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In this paper I review some properties of the meximum likelihood
method of fitting datz., The sections on the bias of the methed, and on
tests for goodness of fit may be of particular interest, as this material

is not generally known Lo physicists.

1. Introduction to the Maximum Likelihood Method.

Often in experiments we make observations of a quantity (or guantities),
here labelled x, which are related to some parameter(s), &, by a probability
distribution. That is, the probabililty of observing an event with x in the

range dx is given by

e

Pla,x)dx .
We shall always consider P to be normalized
fP(a,x)dx = 1

for all a. The problem is to esbimate the parameter(sl a, from the observations
of x.

One might think to use some sort of least squares fitting procedure.
This requires casting the data into a function of alwhich can then be fitted
in the usual manner.,  The simplest way-to do this is to divide the range of

-

x into a definite set of bins Axi centered at x, and setting
Ni = number of events in Axi/total number of events,
The Ni then form & set of data which may be compared with the function

Fla,i) = P(a,xi).{\xi



to predict a. The problem with this method is that the choice of the bin
size is arbitrary. Turther, one normally}associates an error with each
point in a least sguares fit., What should we assign as the error on the
number‘of events in a bin?

A ﬁethod which avoids the question of binning is the method of moments.

From the expression P(a,x) we may calculate the various moments)
F (a) = fan(a x)dx .
n 2 .

If an experiment consists of N observations of x ylelding X5 oy i=1...8,

then we may estimate from the data:

N

Foo= Z xl:.:/N . i)

ST
Of course, only the first N moments may be estimated in an experiment‘with N
events, FEguating the experimental and 'theoretical! moments we now have
N equations for a. The problem is to decide which one gives the bpst estinate
of a,
To overcome the difficulties seen above; R.A. Fisher proposed the

)

Maximum Likelihood Method in 1912l . From the distribution P(a,x) ve

form the guantity

N .
L(a) = T[T P(a,xi)
i=1

vhere the Xy are events obgerved in an'experiment. Then L{a) is the probability
(density) that ar experiment produces thlie cvents X5 assuming a to be the
éorrect value for the parsmeter, IL{a) is the likelihood fuanction. The
likelihood method consists of choosing as the best estimate of a that

value which meximizes L{a).



The likelihood functidn, L{a), is a peculiar function, It is not a
probability distribution~~L{a)da is not the probability that a iz the true
- parameter. To see this, consider another parametrization, say b, where

b= 32 . If L were a probability distribution, then

L{p)ab = L{b) +2ada or L{a) = 2ai(b) .

However, the definition of L implies L{a) = L{p) for b= a2 .

It is also diffiqulﬁ to interpret the height of L., The more events
in our experimeni, the greater L is, bub there is no relation between the
height of L.and, say, the goodness of our.choice of parametrization as there
is with X°. People say that if L(al) = 2L(?2) then a, is twice as likely
as 2, vhere 'likely' séems to be defined by'this very statement.

In practice it is often more convenient to deal with fn L{a) rather
than L{a). These both attain their maxima at the same a, S0 either may be
used to prediet the value of a corresponding to maximum likelihood., However,

¢n L{a) = ; n P(a,xi)
which is much easier to deal with.than the large product which makes up L.

We can give a further demonstration that #nlk is more useful than L.
Buppose & is the true value of the parameter. Then L(ao) =:rrP(ao,xi)
is the exact probability that eventis x5 are ohgerved. Hence wz may calculate
the expectation vqlue of any quanbity - g(xl...xN) for an experiment of N

-events:

<g>r = I....fg(xl....xm) L(ao)‘rrdxi .
: i



Consider g = L(a)
<L{a)> = f....f—rr P(a,xi) P(ao,xi) dxi = {IP(&,X) P(ao,x) d%]N .
. 1 )

We might expect <IL{a)> to have a maximum at 8,0 However,

a<L(a)>/da n %E-IP(a?x) P(ao,x)dx

a

a o}

o
which is non;zero in general.
This might lead one to doubt that the maximum likelihood method work;
at all. 1If we call a* that value of a which maximizes L{a) for a particular

experiment, we should say the method vorks if

# .
<g > = a .
0

This is indeed true for large N but the proof is not simple. I refer the
2)

reader to Cramér .

