ 2x2y2, and hence M11 +M33 ≥ 2M13. Then, it can be that σ2
11 +σ2

33 = σ2/M11+σ2/M33 <
2σ2/M13 = 2σ2

13, and the argument of the square root in eq. (22) can be negative (as verified in numerical
examples). Similarly, the argument of the square root in eq. (31) can be negative. This suggests that the
matrix σ2

kl of eq. (16) may not be a good representation of the correlation in the uncertainties on the five
parameters âi.

In numerical calculations, one could use the absolute value of the arguments of the square roots.
5If we define ε′ = (b − a)/a = ε − 1, so that ε′ = 0 for a circle, then σε′ = σε.
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Then, the error σε on the ellipticity ε is given by,

σε =
1

εSC2−

√
D2

1σ
2
11 + D2

2σ
2
22 + D2

3σ
2
33 − 2D1D2σ2

12 − 2D2D3σ2
23 + 2D1D3σ2

13 . (31)

Of course, the “error” computed this way assumes that the fit is “good”, which might
not be the case. The user should make a separate judgment as to whether the fit is indeed
“good” before taking seriously the error estimates presented here (which in any case are
subject to the doubt raised in footnote 4).

References

[1] P.L. Rosin, Analysing error of fit functions for ellipses, Patt. Rec. Lett. 17 1461 (1996),
http://physics.princeton.edu/~mcdonald/mumu/target/Rosin/rosin_ellipse_fit_functions.pdf

Assessing Error of Fit Functions for Ellipses, Comp. Graph. Info. Proc. 58, 494 (1996),
http://physics.princeton.edu/~mcdonald/examples/statistics/rosin_gmip_58_494_96.pdf

[2] A. Albano, Representation of Digitized Contours in Terms of Conic Arcs and Straight-
Line Segments, Comp. Graph. Info. Proc. 3, 23 (1974),
http://physics.princeton.edu/~mcdonald/examples/statistics/albano_cgip_3_23_74.pdf

[3] K. Pearson, On the Criterion that a given System of Deviations from the Probable in
the case of a Correlated System of Variables is such that it can be reasonably supposed
to have arisen from random sampling, Phil. Mag. 1, 157 (1900),
http://physics.princeton.edu/~mcdonald/examples/statistics/pearson_pm_1_157_00.pdf

[4] R.A. Fisher, On the Interpretation of χ2 from Contingency Tables, and the Calculation
of P , J. Roy. Stat. Soc. 85, 87 (1922),
http://physics.princeton.edu/~mcdonald/examples/statistics/fisher_jrss_85_87_22.pdf

[5] R.A. Fisher, The Conditions under which χ2 Measures the Discrepancy between Obser-
vation and Hypothesis, J. Roy. Stat. Soc. 87, 422 (1924),
http://physics.princeton.edu/~mcdonald/examples/statistics/fisher_jrss_87_442_24.pdf

[6] W.G. Cochran, The χ2 Test of Goodness of Fit, Ann. Math. Soc. 23, 315 (1952),
http://physics.princeton.edu/~mcdonald/examples/statistics/cochran_ams_23_315_52.pdf

[7] R.L. Plackett, Karl Pearson and the Chi-squared Test, Intl. Stat. Rev. 51, 59 (1983),
http://physics.princeton.edu/~mcdonald/examples/statistics/plackett_isr_51_59_83.pdf
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