We can show that <fn L{a)> has a maximum at a_.

<tn L(a)>

[

j....fg n P(a,xi)TE' P(ao,xi)dxi

H

N fP(aO,x) ¢n Pla,x)dx

Pla x)
4 - _ o’ ar(a,x)
an <in L(a)/ =N I P(&’X) aa ) dx ]
At a =4 this is
(o]
d =
N da-fP(a,x)dx . =0
o}

since fP(a,x)dx = 1 for all a. Thus Lo get a picture of L{a) it is better

o Stn L{a)>

to consider than <L{a)> .



We closc this section with some examples.

- Consider the distribution
Pla,x) = (1 + a cosx)/2m .

This distribution arises in the azimuthal dependence of the scalttering of a
polarized spin 1/2 particle off a spin O target. An experimént consists of
the observation of a set of scatters with angles x5 i=1,..N.
Then &n L{a) = z en(l1 + a cosxi) - N tn{2m)
i
cosX,
i

——

a fn Lla) y _
1+ a cosxi

da
The value of a which maximizes this can be found by Newton's method
or some other pumerical technique. TFor an instructive comparison of this
result with that of the method of moments (m@ich provides a good first guess
3)

for Newton's method) see the thesis of Bruce Winstein™’.

Suppose a, is the true value of a, We can caleulate, for an experiment

of N events,

1 (em i
<L(a)>= [é;~_§ {1 + a cosx){1 + a, COSX)d%]

0 2w
- K (1 + &, cosx)tn (1 + a cosx)dx

A
»
=
=
»
v
n

on
[0)

1l
=
I?Ql
=
~—
N
—



" Figure 1 shows exp{<tn L(a)>) for N = 50 and a_ = 0 and 0.8.
The Tunciions have baen normalized to 1.0 for comparison.

Tt is perhaps useful to have an example involving 2 parameters. Consider
Pl(x) = (L 4+ a cosx + Db sinx)/en .

Tor an experiment

N

gn Lia,b) = 2, {1l + a cosx; + D sinxi) ~ N fnfer)

i=1.

=

leading to the maximum likelihood conditions:

cosX,
Y > . =0
L1 + & cosx, *+ b sink,
i i i g
sinxi
= 0 .

2 1 + a cosx, + b sinx,
i i i

To get a feel for the shape of L{a,b) we again consider <n Lia,b)> .

*

It is convenient to rewrite
= + -
Pix) = 1 A cos(x 3%)

where a = A cosZ b = A sink are the true values of the parameters.
o} o} o] o) o} e}

Now

-2—15—. f(]_ + AO cos(x -xo)) an{1 + A cos{x ~ Z))ax

m
[T
L

¢}

1

<&n L(A ,X)>

It

s
NE,n(H+——+——H'é"A ) + A cosl%

This function is illustrated in Tigure 2 for AO = 0.8, Z% =0 and N = 200.

The parameiers are called Py, and ) corresponding to a and by also PO is

the same as Ao '



L

RANST]

f“\
<
A
0
o
(8]
o
B
&
(]
|_
)
=
)
L
()
D
£
i
_J
L]
N~
—1
1
i)
-

- @ L

uoIaeuIxoiddy URTSSNR) - - - — =

UoTIoUNI POOYTTXTT BYL

L o |

I DL Q3STIUWEON (U Xl






o, The Likelihood I'unction for Observations in a Limited Range.

Suppose we conduct an experiment in which x is observed over only a
limited range, say, *, to x,. The correct application of the maximum
likelihood method requires our 'theoretical’ probability distribution to

be normalized for the interval (xl,xe); Thus

Pla,x)

%
WY P(a?x)/g P(a,x)ax .

X1

We illustrate this using the example of Section 1,

P{a,x) = (1 + a cosx)/27

.

for observations restricted to (Xl;K

?). The new probability distribution

is:

Pla,x} = (1 + a cosx)/(X2 - Xl A a(siﬁxl - siﬁz2) .

L]

Note that in practice Xi and X2 could be different for each event. For an

experiment of N observations Xy the maximum likelihood condition is

i X .
Z} cosxy N(sink; - sink,)
i=l

. = - - .F —_ ] )
1+ a cosx, 3% Xl + a(slnkl 51nL2)



3. The Effect of Unceftainty in the Data.

Suppose each observation of = in an experiment is associated with an
error 0., presumed to be random. Then the probability of v being the value

which should have been observed in the case of infinite precision is

2,2

1
en o,
i

The likelihood function would then be

L(a) =7 P(a,xi,di)

i

where
2 2
1 -{y—x)" /20
Pla,x,0) = TEr S fpla,y)e (yx)"/ dy .
Consider our example, P(a,x) = (1 + a cosx)/2r . Calculation yields

an effective distribution
Pla,x,0) = (1 + a cosx e ° /2)/2w

assuming ¢ << 21 so that the limits of integration can be extended to
infinity. We can use this result to estimate a correction to the maximum

likelihood value of a in the case where the error in N is ignored. WHe have

a = & 602/2
CORRECTED

where ¢ is the average error. Thus an average error of 10° would cause only
a 1% correction.
Note that uncertaihty in the data can affect the value of the maximum

likelihood estimate of a, as well as the uncertainty in a.



4. The Error of the Maximum Likelihood Mgthod.

Suppose a trug value, a s of the parameters exists, and the likelihood
method predicts a* from an experiment. What is the error as;ociated with
a%? What is the value for <(a¥ - a0)2> 7 We give a rather intuitive
argument which gives an answer (of ordér-l/N, N = number of events) which is,
however, correct with the neglect of terms of order 1/N2.

We consider the second moment of a in exp(<tn L{a)>}. Expanding

this about ao:

2
= y a_ 24 ;
<tn L{a)> = <4n L(a0)>.4 (a ao} o n L(a0)> + 1/2 (a - ao) 2 <fn L(ao)> o

The first derivative vanishes at a, as shown in Section 1. Thus, with
the neglect of higher order terms, exp{<tn L(a)>) is Gausslan. Our intuitive

#
assumption is that the width of this Gaussian is a good estimate of <{a - ao)2> :

2

%

<{a -~a )2> = -l/—g*-<£n L{a )> .
0 da2 (o]

. *
For a single experiment, we estimate a, by a, and the error on our estimate

as

2

]
0" = -:L/—~d—— 2n Lia ) .
a 2
da

Cramérz) gives a proof that the above estimate of the error is in fact

.x.
- ao)2> attained only in certain cases for finite

a lower bound on <(a
experiments. It is correct in the 1imit of large N for most practical cases.

Figure ) shows <&n L(a)> for the distribution (1 + a cosx)/21 . The



10.

dashed curves are Gaussians of wildths given by the above expression,
We now consider the extension to the case of several parameters, as,

i=1...M, We now are interested in all of the moments

% ¥
<(ai - a’oi)(’aj = g ¥> .

' -
Following the argument for 1 parameter, we expand (using the notation a for

ay, 1= 1..,M),

> > ' :
<gn L{a)» = <&n L(a0)> -~ 1/2 % (ai - aoi)(aj - aoj) Aij + ..

where

82 ' -
<in L_(a0)> .

1t Aij is diagonal then clearly we should take

% 2
<(ai -a .)

For Aij non-diggonal, the reader will appreciate {hat the second eguality is

the correct generalizavion;:

* * -1 ’
<(ai‘- aoi)(aj - aoj)> = (A )ij .

Again in practice, we estimate

57

'_> .):‘
Aij s wn Lia )

, %a,
1 J

To get a feel for the magnitude of the errors from the basic distribution
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P(a,x) recall

<f&n L(§)> =N fP(go,x) on P(g,x) dx .

Then
2 .
> 9 -+
<Aij>h = IP(aO,X) Eg;vﬁgf“ &n P(ao,x) dx R

or

-+ >
1 BP(aO,x) BPCaO,x)
<A, P= N I - - — - dx .
ij > Ba, Sa,
P(ao,x) i

: o
where we have used the fact IP(a,x) dx = 1 .
We now illustrate the estimation of errors using'the examples of Section
1. First‘we consider the distribution (1 + a cosx)/2n . TFor an experiment
2
cos X,

2 i '
o = 1/2 SE—— n 2 .
i (1 + a COSXi)

the expectation for ¢ is given by

o o SR
O O

o op S cos x dx .
o 2 = —

Y]

1 4+ a cosx
(o} . fo)

For a_ =0, ¢ = /2/N , while for a_ =1, 0=01! The latter limit is a
result of the fact that the likelihood function varies rapidly with a, for

a near 1,
0 .

The second example is the distribution

(1 + & cosx + b sinx)/271 = (1 + A cos{x ~F))/en .



12,

When working with experimental data it is probably easier to use thé
parametrization with a qnd b, However, the “error matrix} Aijiis not diagonal,
even in the limit of large N The parametrization A and X is unwieldy to
handle experimentally, but yields simpler understanding‘ of the errors as

Aij is diagonal in this case. Evaluating the integrals for true parameters

A, and XO R

The errors exhibit rotational invariance. Note also that in the Limit

of A =1 ,0A=0 but O = Y1/N .

o]



5. ?he_Bigs of_phe Likelihood Method

So far we have been tacitly assuming-that if a true parameter, B, exists,

# %
then the likelihood estimate a , obeys <a > = ay - This is true only

2}

asymptotically®’, Steve Yellin has derived an expression for the bias for

the case of a finite number of eventsh). Writing

. s £, (a)
< = P
837 T Bo1 T MV d

(for the case of several perameters), he finds
D_ >
BP(a ') §i eh d P(ao,x)

filag) = = 5 ‘+”‘E(A“11.JW

Pla ,x) J

SR, A
oa_ aa
m n

plus terms of order 1/N2. A is now given by

BE(EO?%) BP(a ,xj

Ei‘

A.. = I ~ - e e
13 ('g" X) Bai aaj
Note that if P is linear in its parameters, the bias vanishes (neglecting

order l/Ne).

As an example of a bias occurring in the likelihood method, consider a

Gaussian distributiocn

1 ~(x = p°)/20°
P = wzg— e
x Vo ¢ )

" The likelihood estimates of w and ¢ are:

¥ xi/N

i

/Y P
L

=
1t

Q
11

n .
However, it is well known that the best estimate of o is fi (xi ~ P - 1)
i



1k,

6. Coodness pf Fit

The question arises whether the pafametriiation'we uysed to fit the data
was a good choice, As we have remarked eariier, the éizé of the likelihood
functiop itself does not give any précise clue as to the goodness of the fit.
If we have two forms of parametrization ve can say that the one which has
“the larger likelihood function al maximun is better, but how.much better
is a little vague.
As an example, suppose an experiment is performed sampling a distriﬁution
" of the form 1 + a, sinx but we mistekenly try to fit the results to 1+ a cosx .

Then the likelihood function we construct is

2T .
<¢n Lia)> = N/2n g (1 + a, sinx) tn{l + a cosx) dx
o
1+ ¥l ~ a2
=N 2n(; é*"—“""‘) .

which is independent of ao! The likelihood functidn reaches its maximum at
a-= 0. If &, = 0 our Tit is good, but if a, = 1 it is very bad. However,
our likelihood function is the same in both cﬁses. Thus it can yield no
inf'ormation as‘to the goodness of £he fit.

The classic test for goodness of fit is, of course, Pearson's x2 test.
A good review of its properties is given by CochrapS). To apply it to the
£it for a probability distribution one must divide the range of x into bins of
egual pro-ability. The nﬁmber of bins should be such that there are atl
least 5 to 10 events observed in each bin. The advantage of the x2 test

is that {at least for large samples) it is independent of the form of the

parametrization (non—parametric,to the mathematicians) and also it is not



gensitive to the fact that the values of the parameters have been delermined
by the data itself. Its disadvantagé for'thé'present case is that the

data must be binned rather arbitrarily. In addition, thé number of bins
will usually be small and the properties of the xz test for small samples
are not as well established as its common usage might indicatle.

What is desired is a test of goodness of fit more suited to the nature
of a probability distribution. Such tests, in their ideal form, are known
to mathemabicians as non-parametric statistics, of which the X2 test is
only one example, These tests seem to be more familiar to psychologists
than to physiecists, and there is even a textbook on this subject for
behavioral scientistsG).

Phe basis for the tests is something called the "empirical distribution

_ funection". For an experiment with events xi,_i = 1...N, it is defined by

i}

FN(x) 1/N Z elx - xi)

1

where
. _Jrif x>0 :
E(3‘)‘{011" x <0 '

It loocks like

v M

1]

—T

>
.

\u‘f

x
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FN is a step function with a step of height 1/l oceurring at each data point.

Fy is limited to the interval [O,J].
Ir P(a,x)} is the probability gistribution for x, we may construct the

ideal behavior of FN as

Fix,a) =.J Pla,y) dy .

By comparing F and FN we gel analogues of the x2 test, This is commonly. done
in two ways.
Pest 1. (Cramér-von Mises-Smirnov Test)

Define

cﬁ =N [ ) - rlx,a))°ar(x,a)

which for well-behaved cases is

P [y (x) - Flx,a))? Playx) ax .

Test 2, (Kolmogorov-Smirnov Test)

Define

Ky =Jﬁ-MAX]FN(X) - Flx,a)| .

Bince FN and F{x,s) are monotonic, the maximumrcan only occur at a data point.
Thus Kﬁ is particularly easy to calculate,

If the parameter,a,is known ahead of time, both of these tests giVe--
confidence levels which are independent of the form of P(a,x), even for small

N. The confidence level function is, however, a function of N, As the X2

test is not truly independent of P(a,x) for small N, these new tests are
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superior in principle To the xg test, Note that Tests 1 and 2 could also
be applied to the results of a least squares fit, A review of these Tests

: 8
is given by BirnbaumT) and in more detail, with many references, by Darling ).

A confidence function, C, for the result, R, of some test of goodness

of fit is defined by
¢{r) = probability that R <r .

For Mest 1, the confidence function, ¢(r), is tabulated by Anderson and

. Darlingg) for the limit of large N, For Test 2, also in the limit of large N,

®
C(r)==i§:j (nl)n efenzre }
=
This result is also given in a table by Smirnovlo)- Fbr finite N the confidence
function is tabulated in References 11, 12, and 13.

The difficulty with these tests is that if the parameter a is inferred
from the data’itself, then the distribution free confidence functions no
longer apply. The géneral result of fitting the parameters with the data is
- 4o lower the result of a goodness of fit test, be it xe, CE, or KN. One
commonly compensates for this effect for the x2 test by using a confidence
function for N equal to the number of degfeés of freedom rather than the
‘number of data points, This procedure is also not distribution free for

small samples. However, for the CE and KN tests there is no known simple
procedure to correct for this reduction in the degrees of freedom, Darlinglh)
‘gives a complicated procedure for the CE test which could be carried out

for any particular P(a,x) on a computer.

Ve can give a practical, though somewhat tedious, method for producing
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confidence levels for any of these tests when the parameters are determined
from a finite number of events. It is a Monte Carlo calculation. Choose a
probability distribution and parametérs of interést, and produce a large
number of "experiments" on a computer with a random number generator. They
all shouid have the same mmber of evenfé. For each experiment use the
maximum likelihood method to estimate the value of the parameter (which you
fixed for purposeg of calculation), Using this estimate, calculate the
value of xg, C;, or KN' In this way you accumulate statistics on the frequency
of appearance of various values of xe, ete, This is your confidence level
table. If you uée the fixed value of the parameter to calculate XQ, ete.,
you should generate the distribution free confidence lebels mentioned abhove.
This would provide a check on the calculation.

FExperience with the distribution 1 + a cosx (Bruce Winstein, private
communicabion) shows that the confidence function for C; remains closer {o

the distribution free function than does that for KN: when the data is

used to it the parameters,

I would like to thank Bruce Winstein and Steve Yellin for the many

conversations during which this review was developed,
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